CN105589980A - 一种阻抗匹配层的截断边界 - Google Patents

一种阻抗匹配层的截断边界 Download PDF

Info

Publication number
CN105589980A
CN105589980A CN201410568490.5A CN201410568490A CN105589980A CN 105589980 A CN105589980 A CN 105589980A CN 201410568490 A CN201410568490 A CN 201410568490A CN 105589980 A CN105589980 A CN 105589980A
Authority
CN
China
Prior art keywords
impedance matching
matching layer
boundary
dimensional
zoning
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201410568490.5A
Other languages
English (en)
Inventor
郑宏兴
张玉贤
彭升
王辂
万小凤
邓东民
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tianjin University of Technology
Original Assignee
Tianjin University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tianjin University of Technology filed Critical Tianjin University of Technology
Priority to CN201410568490.5A priority Critical patent/CN105589980A/zh
Publication of CN105589980A publication Critical patent/CN105589980A/zh
Pending legal-status Critical Current

Links

Landscapes

  • Aerials With Secondary Devices (AREA)

Abstract

本发明公开了一种阻抗匹配层截断边界,有效截断计算区域。三维阻抗匹配层的形状为球面边界,能节省47.64%的计算量,二维阻抗匹配层的形状为圆形边界,能节省21.64%的计算量;设计了截断边界上的阻抗匹配层的参数;设计了阻抗匹配层的网格数目。本发明经过实例验证能够有效地吸收传播到截断边界上的电磁波。这种阻抗匹配层可用于计算电磁学的时域有限差分方法,但不局限于这种方法。

