CN105601464B - 一种降低直链烷基苯溴指数的催化加氢方法 - Google Patents

一种降低直链烷基苯溴指数的催化加氢方法 Download PDF

Info

Publication number
CN105601464B
CN105601464B CN201511029998.9A CN201511029998A CN105601464B CN 105601464 B CN105601464 B CN 105601464B CN 201511029998 A CN201511029998 A CN 201511029998A CN 105601464 B CN105601464 B CN 105601464B
Authority
CN
China
Prior art keywords
catalyst
lab
transition metal
linear alkylbenzene
dipping
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201511029998.9A
Other languages
English (en)
Other versions
CN105601464A (zh
Inventor
任杰
慎炼
袁海宽
金辉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zhejiang University of Technology ZJUT
Original Assignee
Zhejiang University of Technology ZJUT
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhejiang University of Technology ZJUT filed Critical Zhejiang University of Technology ZJUT
Priority to CN201511029998.9A priority Critical patent/CN105601464B/zh
Publication of CN105601464A publication Critical patent/CN105601464A/zh
Application granted granted Critical
Publication of CN105601464B publication Critical patent/CN105601464B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/584Recycling of catalysts

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • General Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Water Supply & Treatment (AREA)

Abstract

本发明公开了一种降低直链烷基苯溴指数的催化加氢方法,所述的方法为:在温度60~400℃、压力0.3~10.0MPa、质量空速0.2~8.0小时‑1、氢油体积比300:1~8000:1的条件下,将加氢原料和氢气混合,与过渡金属磷化物负载型催化剂接触反应,使烯烃饱和,进而降低直链烷基苯溴指数,改善产品质量;所述加氢原料为苯与C10~C14直链烯烃烷基化混合物经蒸馏分离得到的直链烷基苯,或者苯与C10~C14直链烯烃烷基化混合物;本发明工艺流程简单,催化剂活性稳定性好,装置稳定操作时间长,可避免反应器反应和再生频繁切换操作,直链烷基苯损失少,催化剂可再生,可避免大量废催化剂后处理,对环境影响小。

Description

一种降低直链烷基苯溴指数的催化加氢方法
(一)技术领域
本发明涉及一种降低直链烷基苯溴指数的催化加氢方法,尤其是一种用过渡金属磷化物负载型催化剂进行催化加氢反应,降低直链烷基苯溴指数的方法。
(二)背景技术
苯与C10~C14直链烯烃烷基化生产的直链烷基苯是合成洗涤剂的主要原料。目前工业上普遍采用UOP公司的脱氢-HF烷基化工艺技术,来生产直链烷基苯。HF烷基化工艺存在设备腐蚀严重、产生大量的废液废渣,以及潜在生产安全等问题。为了保护人类生存环境,开发无腐蚀性固体酸催化剂和环境友好烷基化工艺得到国内外普遍关注。UOP公司和Petresa公司联合开发的烷基化反应和催化剂洗涤再生24h切换操作的固定床固体酸催化Detal工艺实现了工业化应用。
生产直链烷基苯的工艺过程是,C10~C14直链烷烃经过脱氢,然后经选择性加氢脱除二烯烃,得到直链烷烯混合烃;经直链烷烯混合烃中的烯烃与苯的液体HF催化或固体酸催化烷基化反应,以及蒸馏分离,得到直链烷基苯。由于烷基化原料烷烯混合烃中含有少量的二烯烃,其与苯反应生成苯基烯烃,并且难以进一步完全转化,使烷基化产物直链烷基苯中含有少量的烯烃。另外,在烷基化混合物蒸馏分离过程中,受热裂解的影响,使所分离的直链烷基苯馏分烯烃含量有所增加。这些导致直链烷基苯溴指数增大。直链烷基苯溴指数标志着烷基苯不饱和烃的含量,影响烷基苯质量稳定性和烷基苯磺酸盐的色泽。工业上普遍采用白土精制方法降低直链烷基苯溴指数,其废白土需要填埋处理,污染环境,并且烷基苯损失较大。用催化加氢方法降低烷基苯溴指数,改善产品质量,是有效的发展方向。
催化加氢精制效果与负载型催化剂性能有关。近年来研究发现,过渡金属磷化物在许多涉氢反应中具有优异的催化性能,作为新型催化剂已引起人们的广泛关注。过渡金属磷化物因比表面积小,其催化性能较差。将其负载在多孔材料上,制备负载型催化剂,是提高比表面积的有效途径。负载型加氢催化剂的性能受催化活性组分负载量和在载体上的分散程度影响。
在用浸渍方法制备负载型催化剂时,使浸渍溶液体积与催化剂载体最大吸附水的体积相等,所谓的等体积浸渍,能够有效地利用金属源。在浸渍金属源到载体上的过程中,通过向浸渍溶液中添加络合剂,提高金属源在载体上的分散程度,增大金属表面积,提高负载型催化剂的加氢催化活性。另外,在金属源浸渍过程中,利用超声波的分散作用,提高金属源在载体上的分散程度,提高负载型催化剂的催化活性。利用这些方法制备性能好的加氢负载型催化剂,对开发降低直链烷基苯溴指数的催化加氢方法具有重要意义。
(三)发明内容
本发明目的是提供一种降低直链烷基苯溴指数的催化加氢方法,即用过渡金属磷化物负载型催化剂进行催化加氢反应,降低直链烷基苯溴指数的方法,解决了白土精制的废白土填埋处理所导致的环境污染,以及直链烷基苯损失较大的问题。
本发明采用的技术方案是:
本发明提供一种降低直链烷基苯溴指数的催化加氢方法,所述的方法为:在温度60~400℃、压力0.3~10.0MPa、质量空速0.2~8.0小时-1、氢油体积比(即氢气与加氢原料体积比)300:1~8000:1的条件下,将加氢原料和氢气混合,与过渡金属磷化物负载型催化剂接触进行加氢反应,使烯烃饱和,进而降低直链烷基苯溴指数,改善产品质量;催化剂失活后再生,循环利用;所述加氢原料为下列之一:(1)苯与C10~C14直链烯烃烷基化混合物经蒸馏分离得到的直链烷基苯;(2)苯与C10~C14直链烯烃烷基化混合物;所述的负载型过渡金属磷化物催化剂以过渡金属磷化物为活性组分,以氧化铝或氧化硅为载体,所述过渡金属磷化物负载质量分数为1~20%(优选5%~15%);所述过渡金属磷化物是磷化镍、磷化钼、磷化钴、磷化钨中的一种或两种以上混合物。
进一步,所述加氢反应原料优选为下列之一:(1)苯与C10~C14直链烯烃烷基化混合物经蒸馏分离得到的直链烷基苯,其溴指数为20~800mgBr/100g,更优选溴指数为30~500mgBr/100g;(2)苯与C10~C14直链烯烃烷基化混合物,其苯和直链烷基苯质量分数分别为15~60%、5~15%,其余为C10~C14直链烷烃,烷基化混合物的溴指数为20~800mgBr/100g,更优选的烷基化混合物溴指数为30~500mgBr/100g,其苯和直链烷基苯质量分数分别为25~55%、6~12%,其余为C10~C14直链烷烃。
本发明最优选加氢反应原料为下列之一:(1)苯与C10~C14直链烯烃烷基化混合物经减压蒸馏分离得到的直链烷基苯,其溴指数为227.63mgBr/100g;(2)苯与C10~C14直链烯烃烷基化混合物经减压蒸馏分离得到的直链烷基苯,其溴指数为28.18mgBr/100g;(3)苯与C10~C14直链烯烃烷基化混合物经减压蒸馏分离得到的直链烷基苯,其溴指数为493.52mgBr/100g;(4)苯与C10~C14直链烯烃烷基化混合物,其苯、直链烷基苯、C10~C14直链烷烃的质量分数分别为52.48%、6.65%、40.87%,溴指数为315.18mgBr/100g;(5)苯与C10~C14直链烯烃烷基化混合物,其苯、直链烷基苯、C10~C14直链烷烃的质量分数分别为15.71%、11.87%、72.42%,溴指数为516.25mgBr/100g;(6)苯与C10~C14直链烯烃烷基化混合物,其苯、直链烷基苯、C10~C14直链烷烃的质量分数分别为57.46%、5.99%、36.55%,溴指数为37.67mgBr/100g。
进一步,所述氧化铝为Al2O3或γ-Al2O3;所述氧化硅为多孔硅胶,优选青岛海洋化工公司生产的ZCX-2型、20~40目多孔硅胶。
进一步,所述加氢反应条件为温度80~350℃、压力0.5~5.0MPa,进料质量空速0.5~5.0小时-1、氢油体积比600:1~6000:1,最优选为温度100~300℃、压力1.0~4.0MPa,进料质量空速0.5~2.0小时-1、氢油体积比1000:1~3000:1。
本发明所述的过渡金属磷化物负载型催化剂采用等体积浸渍方法制备:由过渡金属化合物和磷化合物与蒸馏水制备浸渍溶液,浸渍溶液体积与催化剂载体最大吸附水的体积相等,在室温下用浸渍溶液对载体进行搅拌浸渍,室温静置3~24h(优选5~8h),在40~90℃温度下干燥3~24h(优选50~70℃干燥5~20h),获得催化剂前驱体;然后将干燥的催化剂前驱体装入管式反应器中,通入氮气,氮气体积空速为10~1000h-1,压力为0.2~3.0MPa,以1~5℃/min的速率升温到200~400℃,恒温处理1~10h(优选50~800h-1,压力0.5~2.0MPa,1~3℃/min升温到200~300℃,恒温2~6h),得到过渡金属磷化物负载型催化剂;所述过渡金属化合物用量以过渡金属物质的量计,所述磷化合物的用量以磷物质的量计,所述过渡金属与磷的物质的量之比为1:1~1:5(优选1:2~1:3),所述浸渍溶液中过渡金属浓度为1.0×10-4~1.0×10-2mol/mL(优选4.0×10-4~3.0×10-3mol/mL),所述浸渍溶液体积用量以载体质量计为0.5~5.5mL/g(优选0.8~1.2mL/g)。
本发明所述的过渡金属磷化物负载型催化剂还可以采用络合浸渍方法制备:由过渡金属化合物、磷化合物、柠檬酸(络合剂)和蒸馏水制备浸渍溶液,浸渍溶液体积与催化剂载体最大吸附水的体积相等,在室温下用浸渍溶液对载体进行搅拌浸渍,室温静置3~24h(优选5~8h),在40~90℃温度下干燥3~24h(优选50~70℃干燥5~20h),获得催化剂前驱体;然后,将干燥的催化剂前驱体装入管式反应器中,通入氮气,氮气体积空速为10~1000h-1,压力为0.2~3.0MPa,以1~5℃/min的速率升温到200~400℃,恒温处理1~10h(优选50~800h-1,压力为0.5~2.0MPa,1~3℃/min升温到200~300℃,恒温2~6h),得到过渡金属磷化物负载型催化剂;所述过渡金属化合物用量以过渡金属物质的量计,所述磷化合物的用量以磷物质的量计,所述过渡金属与磷的物质的量之比为1:1~1:5(优选1:2~1:3),所述过渡金属与柠檬酸的物质的量之比为1:1~1:4(优选1:1~1:3),所述浸渍溶液中过渡金属浓度为1.0×10-4~1.0×10-2mol/mL(优选4.0×10-4~3.0×10-3mol/mL),磷浓度为1.0×10-4~9.0×10-3mol/mL,柠檬酸浓度为1.0×10-4~9.0×10-3mol/mL,所述浸渍溶液体积用量以载体质量计为0.5~5.5mL/g(优选0.8~1.2mL/g)。
本发明所述的过渡金属磷化物负载型催化剂亦可以采用超声浸渍方法制备:由过渡金属化合物和磷化合物与蒸馏水制备浸渍溶液,浸渍溶液体积是催化剂载体最大吸附水体积的1~3倍,在室温下用浸渍溶液对载体进行搅拌浸渍,加完浸渍溶液后,在室温、超声功率30~100W条件下超声处理10~60min(优选40~80W超声20~40min);室温静置3~24h(优选5~8h),在40~90℃温度下干燥3~24h(优选50~70℃温度下干燥5~20h),获得催化剂前驱体;然后,将干燥的催化剂前驱体装入管式反应器中,通入氮气,氮气体积空速为10~1000h-1,压力为0.2~3.0MPa,以1~5℃/min的速率200~400℃,恒温处理1~10h(优选50~800h-1,0.5~2.0MPa,1~3℃/min升温到200~300℃,恒温2~6h),得到过渡金属磷化物负载型催化剂;所述过渡金属化合物用量以过渡金属物质的量计,所述磷化合物的用量以磷物质的量计,所述过渡金属和磷的物质的量之比为1:1~1:5(优选1:2~1:3),所述浸渍溶液中过渡金属浓度为1.0×10-4~1.0×10-2mol/mL(优选4.0×10-4~3.0×10-3mol/mL),磷浓度为1.0×10-4~9.0×10-3mol/mL,所述浸渍溶液体积用量以载体质量计为0.5~5.5mL/g(优选0.8~1.2mL/g)。
进一步,所述过渡金属化合物为次磷酸镍、硝酸镍、钼酸铵、偏钨酸铵和硝酸钴中的一种或两种以上的混合物,优选次磷酸镍或硝酸镍;所述磷化合物为次磷酸镍和次磷酸钠中的一种或两种。
进一步,所述过渡金属磷化物负载型催化剂的再生方法是停止进加氢原料,继续通入氢气,在温度300℃~600℃、压力0.8~6.0MPa、氢气体积空速为100~1000h-1条件下对失活催化剂进行反应器内加氢再生3~24h。
进一步,所述的反应是在两个或两个以上串联或并联的反应器内进行,各反应器内装填相同或不同的催化剂。
本发明反应所采用的反应器可选固定床、膨胀床、流化床、搅拌釜式反应器,以及催化蒸馏反应器。反应装置可以有多个反应器并联或串联操作。反应器中的物料可以采取上行式,也可以采用下行式。
与现有技术相比,本发明所述的一种降低直链烷基苯溴指数的催化加氢方法的有益效果主要体现在:
(1)工艺流程简单,替代白土吸附精制,可避免废白土填埋处理造成的污染环境;
(2)催化剂活性稳定性好,装置稳定操作时间长,可避免反应器反应和再生频繁切换操作,直链烷基苯损失少;
(3)催化剂可再生,可避免大量废催化剂后处理,对环境影响小。
(四)具体实施方式
下面结合具体实施例对本发明进行进一步描述,但本发明的保护范围并不仅限于此:
氧化铝载体制备过程是将30克一水合氧化铝(山东铝业集团公司)、3克田箐粉混合均匀,加入18克蒸馏水和21克质量分数为5%的硝酸水溶液,捏合成泥团,挤条成型,晾干后程序升温到550℃焙烧4小时,经粉碎,筛取20~40颗粒,得到Al2O3载体。经上述挤条成型,晾干后程序升温到850℃焙烧4小时,经粉碎,筛取20~40目颗粒,得到γ-Al2O3载体。
实施例中所用的SiO2为青岛海洋化工公司生产的ZCX-2型、20~40目多孔硅胶,在液体体积与固体质量比50:1(mL/g)、温度80℃条件下,用质量浓度10%的硝酸水溶液对其处理8h,过滤分离;滤饼在液体体积与固体质量比50:1(mL/g)、温度80℃条件下经过2次蒸馏水搅拌洗涤3h、过滤分离,120℃干燥3h,再分别经过200℃、300℃、400℃、500℃焙烧1h,得到处理的SiO2,作为催化剂载体。
所用的次磷酸镍(Ni(H2PO2)2·6H2O)、硝酸镍(Ni(NO3)2·6H2O)、钼酸铵((NH4)6Mo7O24·4H2O)、偏钨酸铵((NH4)6H2W12O40·nH2O)、硝酸钴(Co(NO3)2·6H2O)、次磷酸钠(NaH2PO2·H2O)、柠檬酸均购自国药集团化学试剂有限公司的化学纯试剂。氢气和氮气来自杭州今工特种气体有限公司,纯度均>99.99%。
采用固定床反应装置进行加氢反应实验,不锈钢管式反应器尺寸为:内径10mm、外径14mm、长100cm,将催化剂装填在反应器中部,反应器两端填满惰性石英砂。反应温度由温度控制仪表控制,由背压阀调节加氢反应压力。
采用江苏江环分析仪器有限公司生产的PRA-100Br型溴指数测定仪测定反应原料和产物的溴指数,由原料与产物溴指数之差,除以原料溴指数计算加氢反应烯烃转化率。
加氢反应原料1为苯与C10~C14直链烯烃烷基化混合物经减压蒸馏分离得到的直链烷基苯,其溴指数为227.63mgBr/100g。
加氢反应原料2为苯与C10~C14直链烯烃烷基化混合物经减压蒸馏分离得到的直链烷基苯,其溴指数为28.18mgBr/100g。
加氢反应原料3为苯与C10~C14直链烯烃烷基化混合物经减压蒸馏分离得到的直链烷基苯,其溴指数为493.52mgBr/100g。
加氢反应原料4是苯与C10~C14直链烯烃烷基化混合物,其苯、直链烷基苯、C10~C14直链烷烃的质量分数分别为52.48%、6.65%、40.87%,溴指数为315.18mgBr/100g。
加氢反应原料5是苯与C10~C14直链烯烃烷基化混合物,其苯、直链烷基苯、C10~C14直链烷烃的质量分数分别为15.71%、11.87%、72.42%,溴指数为516.25mgBr/100g。
加氢反应原料6是苯与C10~C14直链烯烃烷基化混合物,其苯、直链烷基苯、C10~C14直链烷烃的质量分数分别为57.46%、5.99%、36.55%,溴指数为37.67mgBr/100g。本发明所述室温指25℃。
实施例1:1%Ni2P/γ-Al2O3催化剂制备
以γ-Al2O3作为载体(其比表面积为296m2/g),以Ni(H2PO2)2·6H2O作为镍源,以Ni(H2PO2)2·6H2O和NaH2PO2·H2O作为磷源,称取10g的γ-Al2O3载体,由0.4g(1.3478×10- 3mol)的Ni(H2PO2)2·6H2O、0.43g(4.057×10-3mol)的NaH2PO2·H2O和蒸馏水制备8.0mL浸渍溶液,其镍和磷浓度分别为1.6848×10-4mol/mL、8.4413×10-4mol/mL,浸渍溶液体积与催化剂载体最大吸附水的体积相等,浸渍溶液的镍和磷原子配比为1:5。按等体积浸渍方法进行室温浸渍,往10g载体中滴加8.0mL浸渍溶液,并不断搅拌。滴加完毕后,室温静置10h。在40℃温度下干燥24h,获得催化剂前驱体;然后,将干燥的催化剂前驱体装入管式反应器中,通入氮气,氮气体积空速为80h-1,压力为3.0MPa,以5℃/min的速率升温到400℃,恒温处理10h,得到Ni2P负载质量分数为1%的负载型催化剂,记为1%Ni2P/γ-Al2O3
实施例2:5%Ni2P/Al2O3催化剂制备
用Al2O3载体(其比表面积为302m2/g)、Ni(H2PO2)2·6H2O镍源、Ni(H2PO2)2·6H2O和NaH2PO2·H2O磷源制备负载型催化剂。称取10g的Al2O3,由2.0g(6.739×10-3mol)的Ni(H2PO2)2·6H2O、1.43g(1.3492×10-2mol)的NaH2PO2·H2O和蒸馏水制备8.0mL浸渍溶液,其镍和磷浓度分别为8.4238×10-4mol/mL、3.3713×10-3mol/mL,浸渍溶液体积与催化剂载体最大吸附水的体积相等,浸渍溶液的镍和磷原子配比为1:4。按等体积浸渍方法进行室温浸渍,往10g载体中滴加8.0mL浸渍溶液,并不断搅拌。滴加完毕后,室温静置24h。在50℃温度下干燥24h,获得催化剂前驱体;然后,将干燥的催化剂前驱体装入管式反应器中,通入氮气,氮气体积空速为50h-1,压力为0.2MPa,以5℃/min的速率升温到300℃,恒温处理2h,得到Ni2P负载质量分数为5%的负载型催化剂,记为5%Ni2P/Al2O3
实施例3:10%Ni2P/SiO2催化剂制备
用多孔硅胶载体(其比表面积为480m2/g)、Ni(H2PO2)2·6H2O镍源、Ni(H2PO2)2·6H2O和NaH2PO2·H2O磷源制备负载型催化剂。称取10g的多孔硅胶,由4.0g(1.3478×10- 2mol)的Ni(H2PO2)2·6H2O、1.43g(1.3492×10-2mol)的NaH2PO2·H2O和蒸馏水制备12mL浸渍溶液,其镍和磷浓度分别为1.1232×10-3mol/mL、3.3707×10-3mol/mL,浸渍溶液体积与催化剂载体最大吸附水的体积相等,浸渍溶液的镍和磷原子配比为1:3。按等体积浸渍方法进行室温浸渍,往10g载体中滴加12mL浸渍溶液,并不断搅拌。滴加完毕后,室温静置24h。在60℃温度下干燥12h,获得催化剂前驱体;然后,将干燥的催化剂前驱体装入管式反应器中,通入氮气,氮气体积空速为10h-1,压力为1.0MPa,以2℃/min的速率升温到250℃,恒温处理3h,得到Ni2P负载质量分数为10%的负载型催化剂,记为10%Ni2P/SiO2
实施例4:20%Ni2P/SiO2催化剂制备
以多孔硅胶作为载体,以Ni(H2PO2)2·6H2O作为镍源和磷源。称取10g的多孔硅胶,由8.0g(2.6956×10-2mol)的Ni(H2PO2)2·6H2O和蒸馏水制备12mL浸渍溶液,其镍和磷浓度分别为2.2463×10-3mol/mL、4.4927×10-3mol/mL,浸渍溶液体积与催化剂载体最大吸附水的体积相等,浸渍溶液的镍和磷原子配比为1:2。按等体积浸渍方法进行室温浸渍,往10g载体中滴加12mL浸渍溶液,并不断搅拌。滴加完毕后,室温静置5h。在90℃温度下干燥3h,获得催化剂前驱体;然后,将干燥的催化剂前驱体装入管式反应器中,通入氮气,氮气体积空速为450h-1,压力为1.0MPa,以1℃/min的速率升温到400℃,恒温处理1h,得到Ni2P负载质量分数为20%的负载型催化剂,记为20%Ni2P/SiO2
实施例5:10%MoP/SiO2催化剂制备
以多孔硅胶作为载体,以(NH4)6Mo7O24·4H2O作为钼源,以NaH2PO2·H2O作为磷源。称取10g的多孔硅胶,由1.39g(1.1247×10-3mol)的(NH4)6Mo7O24·4H2O、2.51g(2.3681×10-2mol)的NaH2PO2·H2O和蒸馏水制备12mL浸渍溶液,其钼和磷浓度分别为6.5609×10-4mol/mL、1.9735×10-3mol/mL,浸渍溶液体积与催化剂载体最大吸附水的体积相等,浸渍溶液的钼和磷原子配比为1:3。按等体积浸渍方法进行室温浸渍,往10g载体中滴加12mL浸渍溶液,并不断搅拌。滴加完毕后,室温静置5h。在60℃温度下干燥6h,获得催化剂前驱体;然后,将干燥的催化剂前驱体装入管式反应器中,通入氮气,氮气体积空速为450h-1,压力为1.0MPa,以2℃/min的速率升温到250℃,恒温处理6h,得到MoP负载质量分数为10%的负载型催化剂,记为10%MoP/SiO2
实施例6:10%Co2P/SiO2催化剂制备
以多孔硅胶作为载体,以Co(NO3)2·6H2O作为钴源,以NaH2PO2·H2O作为磷源。称取10g的多孔硅胶,由3.91g(1.3433×10-2mol)的Co(NO3)2·6H2O、4.28g(4.0381×10-2mol)的NaH2PO2·H2O和蒸馏水制备12mL浸渍溶液,其钴和磷浓度分别为1.1194×10-3mol/mL、3.3651×10-3mol/mL,浸渍溶液体积与催化剂载体最大吸附水的体积相等,浸渍溶液的钴和磷原子配比为1:3。按等体积浸渍方法进行室温浸渍,往10g载体中滴加12mL浸渍溶液,并不断搅拌。滴加完毕后,室温静置5h。在60℃温度下干燥6h,获得催化剂前驱体;然后,将干燥的催化剂前驱体装入管式反应器中,通入氮气,氮气体积空速为450h-1,压力为1.0MPa,以2℃/min的速率升温到250℃,恒温处理6h,得到Co2P负载质量分数为10%的负载型催化剂,记为10%Co2P/SiO2
实施例7:10%WP/SiO2催化剂制备
以多孔硅胶作为载体,以偏钨酸铵((NH4)6H2W12O40·nH2O)作为钨源,以NaH2PO2·H2O作为磷源。称取10g的多孔硅胶,由1.19g(4.0253×10-4mol)偏钨酸铵、1.54g(1.453×10-2mol)的NaH2PO2·H2O和蒸馏水制备12mL浸渍溶液,其钨和磷浓度分别为4.0253×10- 4mol/mL、1.2108×10-3mol/mL,浸渍溶液体积与催化剂载体最大吸附水的体积相等,浸渍溶液的钼和磷原子配比为1:3。按等体积浸渍方法进行室温浸渍,往10g载体中滴加12mL浸渍溶液,并不断搅拌。滴加完毕后,室温静置5h。在60℃温度下干燥6h,获得催化剂前驱体;然后,将干燥的催化剂前驱体装入管式反应器中,通入氮气,氮气体积空速为450h-1,压力为1.0MPa,以2℃/min的速率升温到250℃,恒温处理6h,得到WP负载质量分数为10%的负载型催化剂,记为10%WP/SiO2
实施例8:10%Ni2P/SiO2-L1催化剂制备
用多孔硅胶载体、Ni(H2PO2)2·6H2O镍源、Ni(H2PO2)2·6H2O和NaH2PO2·H2O磷源、柠檬酸络合剂制备负载型催化剂。称取10g的多孔硅胶,由4.0g(1.3478×10-2mol)的Ni(H2PO2)2·6H2O、1.43g(1.3492×10-2mol)的NaH2PO2·H2O、2.832g(1.3477×10-2mol)柠檬酸和蒸馏水制备12mL浸渍溶液,其镍、磷和柠檬酸浓度分别为1.1232×10-3mol/mL、3.3707×10-3mol/mL、1.1231×10-3mol/mL,浸渍溶液体积与催化剂载体最大吸附水的体积相等,浸渍溶液的镍和磷原子配比为1:3,浸渍溶液中柠檬酸络合剂与金属镍源的摩尔比为1:1。按等体积浸渍方法进行室温浸渍,往10g载体中滴加12mL浸渍溶液,并不断搅拌。滴加完毕后,室温静置24h。在60℃温度下干燥12h,获得催化剂前驱体;然后,将干燥的催化剂前驱体装入管式反应器中,通入氮气,氮气体积空速为600h-1,压力为1.0MPa,以2℃/min的速率升温到250℃,恒温处理3h,得到Ni2P负载质量分数为10%的负载型催化剂,记为10%Ni2P/SiO2-L1。
实施例9:10%Ni2P/SiO2-L4催化剂制备
用多孔硅胶载体、Ni(H2PO2)2·6H2O镍源、Ni(H2PO2)2·6H2O和NaH2PO2·H2O磷源、柠檬酸络合剂制备负载型催化剂。称取10g的多孔硅胶载体,4.0g(1.3478×10-2mol)的Ni(H2PO2)2·6H2O、1.43g(1.3492×10-2mol)的NaH2PO2·H2O、11.328g(5.3907×10-2mol)柠檬酸和蒸馏水制备12mL浸渍溶液,其镍、磷和柠檬酸浓度分别为1.1232×10-3mol/mL、3.3707×10-3mol/mL、4.4922×10-3mol/mL,浸渍溶液体积与催化剂载体最大吸附水的体积相等,浸渍溶液的镍和磷原子配比为1:3,浸渍溶液中柠檬酸络合剂与金属镍源的摩尔比为4:1。按等体积浸渍方法进行室温浸渍,往10g载体中滴加12mL浸渍溶液,并不断搅拌。滴加完毕后,室温静置3h。在50℃温度下干燥24h,获得催化剂前驱体;然后,将干燥的催化剂前驱体装入管式反应器中,通入氮气,氮气体积空速为400h-1,压力为2.0MPa,以5℃/min的速率升温到300℃,恒温处理4h,得到Ni2P负载质量分数为10%的负载型催化剂,记为10%Ni2P/SiO2-L4。
实施例10:10%Ni2P/SiO2-U30催化剂制备
用多孔硅胶载体、Ni(H2PO2)2·6H2O镍源、Ni(H2PO2)2·6H2O和NaH2PO2·H2O磷源制备负载型催化剂。称取10g的多孔硅胶,由4.0g(1.3478×10-2mol)的Ni(H2PO2)2·6H2O、1.43g(1.3492×10-2mol)的NaH2PO2·H2O和蒸馏水制备12mL浸渍溶液,其镍和磷浓度分别为1.1232×10-3mol/mL、3.3707×10-3mol/mL,浸渍溶液体积与催化剂载体最大吸附水的体积相等,浸渍溶液的镍和磷原子配比为1:3。在昆山市超声仪器有限公司生产的KQ-100DE型数控超声波清洗器中,在室温烧杯中向10g载体滴加12mL浸渍溶液,并不断搅拌;加完浸渍溶液后,在室温、超声频率40kHz、超声功率30W条件下超声处理60min。然后,室温静置12h。在60℃下烘干24h,获得催化剂前驱体;然后,将干燥的催化剂前驱体装入管式反应器中,通入氮气,氮气体积空速为500h-1,压力为1.5MPa,以2℃/min的速率升温到250℃,恒温处理3h,得到Ni2P负载质量分数为10%的负载型催化剂,记为10%Ni2P/SiO2-U30。
实施例11:10%Ni2P/SiO2-U100催化剂制备
用多孔硅胶载体、Ni(H2PO2)2·6H2O镍源、Ni(H2PO2)2·6H2O和NaH2PO2·H2O磷源制备负载型催化剂。称取10g的多孔硅胶,由4.0g(1.3478×10-2mol)的Ni(H2PO2)2·6H2O、1.43g(1.3492×10-2mol)的NaH2PO2·H2O和蒸馏水制备36mL浸渍溶液,其镍和磷浓度分别为3.7439×10-4mol/mL、1.1236×10-3mol/mL,浸渍溶液体积是催化剂载体最大吸附水体积的3倍,浸渍溶液的镍和磷原子配比为1:3。在昆山市超声仪器有限公司生产的KQ-100DE型数控超声波清洗器中,在室温烧杯中向10g载体滴加36mL浸渍溶液,并不断搅拌;加完浸渍溶液后,在室温、超声频率40kHz、超声功率100W条件下超声处理30min。然后,室温静置12h。在60℃下烘干24h,获得催化剂前驱体;然后,将干燥的催化剂前驱体装入管式反应器中,通入氮气,氮气体积空速为500h-1,压力为1.5MPa,以2℃/min的速率升温到250℃,恒温处理3h,得到Ni2P负载质量分数为10%的负载型催化剂,记为10%Ni2P/SiO2-U100。
实施例12:催化剂性能评价
采用固定床反应装置,在温度300℃、压力2.0MPa、氢油体积比1000:1、液体质量空速0.5h-1的反应条件下,用加氢反应原料1(直链烷基苯)进行不同催化剂的催化加氢反应,实验结果见表1。
表1在不同催化剂作用下催化加氢反应结果
催化剂 溴指数,mgBr/100g 烯烃转化率,%
1%Ni2P/γ-Al2O3 41.25 81.88
5%Ni2P/Al2O3 18.33 91.95
10%Ni2P/SiO2 14.62 93.58
20%Ni2P/SiO2 12.85 94.35
10%MoP/SiO2 15.37 93.25
10%Co2P/SiO2 17.18 92.45
10%WP/SiO2 15.22 93.31
10%Ni2P/SiO2-L1 13.57 94.04
10%Ni2P/SiO2-L4 13.23 94.19
10%Ni2P/SiO2-U30 13.68 93.99
10%Ni2P/SiO2-U100 13.39 94.12
从表1可以看出,随着催化剂过渡金属磷化物负载量增大,加氢产物溴指数减小,烯烃加氢转化率提高,催化剂活性逐渐提高。在过渡金属磷化物负载质量分数为10%的情况下,负载型催化剂活性从高到低的过渡金属磷化物顺序为Ni2P、WP、MoP、Co2P。用络合浸渍法和超声浸渍法制备催化剂的不饱和烃加氢转化率高于等体积浸渍法制备的催化剂,并且随着柠檬酸络合剂用量和超声功率增大,催化剂活性有所提高。
另外,通过对加氢原料和加氢产物进行色-质联用分析,证实催化加氢操作未发生苯环加氢和裂解反应,不存在加氢选择性问题。
实施例13:加氢反应条件考察
采用固定床反应装置,在10%Ni2P/SiO2催化剂作用下,用加氢反应原料1(直链烷基苯)进行不同条件的催化加氢反应,单因素考察温度、压力、质量空速、氢油体积比的反应条件影响,实验结果见表2。从表2可知,随着反应温度提高、压力增大、质量空速降低、氢油体积比增大,加氢产物溴指数均逐渐减小,烯烃转化率增大,即加氢效果变好。
表2考察加氢反应条件影响的实验结果
实施例14:不同加氢原料的反应结果比较
采用固定床反应装置,在10%Ni2P/SiO2催化剂作用下,在温度280℃、压力2.0MPa、质量空速0.5h-1、氢油体积比2000:1的反应条件下,分别用三种直链烷基苯(即加氢反应原料1、加氢反应原料2和加氢反应原料3)进行持续催化加氢反应,实验结果见表3。
采用固定床反应装置,在10%Ni2P/SiO2催化剂作用下,在温度150℃、压力2.0MPa、质量空速0.5h-1、氢油体积比2000:1的反应条件下,分别用三种烷基化混合物(即加氢反应原料4、加氢反应原料5和加氢反应原料6)进行持续催化加氢反应,实验结果见表4。
表3三种直链烷基苯加氢反应结果
表4三种烷基化混合物加氢反应结果
表3中三种直链烷基苯加氢反应原料1、2和3的溴指数分别为227.63mgBr/100g、28.18mgBr/100g、493.52mgBr/100g,在相同的加氢反应条件下,烯烃转化率随着加氢原料溴指数增大而增大。表4中三种烷基化混合物加氢原料4、5和6的溴指数分别为315.18mgBr/100g、516.25mgBr/100g、37.67mgBr/100g,同样在相同的加氢反应条件下,烯烃转化率随着加氢原料溴指数增大而增大。
比较表3和表4数据可知,在加氢原料溴指数相近,其它加氢反应条件相同的情况下,三种烷基化混合物加氢原料经过150℃加氢反应,烯烃转化率高于三种直链烷基苯加氢原料经280℃加氢反应的烯烃转化率。这说明,烷基化混合物容易发生烯烃加氢反应,而直链烷基苯需要在更高温度下进行烯烃加氢反应。
经过持续1000h反应,直链烷基苯和烷基化混合物原料的加氢产物溴指数和烯烃转化率变化均不大,催化剂的活性稳定性均较好。这说明,可采取的一种工艺技术方案是烷基化混合物经过较低温度的加氢反应脱除烯烃,再进行蒸馏分离得到直链烷基苯产物。另一工艺方案是先经烷基化混合物蒸馏分离得到直链烷基苯,再进行较高温度的催化加氢反应得到直链烷基苯精制产物。
实施例15:加氢催化剂再生及其性能评价
采用两套固定床反应装置,在10%Ni2P/SiO2催化剂作用下,反应条件包括压力2.0MPa、质量空速0.5h-1、氢油体积比2000:1。一套反应装置用加氢反应原料1(直链烷基苯)持续进行280℃催化加氢反应,待加氢产物溴指数提高到20mgBr/100g,烯烃转化率降低到91.21%时停止输入加氢反应原料;进入失活催化剂加氢再生阶段,继续通入氢气,在压力6.0MPa、氢气体积空速100h-1条件下,将温度升高到300℃恒温再生3h,再将温度提高到500℃恒温再生24h。然后,在温度280℃、压力2.0MPa、质量空速0.5h-1、氢油体积比2000:1反应条件下输入加氢反应原料1,持续进行催化加氢反应,结果列于表5。
另一套反应装置用加氢反应原料4(烷基化混合物)持续进行150℃催化加氢反应,待加氢产物溴指数提高到20mgBr/100g,烯烃转化率降低到93.65%时停止输入加氢反应原料;进入失活催化剂加氢再生阶段,继续通入氢气,在压力0.8MPa、氢气体积空速1000h-1条件下,将温度升高到300℃恒温再生3h,再将温度提高到500℃恒温再生24h。然后,在温度150℃、压力2.0MPa、质量空速0.5h-1、氢油体积比2000:1反应条件下输入加氢反应原料2,持续进行催化加氢反应,结果一同列于表5。
表5再生催化剂的性能评价
从表5可知,反应装置1经过催化剂再生操作,加氢原料1的加氢烯烃转化率从91.21%提高到93.51%;反应装置2经过催化剂再生操作,加氢原料4的加氢烯烃转化率从93.65%提高到95.66%。这说明,失活负载型催化剂经过加氢再生,催化剂活性得到明显恢复。
比较表3、表4和表5数据可以看出,再生催化剂的活性和活性稳定性与新鲜催化剂相当。
上述实验结果表明,本发明的催化加氢反应方法可以有效地降低直链烷基苯,以及苯与直链烯烃烷基化混合物的溴指数和不饱和烃含量,催化剂的加氢催化活性和反应选择性均较高,活性稳定性好,并且可以再生。本发明方法是改善直链烷基苯质量的有效方法,具有应用价值。

Claims (6)

1.一种降低直链烷基苯溴指数的催化加氢方法,其特征在于所述方法为:在温度60~400℃、压力0.3~10.0MPa、质量空速0.2~8.0小时-1、氢油体积比300:1~8000:1的条件下,将加氢原料和氢气混合,与过渡金属磷化物负载型催化剂接触进行加氢反应,使烯烃饱和,进而降低直链烷基苯溴指数;催化剂失活后再生,循环利用;
所述加氢原料为下列之一:(1)苯与C10~C14直链烯烃烷基化混合物经蒸馏分离得到的直链烷基苯,其溴指数为20~800mgBr/100g;(2)苯与C10~C14直链烯烃烷基化混合物,其苯和直链烷基苯质量分数分别为15~60%、5~15%,其余为C10~C14直链烷烃,烷基化混合物的溴指数为20~800mgBr/100g;
所述的过渡金属磷化物负载型催化剂以过渡金属磷化物为活性组分,以氧化铝或氧化硅为载体,所述过渡金属磷化物质量负载量为5~15%;所述过渡金属磷化物是磷化镍、磷化钼、磷化钴、磷化钨中的一种或两种以上混合物;
所述过渡金属磷化物负载型催化剂采用等体积浸渍方法或络合浸渍方法或超声浸渍方法制备,
当采用等体积浸渍方法时,按如下方法制备:由过渡金属化合物和磷化合物与蒸馏水制备浸渍溶液,在室温下用浸渍溶液对载体进行搅拌浸渍,室温静置3~24h,在40~90℃温度下干燥3~24h,获得催化剂前驱体;然后将干燥的催化剂前驱体装入管式反应器中,通入氮气,氮气体积空速为10~1000h-1,压力为0.2~3.0MPa,以1~5℃/min的速率升温到200~400℃,恒温处理1~10h,得到过渡金属磷化物负载型催化剂;所述过渡金属化合物用量以过渡金属物质的量计,所述磷化合物的用量以磷物质的量计,所述过渡金属与磷的物质的量之比为1:1~1:5,所述浸渍溶液中过渡金属浓度为1.0×10-4~1.0×10-2mol/mL,所述浸渍溶液体积用量以载体质量计为0.5~5.5mL/g;
当采用络合浸渍方法时,按如下方法制备:由过渡金属化合物、磷化合物、柠檬酸和蒸馏水制备浸渍溶液,在室温下用浸渍溶液对载体进行搅拌浸渍,室温静置3~24h,在40~90℃温度下干燥3~24h,获得催化剂前驱体;然后将干燥的催化剂前驱体装入管式反应器中,通入氮气,氮气体积空速为10~1000h-1,压力为0.2~3.0MPa,以1~5℃/min的速率升温到200~400℃,恒温处理1~10h,得到过渡金属磷化物负载型催化剂;所述过渡金属化合物用量以过渡金属物质的量计,所述磷化合物的用量以磷物质的量计,所述过渡金属与磷的物质的量之比为1:1~1:5,所述过渡金属与柠檬酸的物质的量之比为1:4~1:1,所述浸渍溶液中过渡金属浓度为1.0×10-4~1.0×10-2mol/mL,所述浸渍溶液体积用量以载体质量计为0.5~5.5mL/g;
当采用超声浸渍方法时,按如下方法制备:由过渡金属化合物和磷化合物与蒸馏水制备浸渍溶液,在室温下用浸渍溶液对载体进行搅拌浸渍,加完浸渍溶液后,在室温、超声功率30~100W条件下超声处理10~60min;室温静置3~24h,在40~90℃温度下干燥3~24h;然后,将干燥的催化剂前驱体装入管式反应器中,通入氮气,氮气体积空速为10~1000h-1,压力为0.2~3.0MPa,以1~5℃/min的速率升温到200~400℃,恒温处理1~10h,得到过渡金属磷化物负载型催化剂;所述过渡金属化合物用量以过渡金属物质的量计,所述磷化合物的用量以磷物质的量计,所述过渡金属和磷的物质的量之比为1:1~1:5,所述浸渍溶液中过渡金属浓度为1.0×10-4~1.0×10-2mol/mL,所述浸渍溶液体积用量以载体质量计为0.5~5.5mL/g。
2.如权利要求1所述降低直链烷基苯溴指数的催化加氢方法,其特征在于所述氧化铝为Al2O3或γ-Al2O3;所述氧化硅为多孔硅胶。
3.如权利要求1所述降低直链烷基苯溴指数的催化加氢方法,其特征在于所述加氢反应条件为温度80~350℃、压力0.5~5.0MPa,进料质量空速0.5~5.0小时-1、氢油体积比600:1~6000:1。
4.如权利要求1所述降低直链烷基苯溴指数的催化加氢方法,其特征在 于所述过渡金属化合物为次磷酸镍、硝酸镍、钼酸铵、偏钨酸铵、硝酸钴中的一种或两种以上的混合物;所述磷化合物为次磷酸镍和次磷酸钠中的一种或两种。
5.如权利要求1所述降低直链烷基苯溴指数的催化加氢方法,其特征在于所述的过渡金属磷化物负载型催化剂的再生方法是停止进加氢原料,继续通入氢气,在温度300℃~600℃、压力0.8~6.0MPa、氢气体积空速为100~1000h-1条件下对失活催化剂进行反应器内加氢再生3~24h。
6.如权利要求1所述降低直链烷基苯溴指数的催化加氢方法,其特征在于所述的反应是在两个或两个以上串联或并联的反应器内进行,各反应器内装填相同或不同的催化剂。
CN201511029998.9A 2015-12-31 2015-12-31 一种降低直链烷基苯溴指数的催化加氢方法 Active CN105601464B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201511029998.9A CN105601464B (zh) 2015-12-31 2015-12-31 一种降低直链烷基苯溴指数的催化加氢方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201511029998.9A CN105601464B (zh) 2015-12-31 2015-12-31 一种降低直链烷基苯溴指数的催化加氢方法

Publications (2)

Publication Number Publication Date
CN105601464A CN105601464A (zh) 2016-05-25
CN105601464B true CN105601464B (zh) 2017-12-05

Family

ID=55981894

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201511029998.9A Active CN105601464B (zh) 2015-12-31 2015-12-31 一种降低直链烷基苯溴指数的催化加氢方法

Country Status (1)

Country Link
CN (1) CN105601464B (zh)

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1933842C3 (de) * 1969-07-03 1978-08-10 Atlantic Richfield Co., New York, N.Y. (V.St.A.) Verfahren zur Verbesserung der Färb- und Geruchseigenschaften von Waschmittelalkylaten
CN1068033C (zh) * 1998-10-13 2001-07-04 中国石油化工集团公司 重整生成油烯烃饱和加氢方法
US6500996B1 (en) * 1999-10-28 2002-12-31 Exxonmobil Oil Corporation Process for BTX purification
CN101376108A (zh) * 2007-08-29 2009-03-04 中国科学院大连化学物理研究所 一种磷化镍催化剂及制备方法和应用

Also Published As

Publication number Publication date
CN105601464A (zh) 2016-05-25

Similar Documents

Publication Publication Date Title
CN105669347B (zh) 一种降低直链烷基苯不饱和烃含量的方法
CN102992932B (zh) 利用m-sba-15型介孔分子筛脱除芳烃中烯烃的方法
CN103012034B (zh) 一种脱除芳烃中微量烯烃的方法
CN105126815B (zh) 一种劣质重油悬浮床加氢催化剂及其制备和使用方法
CN101239878B (zh) 碳四及其以上烯烃增产乙烯、丙烯的方法
CN103012035A (zh) 利用hmcm-41型介孔分子筛脱除芳烃中烯烃的方法
CN100434170C (zh) 废润滑油加氢再生催化剂的制备方法
CN103012036A (zh) 一种芳烃精制方法
CN101016479A (zh) 使用具有控制孔隙度的催化剂的选择性氢化方法
CN105601463B (zh) 一种直链烷基苯催化加氢精制的方法
CN105669372B (zh) 利用过渡金属磷化物催化剂催化乙酸加氢制乙醇的方法
CN105732288A (zh) 一种碳四馏分的选择加氢方法
CN102731240A (zh) 碳四选择加氢生产1,3-丁二烯的方法
CN102453533A (zh) 劣质汽油馏分生产低硫汽油的方法
CN105601464B (zh) 一种降低直链烷基苯溴指数的催化加氢方法
CN109468144A (zh) 一种fcc汽油轻馏分脱二烯烃的方法
CN104275191B (zh) 一种用于fcc汽油预加氢的催化剂及其制备方法
CN106179468A (zh) 一种固体酸催化剂及其应用
CN105646148B (zh) 一种乙酸加氢制乙醇的方法
CN106552640A (zh) 重整原料预加氢催化剂及其制备方法
CN109092298A (zh) 用于裂解碳四选择加氢催化剂
CN110841650A (zh) 一种重整生成油选择性加氢脱烯烃的非贵金属催化剂及其制备方法和应用
CN103146429A (zh) 一种液化气加氢处理的方法
CN109529811A (zh) 氧化铝载体、含氧化铝载体催化剂制备方法及催化剂应用
CN106268797A (zh) 一种凹土基贵金属重整生成油液相加氢脱烯烃催化剂及其制备方法和应用

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant