CN105590971A - AlGaN日盲紫外增强型雪崩光电探测器及其制备方法 - Google Patents

AlGaN日盲紫外增强型雪崩光电探测器及其制备方法 Download PDF

Info

Publication number
CN105590971A
CN105590971A CN201610156889.1A CN201610156889A CN105590971A CN 105590971 A CN105590971 A CN 105590971A CN 201610156889 A CN201610156889 A CN 201610156889A CN 105590971 A CN105590971 A CN 105590971A
Authority
CN
China
Prior art keywords
layer
type
algan
shaped
blind ultraviolet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201610156889.1A
Other languages
English (en)
Other versions
CN105590971B (zh
Inventor
陈敦军
董可秀
张�荣
郑有炓
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nanjing University
Original Assignee
Nanjing University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanjing University filed Critical Nanjing University
Priority to CN201610156889.1A priority Critical patent/CN105590971B/zh
Publication of CN105590971A publication Critical patent/CN105590971A/zh
Application granted granted Critical
Publication of CN105590971B publication Critical patent/CN105590971B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by potential barriers, e.g. phototransistors
    • H01L31/101Devices sensitive to infrared, visible or ultraviolet radiation
    • H01L31/102Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier
    • H01L31/107Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier the potential barrier working in avalanche mode, e.g. avalanche photodiodes
    • H01L31/1075Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier the potential barrier working in avalanche mode, e.g. avalanche photodiodes in which the active layers, e.g. absorption or multiplication layers, form an heterostructure, e.g. SAM structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0216Coatings
    • H01L31/02161Coatings for devices characterised by at least one potential jump barrier or surface barrier
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/0304Inorganic materials including, apart from doping materials or other impurities, only AIIIBV compounds
    • H01L31/03046Inorganic materials including, apart from doping materials or other impurities, only AIIIBV compounds including ternary or quaternary compounds, e.g. GaAlAs, InGaAs, InGaAsP
    • H01L31/03048Inorganic materials including, apart from doping materials or other impurities, only AIIIBV compounds including ternary or quaternary compounds, e.g. GaAlAs, InGaAs, InGaAsP comprising a nitride compounds, e.g. InGaN
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/184Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof the active layers comprising only AIIIBV compounds, e.g. GaAs, InP
    • H01L31/1844Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof the active layers comprising only AIIIBV compounds, e.g. GaAs, InP comprising ternary or quaternary compounds, e.g. Ga Al As, In Ga As P
    • H01L31/1848Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof the active layers comprising only AIIIBV compounds, e.g. GaAs, InP comprising ternary or quaternary compounds, e.g. Ga Al As, In Ga As P comprising nitride compounds, e.g. InGaN, InGaAlN
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/544Solar cells from Group III-V materials
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Light Receiving Elements (AREA)

Abstract

本发明公开了一种AlGaN日盲紫外增强型雪崩光电探测器,其结构从下至上依次包括:一维光子晶体层、AlN/蓝宝石模板层、i型AlxGa1-xN层、n型AlxGa1-xN层、i型Aly1Ga1-y1N层、n型AlyGa1-yN组分渐变层、i型Aly2Ga1-y2N层、p型GaN层,在n型AlxGa1-xN层上引出n型欧姆电极,在p型GaN层上引出p型欧姆电极,所述x满足0.5≤x≤1,所述y1满足0.4≤y1<1,所述y2满足0.1≤y2<0.5,所述y1与y2满足y2<y1<x,所述组分y沿自下而上方向逐渐降低,且满足y2≤y≤y1。还公开了其制备方法。本发明设计的SAM结构AlGaN日盲紫外雪崩光电探测器,一维光子晶体层中带有周期的抗反射涂层,可以降低日盲紫外雪崩光电探测器日盲区的光反射,提高探测器的性能。

Description

AlGaN日盲紫外增强型雪崩光电探测器及其制备方法
技术领域
本发明专利涉及光电子器件领域,具体涉及一种AlGaN日盲紫外增强型雪崩光电探测器及其制备方法。
背景技术
在电磁波谱中,波长在200nm~400nm范围内的辐射称为紫外辐射,太阳光是最强的紫外辐射光源,可是,由于大气中臭氧层和其它大气气体的吸收和散射作用,波长小于280nm的紫外辐射几乎不能到达地面,因此波长在200nm到280n波段的紫外光线被称为日盲区。日盲区紫外信号具有背景干扰小、目标信号容易检测、不容易产生虚假警报等优点,在科学和军事领域有广泛的应用。
Ⅲ族氮化物是宽禁带直接带隙半导体材料,具有良好的导热性能,高电子饱和速度,物理化学性能稳定等优点,是近年来国内外重点研究的新型半导体材料,在高电子迁移率晶体管、高亮度发光二极管、高功率激光器及高灵敏度日盲或可见光盲光电探测器等方面有着广泛的应用前景。Al组分超过40%的AlGaN探测器为固体探测器,体积小、功耗低、且具有天然的日盲紫外探测性能,能够克服光电倍增管和硅基探测器的不利因素。但是,要想取代PMT管成为市场的主导,AlGaN基日盲紫外探测器必须具有更高的内部增益因子,更低的暗电流和更高的响应速度。目前,光电导增益机制和雪崩倍增机制被用来提高探测器的倍增因子,利用光电导增益机制的探测器暗电流大,光电响应速度慢,噪声大,而利用雪崩倍增机制的日盲AlGaN基的雪崩光电二极管(APD),由于其高的内部增益和光谱响应速度,成为替代传统光电倍增管(PMT)的最佳候选者。2013年,我们利用低Al组分的i型AlzGa1-zN倍增层作为空穴的主要离化区,高Al组分的i型AlyGa1-yN倍增层作为空穴初始加速区,设计了一种倍增层为异质结构的增强型AlGaN日盲雪崩光电二极管及其制备方法[参见专利,高增益的AlGaN紫外雪崩光电探测器及其制备方法,申请号:CN201310367175.1],该探测器在截止波长附近有较高的响应度,但其截止吸收边不够陡峭。
光子晶体作为具备广阔应用前景的新型光电功能材料,受到越来越广泛的关注,完全光子禁带是光子晶体的主要特性之一,对于具有完全光子禁带的光子晶体而言,处于完全禁带频率范围的光波都不能在光子晶体中进行传播,即处于光子晶体禁带范围的光子频率以内都无法在光子晶体中存在。许多新型光学器件采用了光子晶体的这一特性,光子晶体滤波器就是其中的研究热点之一,但光子晶体滤波具有通过率低的问题。
发明内容
针对上述问题,本发明利用一维光子晶体层中带周期的抗反射涂层,通过降低日盲探测器日盲区的光反射,设计了一种具有高通过率的SAM结构AlGaN日盲紫外增强型雪崩光电探测器。
为达到上述目的,本发明采用的技术方案为:一种AlGaN日盲紫外雪崩光电探测器,一维光子晶体层、AlN/蓝宝石模板层、i型AlxGa1-xN层、n型AlxGa1-xN层、i型Aly1Ga1-y1N层、n型AlyGa1-yN组分渐变层、i型Aly2Ga1-y2N层、p型GaN层,在n型AlxGa1-xN层上引出n型欧姆电极,在p型GaN层上引出p型欧姆电极,所述x满足0.5≤x≤1,所述y1满足0.4≤y1<1,所述y2满足0.1≤y2<0.5,所述y1与y2满足y2<y1<x,所述组分y沿自下而上方向逐渐降低,且满足y2≤y≤y1。
进一步的,所述一维光子晶体层拥有19个周期性结构,每一个周期性结构包括SiO2层、Si3N4层、SiO2层,19个周期性结构包括周期层和抗反射涂层,自下而上一维光子晶体层表示为n个抗反射涂层a*[L/2HL/2]、m个周期层[L/2HL/2]、1个抗反射涂层b*[L/2HL/2],a=1.04,b=1.35,n和m代表周期数,1≤n,m<18,且满足n+m=18,L代表SiO2层材料厚度λ/4/1.46,H代表Si3N4层材料厚度λ/4/2.01,其中λ满足[1240/(3.4+2.8y1)+30]nm<λ<[1240/(3.4+2.8y1)+40]nm。
进一步的,所述AlN/蓝宝石模板层为蓝宝石衬底上生长的AlN层,AlN层厚度为20~50nm,蓝宝石衬底厚度为600~1000nm。
进一步的,所述i型AlxGa1-xN层厚度为150~250nm。
进一步的,所述n型AlxGa1-xN层厚度为200~400nm。
进一步的,所述i型Aly1Ga1-y1N层厚度为100~200nm。
进一步的,所述i型Aly2Ga1-y2N层厚度为100~200nm。
进一步的,所述p型GaN层厚度为100~200nm。
进一步的,所述n型欧姆电极为Ti/Al/Ni/Au合金电极,p型欧姆电极为Ni/Au合金电极。
本发明还提供了上述AlGaN日盲紫外增强型雪崩光电探测器的制备方法,其步骤包括:
(1)将AlN/蓝宝石模板层在NH3气氛下表面氮化;
(2)在AlN/蓝宝石模板层的蓝宝石表面生长一维光子晶体层,依次是1周期的抗反射涂层[b*(L/2HL/2)]、m周期的周期层[(L/2HL/2)]、n周期的抗反射涂层[a*(L/2HL/2)];
(3)在AlN/蓝宝石模板层的AlN表面生长一层i型AlxGa1-xN层;
(4)在AlxGa1-xN层上生长一层n型AlxGa1-xN层;
(5)在n型AlxGa1-xN层上生长一层i型Aly1Ga1-y1N层;
(6)在i型Aly1Ga1-y1N层上生长一层n型AlyGa1-yN组分渐变层;
(7)在n型AlyGa1-yN组分渐变层上生长一层i型Aly2Ga1-y2N层;
(8)在i型Aly2Ga1-y2N层上生长一层P型GaN层;
(9)在p型GaN层上进行台面刻蚀,露出n型AlxGa1-xN层,对刻蚀后的样品表面进行净化处理;
(10)在n型AlxGa1-xN层台面上蒸镀n型欧姆电极,蒸镀后退火;
(11)在p型GaN层上蒸镀p型欧姆电极,蒸镀后退火。
有益效果:本发明设计的SAM结构背入射AlGaN日盲紫外增强型雪崩光电探测器,通过在AlN/蓝宝石模板层上设计一维光子晶体层,一维光子晶体层与其下的空气层以及其上的蓝宝石衬底层组成了抗反射器件,降低了280~350nm区间紫外光的透过率,从而进一步降低了探测器在280nm以上紫外光的响应度;在此基础上,改变一维光子晶体层中两端周期层的厚度,使其成为抗反射涂层,可以进一步提高低波段的紫外光透射率,这是本发明的特别创新之处,在实施例1中,带有3周期抗反射涂层在275nm附近的紫外光反射率低于5%(与之对应的不带抗反射涂层的反射率在60%左右),260~280nm区间紫外光透射率在99.9%以上,进一步提高了探测器在280nm以下紫外光的响应灵敏度。离化区(i型Aly2Ga1-y2N层)的Al组分小于加速区(i型Aly1Ga1-y1N层)的Al组分,使得异质界面处导带形成足够高的势垒,阻碍了电子从空穴离化区向空穴加速区的运动,降低了电子的碰撞离化,从而可以有效降低器件噪声。同时,低Al组分的空穴离化区,有利于得到更高晶体质量的AlGaN材料;在此基础上,n型AlyGa1-yN层组分渐变有利于得到更高晶体质量的离化区和加速区材料,也有利于获得更高的雪崩增益。上述因素均有助于提高APD的器件性能,在同样的实验条件下,与通常的APD相比,在260~280nm区间探测器的最终光电响应度峰值增加120%左右,雪崩增益从4.3×104提高至1.35×105;与带有常规的一维光子晶体层即19个周期层[(L/2HL/2)]的APD相比,在260~280nm区间探测器的光电响应度峰值增加110%左右。
附图说明
图1为本发明AlGaN日盲紫外增强型雪崩光电探测器的结构示意图。
图2为AlGaN日盲紫外增强型雪崩光电探测器的光电响应曲线图。
图3为一维光子晶体层紫外光反射谱图。
下面结合附图对本发明的具体实施方式做进一步说明。
具体实施方式
实施例1
带一维光子晶体层、带抗反射涂层的AlGaN日盲紫外增强型雪崩光电探测器的制备方法,其步骤包括:
(1)将AlN/蓝宝石模板层在NH3气氛下表面氮化;
(2)在AlN/蓝宝石模板层的蓝宝石表面生长一维光子晶体层,依次是1周期的抗反射涂层[b*(L/2HL/2)]、m周期的周期层[(L/2HL/2)]、n周期的抗反射涂层[a*(L/2HL/2)];
(3)在AlN/蓝宝石模板层的AlN表面生长一层i型AlxGa1-xN层;
(4)在AlxGa1-xN层上生长一层n型AlxGa1-xN层;
(5)在n型AlxGa1-xN层上生长一层i型Aly1Ga1-y1N层;
(6)在i型Aly1Ga1-y1N层上生长一层n型AlyGa1-yN组分渐变层;
(7)在n型AlyGa1-yN组分渐变层上生长一层i型Aly2Ga1-y2N层;
(8)在i型Aly2Ga1-y2N层上生长一层P型GaN层;
(9)在p型GaN层上进行台面刻蚀,露出n型AlxGa1-xN层,对刻蚀后的样品表面进行净化处理;
(10)在n型AlxGa1-xN层台面上蒸镀n型欧姆电极,蒸镀后退火;
(11)在p型GaN层上蒸镀p型欧姆电极,蒸镀后退火。
按上述方法得到AlGaN日盲紫外增强型雪崩光电探测器,其结构从下至上依次为:一维光子晶体层1、AlN/蓝宝石模板层2、i型AlxGa1-xN层3、n型AlxGa1-xN层4、i型Aly1Ga1-y1N层5、n型AlyGa1-yN组分渐变层6、i型Aly2Ga1-y2N层7、p型GaN层8,在n型AlxGa1-xN层上引出n型欧姆电极9,在p型GaN层上引出p型欧姆电极10,所述x=0.5,所述y1=0.4,所述y2=0.15。
其中,
所述一维光子晶体层拥有19个周期性结构,每一个周期性结构包括SiO2层、Si3N4层、SiO2层,19个周期性结构包括周期层和抗反射涂层,自下而上一维光子晶体层为n个抗反射涂层[a*(L/2HL/2)]、m个周期层[(L/2HL/2)]、1个抗反射涂层[b*(L/2HL/2)],a=1.04,b=1.35,m=15,n=3,L与H分别代表SiO2与Si3N4两种不同材料及其厚度λ/4/1.46与λ/4/2.01,其中λ=310nm。
其中,所述n型AlyGa1-yN组分渐变层厚度为50nm,组分y从0.4到0.15沿自下而上方向逐渐降低。
其中,所述AlN/蓝宝石模板层2包括蓝宝石衬底层和其上生长的AlN层2AlN层厚度为30nm,蓝宝石衬底层厚度为800nm。
其中,所述i型AlxGa1-xN层厚度为200nm。
其中,所述n型AlxGa1-xN层厚度为300nm。
其中,所述i型Aly1Ga1-y1N层厚度为180nm。
其中,所述i型Aly2Ga1-y2N层厚度为180nm。
其中,所述p型GaN层厚度为135nm。
其中,所述n型欧姆电极为Ti/Al/Ni/Au合金电极,p型欧姆电极为Ni/Au合金电极。
本实施例1器件结构示意图见图1。本实施例1所得的APD样品的光谱响应见图2。与对比例1与对比例2相比,在同样的实验条件下,与对比例1中通常的APD相比,本实施例1在260~280nm区间探测器的光电响应度峰值增加120%左右,270nm/390nm探测器响应比值增加两个数量级左右;与对比例2中不带反射涂层的带有一维光子晶体层的APD相比,本实施例1的APD在260~280nm区间探测器的光电响应度峰值增加110%左右,270nm/390nm探测器响应比值增加230%左右。本实施例1所得的一维光子晶体层紫外光反射谱见图3。带有3周期抗反射涂层在275nm附近的紫外光反射率低于5%,260~280nm区间紫外光透射率在99.9%以上。
实施例2
本实施例步骤与实施例1基本一致,其区别在于:所述n=2。本实施例2所得的一维光子晶体层紫外光反射谱见图3。带有2周期抗反射涂层在275nm附近的紫外光反射率低于20%,260~280nm区间紫外光透射率在97%以上,说明2周期的抗反射涂层增强了260~280nm区间紫外光透射率,可以看出,实施例2的一维光子晶体层在260~280nm区间的紫外反射作用低于实施例1,但高于实施例3和对比例2。
实施例3
本实施例步骤与实施例1基本一致,其区别在于:所述n=1。本实施例3所得的一维光子晶体层紫外光反射谱见图3。带有1周期抗反射涂层在275nm附近的紫外光反射率低于22%,260~280nm区间紫外光透射率在95%以上,说明2周期的抗反射涂层增强了260~280nm区间紫外光透射率,可以看出,实施例3的一维光子晶体层在260~280nm区间的紫外反射作用低于实施例2,但高于对比例2。
实施例4
本实施例步骤与实施例1基本一致,其区别在于:所述x=0.6,所述y1=0.5,所述y2=0.1,所述n=5,所述L=λ/4/1.46,所述H=λ/4/2.01,所述λ=290nm,所述n型AlyGa1-yN组分渐变层厚度为30nm,所述AlN/蓝宝石模板层为蓝宝石衬底上生长的AlN层厚度为20nm,蓝宝石衬底厚度为600nm,所述i型AlxGa1-xN层厚度为150nm,所述n型AlxGa1-xN层厚度为200nm,所述i型Aly1Ga1-y1N层厚度为100nm,所述i型Aly2Ga1-y2N层厚度为100nm,所述p型GaN层厚度为100nm,
实施例5
本实施例步骤与实施例1基本一致,其区别在于:所述x=0.8,所述y1=0.7,所述y2=0.4,所述n=17,L=λ/4/1.46,所述H=λ/4/2.01,所述λ=265nm,所述n型AlyGa1-yN组分渐变层厚度为80nm,所述AlN/蓝宝石模板层为蓝宝石衬底上生长的AlN层厚度为50nm,蓝宝石衬底厚度为1000nm,所述i型AlxGa1-xN层厚度为250nm,所述n型AlxGa1-xN层厚度为400nm,所述i型Aly1Ga1-y1N层厚度为200nm,所述i型Aly2Ga1-y2N层厚度为200nm,所述p型GaN层厚度为200nm。
对比例1
本对比例1步骤与实施例1基本一致,其区别在于:不含实施例1中的步骤(2)。即本对比例1为不带一维光子晶体层的AlGaN日盲紫外雪崩光电探测器的制备方法及其结构。本对比例1所得的APD样品的光谱响应见图2。
对比例2
本对比例2步骤与实施例1基本一致,其区别在于:本对比例2中的步骤(2)内容与实施例1中的步骤(2)内容不同。本对比例2中的步骤(2)内容为:在AlN/蓝宝石模板层的蓝宝石表面生长一维光子晶体层的57层结构,依次是19周期(57层)的周期层[(L/2HL/2)]。即本对比例2为带一维光子晶体层、但不带抗反射涂层的AlGaN日盲紫外雪崩光电探测器的制备方法及其结构。本对比例2所得的APD样品的光谱响应见图2。本对比例2所得的一维光子晶体层紫外光反射谱见图3。可以看出,在275nm附近的紫外光反射率在60%附近,260~280nm区间紫外光透射率在80%左右。

Claims (10)

1.一种AlGaN日盲紫外增强型雪崩光电探测器,其结构从下至上依次为:一维光子晶体层、AlN/蓝宝石模板层、i型AlxGa1-xN层、n型AlxGa1-xN层、i型Aly1Ga1-y1N层、n型AlyGa1-yN组分渐变层、i型Aly2Ga1-y2N层、p型GaN层,在n型AlxGa1-xN层上引出n型欧姆电极,在p型GaN层上引出p型欧姆电极,所述x满足0.5≤x≤1,所述y1满足0.4≤y1<1,所述y2满足0.1≤y2<0.5,所述y1与y2满足y2<y1<x,所述组分y沿自下而上方向逐渐降低,且满足y2≤y≤y1。
2.根据权利要求1所述的AlGaN日盲紫外增强型雪崩光电探测器,其特征在于:所述一维光子晶体层拥有19个周期性结构,每一个周期性结构包括SiO2层、Si3N4层、SiO2层,19个周期性结构包括周期层和抗反射涂层,自下而上一维光子晶体层表示为n个抗反射涂层a*[L/2HL/2]、m个周期层[L/2HL/2]、1个抗反射涂层b*[L/2HL/2],a=1.04,b=1.35,n和m代表周期数,1≤n,m<18,且满足n+m=18,L代表SiO2层材料厚度λ/4/1.46,H代表Si3N4层材料厚度λ/4/2.01,其中λ满足[1240/(3.4+2.8y1)+30]nm<λ<[1240/(3.4+2.8y1)+40]nm。
3.根据权利要求1或2所述的AlGaN日盲紫外增强型雪崩光电探测器,其特征在于:所述AlN/蓝宝石模板层为蓝宝石衬底层上生长AlN层,AlN层厚度为20~50nm,蓝宝石衬底层厚度为600~1000nm。
4.根据权利要求1或2所述的AlGaN日盲紫外增强型雪崩光电探测器,其特征在于:所述i型AlxGa1-xN层厚度为150~250nm。
5.根据权利要求1或2所述的AlGaN日盲紫外增强型雪崩光电探测器,其特征在于:所述n型AlxGa1-xN层厚度为200~400nm。
6.根据权利要求1或2所述的AlGaN日盲紫外增强型雪崩光电探测器,其特征在于:所述i型Aly1Ga1-y1N层厚度为100~200nm。
7.根据权利要求1或2所述的AlGaN日盲紫外增强型雪崩光电探测器,其特征在于:所述n型AlyGa1-yN组分渐变层厚度为30~80nm
8.根据权利要求1或2所述的AlGaN日盲紫外增强型雪崩光电探测器,其特征在于:所述i型Aly2Ga1-y2N层厚度为100~200nm,所述p型GaN层厚度为100~200nm。
9.根据权利要求1或2所述的AlGaN日盲紫外增强型雪崩光电探测器,其特征在于:所述n型欧姆电极为Ti/Al/Ni/Au合金电极,p型欧姆电极为Ni/Au合金电极。
10.一种AlGaN日盲紫外增强型雪崩光电探测器的制备方法,其步骤包括:
(1)将AlN/蓝宝石模板层在NH3气氛下表面氮化;
(2)在AlN/蓝宝石模板层的蓝宝石表面生长一维光子晶体层,依次是1周期的抗反射涂层b*[L/2HL/2]、m周期的周期层[L/2HL/2]、n周期的抗反射涂层a*[L/2HL/2];
(3)在AlN/蓝宝石模板层的AlN表面生长一层i型AlxGa1-xN层;
(4)在AlxGa1-xN层上生长一层n型AlxGa1-xN层;
(5)在n型AlxGa1-xN层上生长一层i型Aly1Ga1-y1N层;
(6)在i型Aly1Ga1-y1N层上生长一层n型AlyGa1-yN组分渐变层;
(7)在n型AlyGa1-yN组分渐变层上生长一层i型Aly2Ga1-y2N层;
(8)在i型Aly2Ga1-y2N层上生长一层P型GaN层;
(9)在p型GaN层上进行台面刻蚀,露出n型AlxGa1-xN层,对刻蚀后的样品表面进行净化处理;
(10)在n型AlxGa1-xN层台面上蒸镀n型欧姆电极,蒸镀后退火;
(11)在p型GaN层上蒸镀p型欧姆电极,蒸镀后退火。
CN201610156889.1A 2016-03-18 2016-03-18 AlGaN日盲紫外增强型雪崩光电探测器及其制备方法 Active CN105590971B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610156889.1A CN105590971B (zh) 2016-03-18 2016-03-18 AlGaN日盲紫外增强型雪崩光电探测器及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610156889.1A CN105590971B (zh) 2016-03-18 2016-03-18 AlGaN日盲紫外增强型雪崩光电探测器及其制备方法