Description

一种阻抗匹配层的截断边界
技术领域
本发明属于计算电磁学软件技术领域,具体涉及一种求解电磁场问题的截断边界计算方法,用阻抗匹配原理实现这种方法。
背景技术
在微波电路、天线设计、目标散射计算和电磁兼容等研究方面,电磁场数值计算得到了广泛的应用。在计算区域设置截断边界,在边界上加入吸收层,称为吸收边界,使电磁波在截断边界上被吸收,可以用计算机模拟“微波暗室”的作用。吸收边界是影响电磁场数值计算精度和效率的重要因素之一。传统吸收边界,均在经典的笛卡尔坐标系下进行处理,例如:G.Mur(1981年)提出了用插值方法处理的吸收边界、Berenger(1994年)提出分裂场形式的完全匹配层、Sacks(1995年)和Gedney(1996年)提出各向异性的完全匹配层以及Chew和Weedon(1994年)提出坐标伸缩形式的完全匹配层等。这些在笛卡尔坐标系下能起到较好的吸收效果,但是这些关于吸收边界的计算在立方体直角块区域进行截断,因角区域的处理浪费大量的计算机资源。在发明专利201210177288.0中提出一种关于柱坐标系处理角区域的方法,但是繁杂的数学推导,几乎难以引入平面电磁波。更重要的是,这种柱坐标系缺乏笛卡尔坐标系下的全局计算优势。目前尚未出现笛卡尔坐标系下弯曲形状吸收边界的计算方法。
发明内容
本发明提供一种阻抗匹配层实现的截断边界,在笛卡尔坐标系下处理弯曲截断边界,从而避免计算那些角区域,在实现边界截断的同时,减少计算量,提高计算效率。
本发明所采用的技术方案是一种阻抗匹配层的截断边界,其特征在于:
1.阻抗匹配层的形状;
所述的三维阻抗匹配层形状可选择为球面边界。与传统的直角块立方体边界对比,节省计算量的原理如图1所示:设直角块立方体的形状为正方体,其边长为a,体积为v 1=a 3,而本发明与之对应的球体,其直径长度为a,体积为v 2=π()3,节省的体积百分比为
1–=1–=47.64%.
对于无限长的物理目标,只考虑垂直于长度截面上的物理变化过程,简化为二维问题。设直角形计算区域是边长为d的正方形,面积为S 1=d 2,本发明与之对应的直径为d的圆形面积S 2=π()2,从而节省的面积百分比为
1–=1–=21.46%.
2.在截断边界上,阻抗匹配层的参数设计依据以下原理;
利用光学的增透膜原理,得出阻抗匹配关系
定义
导出阻抗匹配层中σ 2σ m2的解析表达式为
通过上述表达式设计阻抗匹配层的参数,用于计算电磁学的程序中,由此实现在有限的计算区域达到模拟“微波暗室”吸波材料的效果;
3.将阻抗匹配层的截断边界用于计算电磁学中的时域有限差分方法;
对于三维问题,仍然使用立方体的网格剖分,将计算区域用球面边界进行截断处理,选取2~10个网格做为边界上的阻抗匹配层厚度,沿任一直径的截面如图2所示,利用特征2中得到的σ 2σ m2作为阻抗匹配层的参数,从而模拟电磁波在无界空间的传播。对于二维问题,则采用正方形网格进行剖分,利用圆形边界来截断计算区域,匹配层网格如图2所示,采用特征2中的方式处理阻抗匹配层边界,这样就可以实现二维电磁问题的计算。
4.本发明用于计算电磁学中的时域有限差分方法,但不局限于这种方法。
附图说明
图1是球面截断边界与之对应的立方体截断边界的对比图;
图2是在时域有限差分方法下的阻抗匹配层截断边界上的网格分布;
图3是发明实施例1在二维的阻抗匹配层截断边界下点源的电磁波传播图;
图4是发明实施例2在二维的阻抗匹配层截断边界下的近场目标散射场分布图;
图5是发明实施例3在三维阻抗匹配层截断边界下的电偶极子辐射图;
图6是发明实施例3在三维的阻抗匹配层截断边界下的电偶极子辐射的误差分析图。
具体实施方式
本发明用于计算电磁学的时域有限差分法中,计算步骤为:
1.建立求解对象的模型数据和时域有限差分法的基本参数;
在截断边界以内的计算区域为真空状态,分别选择时谐场的点源、平面波和高斯脉冲做为激励源。计算的区域范围为(In,Jn,Kn)→(Ip,Jp,Kp),其大小为(Ip–In)×(Jp–Jn)×(Kp–Kn),空间步长为Δxy和Δz,时间步长为Δt,定义电磁仿真迭代步数;
2.对电磁场计算的变量进行初始化;
对于二维电磁场的变量以及迭代系数包括:一维平面波的输入变量为Ein(Istart+1:Iend–1)和Hin(Istart:Iend–1);二维电磁场分布的变量分别为Ez(Imin:Imax,Jmin:Jmax),Hx(Imin:Imax,Jmin:Jmax–1)和Hx(Imin:Imax–1,Jmin:Jmax);二维区域的建模数据文件为Ob(Imin:Imax,Jmin:Jmax);不同媒质的总数为M;二维电磁计算的迭代系数为FE1(M,M),FE2(M,M),FH1(M,M)和FH2(M,M),具体表达为
FE1(i,j)=
FE2(i,j)=
FH1(i,j)=
FH2(i,j)=
所述的三维电磁场的变量及迭代系数包括:三维程序电场变量为Ex(In:Ip–1,Jn:Jp,Kn:Kp),Ey(In:Ip,Jn:Jp–1,Kn:Kp),Ez(In:Ip,Jn:Jp,Kn:Kp–1)和三维程序磁场变量为Hx(In:Ip,Jn:Jp–1,Kn:Kp–1),Hy(In:Ip–1,Jn:Jp,Kn:Kp–1),Hz(In:Ip–1,Jn:Jp–1,Kn:Kp);真空状态下,三维电磁计算的迭代系数为FE1=FH1=1,FE2=FH2=0.5;
3.更新在计算区域内的电场强度;
4.更新电场的激励源;
5.更新在计算区域内的磁场强度;
6.根据1中所设定的电磁仿真迭代步数,判断是否满足更新条件。若未达到迭代步数,返回3;反之,跳出判断,记录3中得到的电场强度和步骤5中得到的磁场强度,并作出相应的处理。
如下给出三个应用实例。
例1.求解二维问题验证阻抗匹配层的吸收效果的设置二维建模文件内容为:计算的区域范围为(0,0)→(300,300),空间步长为Δxy=0.25cm,时间步长为Δt=0.41667ps,整个计算区域为真空状态,其电导率为σ=0,磁导率为μ 0,介电常数为ε 0。选择时谐场的点源做为激励源,表达式为E z =sin(2πf 0 NΔt),f 0是源的频率,电磁仿真迭代步数为N=1050。由此运行程序,结果如图3所示。当点源置于计算区域的中心位置时,能得到明显的同心圆图。图3(a)和(b)显示电磁波无反射。当点源置于计算区域的偏心坐标位置为(70,70)时,结果仍然为同心圆,或者说在计算边界上的反射率极小。需要强调的是,采用圆形边界,计算效率提高到原来的1.25倍。
例2.二维无限长导体圆柱的近场散射。计算的区域范围为(0,0)→(250,250),空间步长为Δxy=0.25cm,时间步长为Δt=0.41667ps,导体圆柱位于计算区域中心,其半径为60Δx=15cm,其它区域均为真空状态。选择时谐平面波源作为激励源,表达式为E in =sin(2πf 0 NΔt),f 0表示源的频率,电磁仿真迭代步数为N=1200。由此运行程序,得到结果如图4所示。图中能看到截断边界是圆形。图4(a)和(b)分别是电场E z 的相位和幅值,其内部的方形是时域有限差分方法中的总场和散射场的连接边界。图4(c)和(d)分别给出的是H x 的相位和幅值。
例3.三维区域的偶极子辐射。计算的区域范围为(–22,–22,–22)→(22,22,22),空间步长为Δxy=Δz=5cm,时间步长为Δt=83.333ps,计算区域的电导率为σ=0,磁导率为μ 0,介电常数为ε 0。在坐标点(0,0,2.5cm)处加入电偶极子,选择高斯脉冲做为激励源,表达式为
其中
其电磁仿真迭代步数为N=300。由此运行程序,记录在坐标点(0,10,0.5)处的电场强度E z 的时域分布,并对比Mur吸收边界和解析解的结果如图5所示。根据解析解的结果,对阻抗匹配层和Mur吸收边界的误差进行对比,如图6所示。由此可知,阻抗匹配层的精度略高于Mur吸收边界的精度。在程序运行过程中,验证了利用球形阻抗匹配层的计算效率提高到原来的2倍。

Claims (5)

1.一种阻抗匹配层的截断边界,其特征在于:对于三维问题,所选的边界形状为球形;在解决无限长目标的计算时,采用二维方法,边界形状为圆形;阻抗匹配层具有一定的厚度。
2.如权利要求1所述的三维球面边界,节省计算量的原理是设传统截断边界为直角块正方体,其边长为a,体积为v 1=a 3,而本发明与之对应的球体,其直径长度为a,体积为v 2=π()3,节省的体积百分比为
1–=1–=47.64%.
如权利要求1所述二维圆形边界,节省计算量的原理是设直角形区域是边长为d的正方形,面积为S 1=d 2,本发明与之对应的直径为d的圆形面积S 2=π()2,从而节省的面积百分比为
1–=1–=21.46%.
如权利要求1所述的阻抗匹配层,计算参数如下,
定义
得出阻抗匹配层的σ 2σ m2的解析表达式为
通过上述两式,实现在有限的计算区域达到模拟“微波暗室”吸波材料的效果。
3.如权利要求1所述的阻抗匹配层截断边界,仍然使用立方体的网格剖分,将计算区域用球面边界进行截断处理,选取适当的阻抗匹配层网格数,利用权利要求2中得到的σ 2σ m2作为阻抗匹配层的参数,从而模拟电磁波在无界空间的传播。
4.如权利要求1所述的阻抗匹配层截断边界处理二维问题时,采用正方形网格进行剖分,利用圆形边界来截断计算区域,其余和权利要求3中的处理方式类似,这样就可以求解二维电磁问题。
5.如权利要求1所述的阻抗匹配层截断边界用于计算电磁学的时域有限差分方法中,但并不局限于这种方法。
CN201410568490.5A 2014-10-23 2014-10-23 一种阻抗匹配层的截断边界 Pending CN105589980A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201410568490.5A CN105589980A (zh) 2014-10-23 2014-10-23 一种阻抗匹配层的截断边界

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201410568490.5A CN105589980A (zh) 2014-10-23 2014-10-23 一种阻抗匹配层的截断边界

Publications (1)

Publication Number Publication Date
CN105589980A true CN105589980A (zh) 2016-05-18

Family

ID=55929558

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201410568490.5A Pending CN105589980A (zh) 2014-10-23 2014-10-23 一种阻抗匹配层的截断边界

Country Status (1)

Country Link
CN (1) CN105589980A (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107944214A (zh) * 2017-11-27 2018-04-20 河北工业大学 笛卡尔坐标系下各向异性完全匹配层截断边界的实现方法
CN110032787A (zh) * 2019-04-04 2019-07-19 天津职业技术师范大学(中国职业培训指导教师进修中心) 各向同性多层涂层体系半平面在表面线分布移动摩擦热源作用下二维温度场的求解方法
CN110069837A (zh) * 2019-04-04 2019-07-30 天津职业技术师范大学(中国职业培训指导教师进修中心) 横观各向同性多层涂层体系半空间表面在面分布移动摩擦热源作用下三维温度场的求解方法

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107944214A (zh) * 2017-11-27 2018-04-20 河北工业大学 笛卡尔坐标系下各向异性完全匹配层截断边界的实现方法
CN107944214B (zh) * 2017-11-27 2020-11-10 河北工业大学 笛卡尔坐标系下各向异性完全匹配层截断边界的实现方法
CN110032787A (zh) * 2019-04-04 2019-07-19 天津职业技术师范大学(中国职业培训指导教师进修中心) 各向同性多层涂层体系半平面在表面线分布移动摩擦热源作用下二维温度场的求解方法
CN110069837A (zh) * 2019-04-04 2019-07-30 天津职业技术师范大学(中国职业培训指导教师进修中心) 横观各向同性多层涂层体系半空间表面在面分布移动摩擦热源作用下三维温度场的求解方法

Similar Documents

Publication Publication Date Title
Özgün et al. MATLAB-based finite element programming in electromagnetic modeling
Yla-Oijala et al. Surface and volume integral equation methods for time-harmonic solutions of Maxwell's equations
CN113158492B (zh) 一种时变电磁场的全隐式双时间步计算方法
CN107944214B (zh) 笛卡尔坐标系下各向异性完全匹配层截断边界的实现方法
CN102156764B (zh) 一种分析天线辐射和电磁散射的多分辨预条件方法
Guo et al. On MLMDA/butterfly compressibility of inverse integral operators
CN103400004B (zh) 基于多区域模型矩量法的介质粗糙面电磁散射仿真方法
CN103218487B (zh) 旋转对称天线罩和抛物面天线一体化电磁散射仿真方法
Della Giovampaola et al. Efficient algorithm for the evaluation of the physical optics scattering by NURBS surfaces with relatively general boundary condition
CN105589980A (zh) 一种阻抗匹配层的截断边界
CN106446470A (zh) 一种高效并行的非均匀介质频域有限差分方法
CN102722651A (zh) 二维柱坐标完全匹配吸收边界的实现方法
Patel et al. A macromodeling approach to efficiently compute scattering from large arrays of complex scatterers
Ren et al. Flow field modulation
CN104915326A (zh) 基于等效原理的区域分解阶数步进时域积分方法
CN105277927B (zh) 飞行器编队瞬态电磁特性时域阶数步进分析方法
CN109816789A (zh) 一种基于深度神经网络的三维模型参数化方法
Chen et al. Analysis of antenna around NURBS surface with iterative MoM-PO technique
Qi et al. Acceleration strategies based on an improved bubble packing method
CN103914431A (zh) 一种计算各向异性结构雷达横截面的无网格法
Jiang et al. Modified adaptive cross approximation algorithm for analysis of electromagnetic problems
CN118551630B (zh) 一种结构网格频域电磁场网格序列加速有限体积方法
Xiang et al. Application of barycentric subdivision method for singularity integration in method of moments
CN105589678A (zh) 一种用数字信号处理技术实现的时域有限差分方法
Chen et al. Advances in biomolecular surface meshing and its applications to mathematical modeling

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20160518

WD01 Invention patent application deemed withdrawn after publication