Publications (2)

Publication Number Publication Date
CN105590971A true CN105590971A (zh) 2016-05-18
CN105590971B CN105590971B (zh) 2017-02-08

Family

ID=55930406

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610156889.1A Active CN105590971B (zh) 2016-03-18 2016-03-18 AlGaN日盲紫外增强型雪崩光电探测器及其制备方法

Country Status (1)

Country Link
CN (1) CN105590971B (zh)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106920360A (zh) * 2017-03-23 2017-07-04 南通大学 基于AlGaN基日盲紫外探测器的远程火灾实时监测方法及系统
CN109148639A (zh) * 2018-08-09 2019-01-04 镇江镓芯光电科技有限公司 一种日盲紫外探测器结构、制备方法及性能测试方法
CN109378361A (zh) * 2018-09-29 2019-02-22 中国科学院长春光学精密机械与物理研究所 一种实现低电压下AlGaN探测器雪崩倍增的方法
CN109980039A (zh) * 2019-04-04 2019-07-05 南通大学 一种高温度稳定性紫外雪崩光电探测器及其制备方法
CN110148648A (zh) * 2019-05-17 2019-08-20 东南大学 一种具有双掺杂Al组分渐变分离层的紫外探测器
CN110993737A (zh) * 2019-12-12 2020-04-10 中国科学院长春光学精密机械与物理研究所 AlGaN基同质集成光电子芯片及其制备方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102157569A (zh) * 2005-12-16 2011-08-17 Bp北美公司 背接触式光伏电池
CN103400888A (zh) * 2013-08-22 2013-11-20 南京大学 高增益的AlGaN紫外雪崩光电探测器及其制备方法
CN204130567U (zh) * 2014-09-24 2015-01-28 滁州学院 一种用于日盲紫外探测的雪崩光电二极管

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102157569A (zh) * 2005-12-16 2011-08-17 Bp北美公司 背接触式光伏电池
CN103400888A (zh) * 2013-08-22 2013-11-20 南京大学 高增益的AlGaN紫外雪崩光电探测器及其制备方法
CN204130567U (zh) * 2014-09-24 2015-01-28 滁州学院 一种用于日盲紫外探测的雪崩光电二极管

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106920360A (zh) * 2017-03-23 2017-07-04 南通大学 基于AlGaN基日盲紫外探测器的远程火灾实时监测方法及系统
CN106920360B (zh) * 2017-03-23 2019-04-19 南通大学 基于AlGaN基日盲紫外探测器的远程火灾实时监测方法及系统
CN109148639A (zh) * 2018-08-09 2019-01-04 镇江镓芯光电科技有限公司 一种日盲紫外探测器结构、制备方法及性能测试方法
CN109378361A (zh) * 2018-09-29 2019-02-22 中国科学院长春光学精密机械与物理研究所 一种实现低电压下AlGaN探测器雪崩倍增的方法
CN109980039A (zh) * 2019-04-04 2019-07-05 南通大学 一种高温度稳定性紫外雪崩光电探测器及其制备方法
CN110148648A (zh) * 2019-05-17 2019-08-20 东南大学 一种具有双掺杂Al组分渐变分离层的紫外探测器
CN110993737A (zh) * 2019-12-12 2020-04-10 中国科学院长春光学精密机械与物理研究所 AlGaN基同质集成光电子芯片及其制备方法
CN110993737B (zh) * 2019-12-12 2021-04-13 中国科学院长春光学精密机械与物理研究所 AlGaN基同质集成光电子芯片及其制备方法

Also Published As

Publication number Publication date
CN105590971B (zh) 2017-02-08

Similar Documents

Publication Publication Date Title
CN105590971A (zh) AlGaN日盲紫外增强型雪崩光电探测器及其制备方法
CN204130567U (zh) 一种用于日盲紫外探测的雪崩光电二极管
CN102386269B (zh) GaN基p-i-p-i-n结构紫外探测器及其制备方法
CN106847933B (zh) 单片集成紫外-红外双色雪崩光电二极管及其制备方法
CN106409968B (zh) AlGaN基超晶格雪崩型紫外探测器及其制备方法
CN108305911B (zh) 吸收、倍增层分离结构的ⅲ族氮化物半导体雪崩光电探测器
CN103400888A (zh) 高增益的AlGaN紫外雪崩光电探测器及其制备方法
CN106960885B (zh) 一种pin结构紫外光电探测器及其制备方法
CN105261668B (zh) 异质结倍增层增强型AlGaN日盲雪崩光电二极管及其制备方法
CN108022985A (zh) 延伸波长台面型雪崩光电二极管及其制备方法
CN105655437A (zh) 一种紫外雪崩光电探测器
CN105742387B (zh) AlGaN渐变组分超晶格雪崩光电二极管
CN107403848A (zh) 一种背照式级联倍增雪崩光电二极管
CN110047955A (zh) 一种AlGaN紫外雪崩光电二极管探测器及其制备方法
CN110676272A (zh) 一种半导体紫外光电探测器
CN109326659A (zh) 一种高响应度低暗电流PIN结构的4H-SiC紫外探测器及其制备方法
CN111834489B (zh) 硅基深紫外雪崩光电二极管及其制备方法
CN106409965A (zh) 一种高速饱和单行载流子紫外光电二极管及制备方法
CN202103077U (zh) 基于光子晶体和超晶格雪崩光电二极管的太赫兹探测器结构
Chen et al. Amorphous MgInO ultraviolet solar-blind photodetectors
CN103779436A (zh) 透射式AlGaN紫外光电阴极及其制备方法
CN114678439B (zh) 一种对称叉指结构的2deg紫外探测器及制备方法
CN114709279A (zh) 一种倒装结构的紫外探测器芯片
Han et al. Great Enhancement Effect of 20–40 nm Ag NPs on Solar-Blind UV Response of the Mixed-Phase MgZnO Detector
CN102074609B (zh) 一种紫外雪崩光电二极管探测器及其制作方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant