CN105589129B - 一种聚合物光漂白光波导与微流控免对版集成芯片及其制备方法 - Google Patents

一种聚合物光漂白光波导与微流控免对版集成芯片及其制备方法 Download PDF

Info

Publication number
CN105589129B
CN105589129B CN201510974193.5A CN201510974193A CN105589129B CN 105589129 B CN105589129 B CN 105589129B CN 201510974193 A CN201510974193 A CN 201510974193A CN 105589129 B CN105589129 B CN 105589129B
Authority
CN
China
Prior art keywords
micro
fluidic
waveguide
chip
groove
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201510974193.5A
Other languages
English (en)
Other versions
CN105589129A (zh
Inventor
衣云骥
孙畅
刘君实
张大明
王菲
赵格格
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jilin University
Original Assignee
Jilin University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jilin University filed Critical Jilin University
Priority to CN201510974193.5A priority Critical patent/CN105589129B/zh
Publication of CN105589129A publication Critical patent/CN105589129A/zh
Application granted granted Critical
Publication of CN105589129B publication Critical patent/CN105589129B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B6/12002Three-dimensional structures
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B6/13Integrated optical circuits characterised by the manufacturing method
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Optics & Photonics (AREA)
  • Optical Integrated Circuits (AREA)

Abstract

本发明属于聚合物光波导与微流控通道集成芯片制备技术领域,涉及微流控通道、掩膜版、光波导的制备和端面处理方法,具体包括采用纳米压印(热压印或紫外压印)的方法在聚合物基底上制备微流控凹槽,二氧化碳激光器切割贯穿注液孔,在芯片上蒸发铝掩膜,旋涂光刻胶,然后整体曝光、显影得到波导掩膜版图形,在与微流控层同种材料的另一衬底上利用光敏性聚合物制备光波导芯层薄膜,将两层芯片通过热压印封装,封装后采用上层微流控芯片作为光掩膜版,在光敏性聚合物芯层薄膜上光写入条形波导,该波导在微流控通道的正下方,避免了集成过程中上层芯片和传感窗口的对版误差,而后通过激光对样片端面切割,抛光后完成光波导微流控免对版集成芯片。

Description

一种聚合物光漂白光波导与微流控免对版集成芯片及其制备 方法
技术领域
本发明属于聚合物光波导与微流控通道三维混合集成传感芯片制备技术领域,具体涉及一种聚合物光漂白光波导与微流控免对版集成芯片及其制备方法。
背景技术
光波导液体传感芯片采用光波导作为光信号的载体,通过光波导的表面与待测液体接触,实现传感功能,具有灵敏度高、响应迅速、结构简单、抗电磁干扰等特点,在环境保护、食品安全、医疗卫生等领域具有广泛应用。按照液体的引入方法,通常采用储液槽和微流控通道两种方法,微流控通道引入液体具有液体流动可控、消耗试样和试剂极少、分析速度快、集成度高、便携性好等优势。
光波导液体传感器的传感精度取决于光波导和待测液体的作用强弱。传感窗口的长度将影响器件的传感精度,传感窗口长度的增加将提升传感精度,但是传感窗口长度的增加也会增大光波导和微流控通道双层芯片对版误差对器件精度的影响,这种由双层芯片对版引起的误差无法避免,制约光波导微流控集成芯片的发展。
现有工艺问题总结如下:1.光波导和微流控三维集成器件需要首先制备光波导,旋涂上包层,然后采用对版、光刻、掩模、刻蚀等方法制备传感窗口,该工艺过程复杂,对版误差无法避免,且传感窗口刻蚀带来的散射会影响光波导的光学性能。2.光波导微流控三维集成结构中,下层波导通常采用表面裸露的倒脊型结构,该结构波导器件弯曲时损耗较大;若采用刻蚀法去除倒脊型结构的平板层,形成表层裸露的矩形结构,刻蚀带来的损耗影响光波导的光学性能。3.光波导和微流控芯片封装的过程复杂,通常采用紫外胶水或等离子体处理键和,紫外液体胶水容易阻塞通道和传感窗口,而等离子体处理会增加传感区光波导的散射损耗,且增加工艺成本。4样品粘合后,多层样品尺寸厚度大于划片机划片切割范围,端面处理困难。
发明内容
本发明要解决的技术问题就是克服背景技术的不足:1.上层微流控芯片和下层光波导芯片不需要对版,直接采用铝掩膜的微流控通道作为光漂白波导的掩膜版(光漂白是一种光直接写入聚合物的方法,利用聚合物材料在紫外光曝光下折射率变低,且在一定范围内,折射率随曝光量的增加而递减的特性),消除对版误差;2.通过光写入制备光波导,降低散射损耗和弯曲损耗;3.采用热封装上下层器件,成本低廉,且不会阻塞微流控通道。4.激光切割全聚合物芯片,切割范围大,经济快捷。
本发明的具体工艺步骤如下:
1)制备微流控层芯片,其方法有两种:热纳米压印法和紫外纳米压印法。
用激光器(1)将表面抛光的聚合物基底切割为矩形结构的微流控基底(2),然后在微流控基底(2)上采用热纳米压印法或紫外纳米压印法制备微流控通道凹槽(5),微流控通道凹槽(5)由等高等宽且共线的前中后三线段式条形结构、与该条形结构中间线段的两端分别垂直连接的微流控液体的引入和引出通道组成;三线段式条形结构的前、后两线段与中间线段间具有一定的间隔;引入和引出通道为与中间线段等高等宽的条形结构,且位于中间线段的同一侧;在引入和引出通道的端口处用激光器(1)贯穿微流控基底(2)烧蚀出注液孔(6);然后用乙醇、去离子水依次擦拭或超声清洗微流控基底(2),微流控基底(2)、微流控通道凹槽(5)和注液孔(6)构成微流控层芯片;
热纳米压印法即将微流控基底(2)加热融化,压盖具有微流控凹槽(5)结构的压印模板(3),而后降温使得微流控基底(2)固化,分离微流控基底(2)和压印模板(3),即在微流控基底(2)上形成与压印模板(3)图形相契合的微流控凹槽(5)。
激光器1切割的切割功率为40~60w,走刀速度为8~50mm/s;表面抛光的聚合物基底的厚度为1~3mm,材料为甲基丙烯酸甲酯PMMA,矩形结构微流控基底(2)的长度a为2~10cm,宽度b为3~5cm;具有微流控凹槽结构的压印模板3为与微流控基底2相同的矩形结构,厚度为1~3mm,材料可以是镍、Si或聚合物材料,模板上存在突起的条形结构,条形结构的高h为5~50μm,宽w为5~50μm,突起的条形结构为前、中、后三线段式结构(三段式结构距模板较近长边的距离为10~15mm),中间线段为微流控液体传感区,作用是制备微流控通道,同时作为下层光写入波导的掩膜;中间线段长度e为(1/3~3/4)a,三段式结构中的前、后两线段分别在中间线段两边的延长线上,与中间线段间隔d为2~50μm,并延伸直至模板边缘,其长度为(a-2d-e)/2;间隔d存在的目的是分隔传感区,保证中间段传感区微流控通道的闭合性。在中间线段的两端设置有微流控液体的引入和引出通道,引入和引出通道为与中间线段垂直连接的条形结构,其高与宽与中间线段相同;引入和引出通道的长度c为6~20mm;引入和引出通道一同位于中间线段的一侧,且位于距离较远长边的表面上,以保证结构紧凑且易于封装。
虽然引入和引出通道会在后续光写入波导的时候写入下层光敏感芯层,但是垂直连接可以保证光在三线段式结构中直线传输过程中散射损耗最低,采用热纳米压印机4热压印微流控基底2,调整纳米压印过程的保压温度80~150℃,保压压力0.5~8kg/cm2,保压时间为1~20min,压印后在微流控基底2上制备出微流控通道凹槽5,凹槽5的宽度为5~50μm,深度为5~50μm,与模板图形相互契合;在微流控液体引入和引出通道的端口处用激光器1贯穿烧蚀出注液孔6(激光功率为8~60W,走刀速度为8~50mm/s),注液孔6的半径R为1~5mm;然后用乙醇、去离子水依次擦拭或超声清洗,微流控基底2、微流控通道凹槽5和注液孔6构成热压印微流控层芯片A。
紫外纳米压印法即将紫外固化的液态聚合物材料旋涂或滩涂于具有聚合物突起结构的压印模板3上,紫外曝光固化该液态聚合物,而后分离聚合物和模板,即在聚合物上形成与模板相契合的图案。
紫外纳米压印制备聚合物凹槽其工艺流程如下:首先将液态紫外固化聚合物材料7(NOA系列紫外固化材料)滴加在具有聚合物突起结构的压印模板3(模板材料和结构与热压印模板相同)上旋涂成膜,旋涂转数500~8000r/min,旋涂时间20~60s,形成0.2~1mm厚的薄膜,然后在紫外灯(200mW/cm2)充分曝光,曝光200~600s,曝光后,在压印模板3上得到紫外固化聚合物固体薄膜8,而后将压印模板3和紫外固化聚合物固体薄膜8剥离,从在紫外固化聚合物固体薄膜8上形成微流控通道凹槽5(或9);在液体引入和引出通道端口处用激光器1贯穿烧蚀出注液孔10(激光功率为8~60W,走刀速度为8~50mm/s),注液孔10的半径R为1~5mm;然后用乙醇、去离子水依次擦拭或超声清洗;紫外固化聚合物固体薄膜8、微流控通道凹槽9和注液孔10构成紫外压印微流控层芯片B。热压印和紫外纳米压印形成的微流控层芯片结构俯视图如附图4所示;
2、在热压印或紫外纳米压印形成的微流控层芯片A(或B)上制备铝掩膜,其流程如附图5所示,将微流控层芯片A(或B)带有微流控通道凹槽5(或9)的一侧蒸发铝掩膜11,铝掩膜厚度20~40nm,铝掩膜11分布在凹槽底部和微流控层芯片表面,在铝掩膜11上旋涂正性光刻胶12(如:BP218,曝光部分被显影液去除),由于凹槽的存在,旋涂在凹槽5(或9)底部的光刻胶层的厚度大于旋涂在微流控层芯片表面的光刻胶层的厚度,对正性光刻胶12进行加热固化,然后按照微流控层芯片表面光刻胶层厚度所对应的曝光时间进行曝光,曝光后显影,显影后可去除微流控层芯片表面的光刻胶层;在凹槽底部的光刻胶层由于较厚,所以有部分残留,显影后用质量浓度5‰的氢氧化钠水溶液去除基底表面的铝掩膜11,而凹槽底部的铝掩膜11由于部分残留光刻胶层的存在,得以保留;然后再用去胶试剂(如丙酮等有机溶剂)去除凹槽内残留的光刻胶层12,从而得到微流控光漂白掩膜版13,由微流控层芯片A(或B)以及凹槽内残留的铝掩膜11构成;
3、制备光波导芯片,共流程如附图6所示,在波导聚合物衬底14(其尺寸、材料与微流控基底2相同,通过选择不同分子量的化合物使波导聚合物衬底14的玻璃态转化温度低于微流控基底2低1~50℃)上表面靠近长边的两侧粘贴两条条形结构的胶带15(其长度为a,宽度为k,k为5~10mm,且b-2k-R﹥c),可以是纸胶、透明胶、划片用蓝膜,在两条条形结构的胶带间露出需要制备波导的矩形区域(其长度为a,宽度为b-2k),胶带覆盖区域用于上下芯片的封装,在波导聚合物衬底14贴有胶带15的一侧旋涂光敏聚合物材料(为SU-8系列材料),本发明所述的旋涂光敏聚合物材料是指将光敏聚合物材料滴在处理过(用乙醇清洗和超声清洗)的波导聚合物衬底14上,然后将波导聚合物衬底14置于旋转涂覆机上,在1000~6000r/min的转速下旋转衬底进行涂膜,旋涂的时间为20~60s,使光敏聚合物材料均匀涂在波导聚合物衬底14和胶带15上;固化光敏聚合物材料后得到光敏聚合物薄膜16,本发明所说的固化光敏聚合物材料是按照光敏聚合物材料的性质使光敏聚合物材料由液态变为固态(加热采用烘箱或热板,阶梯升温,55~65℃加热3~15min,而后升温至85~95℃加热6~25min);而后剥离去除波导聚合物衬底14表面边缘处的胶带15,从而得到光波导芯片17,由波导聚合物衬底14和在波导聚合物衬底14上的光敏聚合物薄膜16组成;
4、封装和波导制备,其流程如附图7所示,将光波导芯片17带有光敏聚合物薄膜16的一侧和微流控光漂白掩膜版13带有微流控凹槽5(或9)的一侧在压印机4上进行热压印,调整纳米压印过程的保压温度为80~150℃,保压压力为0.5~8kg/cm2,保压时间为1~10min,压印后完成了芯片的封装,得到了平板结构的聚合物平板光波导微流控集成芯片18(该封装过程可是热压印芯片A同种材料融化的粘合,也可以是紫外压印芯片B分子间作用力的键合);以微流控光漂白掩膜版13为掩膜版,在紫外光(光刻机、曝光灯或紫外压印机均可)19作用下,从微流控光漂白掩膜版13一侧曝光聚合物平板光波导微流控集成芯片18,曝光功率200~300mW/cm2,曝光时间30s~600s;曝光后,即在光敏聚合物薄膜16上得到与微流控光漂白掩膜版13结构相同的波导图形(由于铝掩膜的存在,微流控凹槽5对应区域的光敏聚合物薄膜16未被曝光,而其余区域的光敏聚合物薄膜16被曝光,因而折射率变低,最后测试光信号(波长1550nm)在未曝光区域进行光的传输),波导的厚度为光敏聚合物薄膜16的厚度;
5、采用激光1对步骤4的器件进行切割(切割功率为40~100W,走刀速度为8~50mm/s),沿样片表面且垂直于三线段式结构所在直线(三线段结构中传输光,光传输方向如图中剪头所示)方向进行切割,切割位置与三线段式结构的两侧线段相交,靠近衬底边缘1~3mm,示意图如附图8,最后,将得到的切割端面用乙醇和去离子水擦拭清洗,然后抛光可得端面处理过的条形光波导微流控三维集成芯片20。
如通道内的铝掩膜11的存在对后续应用有影响,可以在注液孔4注入质量分数2~5‰的NaOH水溶液去除微流控通道表面的铝掩膜6,而后用去离子水清洗;如铝掩膜11的存在对后续应用无影响,可不去除铝掩膜,铝掩膜的存在,方便测试时光纤与光波导的对准。
与现有技术相比,本发明的创新之处在于:
1、光波导通过微流控芯片作为掩膜,不需要对版工艺,避免了对版误差;
2、不采用干法刻蚀等高成本制备工艺,通过光写入制备波导,保证表层裸露,降低了波导的弯曲损耗和散射损耗;
3、本发明不需要上包层旋涂、固化、传感窗口的对准刻蚀等流程,直接采用压印的微流控通道作为传感窗口,对准后,直接封装。该方法工艺流程简单、封装过程不会阻塞传感窗口,保证了光波导芯层和微流控通道良好的接触,避免了封装过程对芯片光学性能的影响。
4、本发明芯片制备后直接激光切割聚合物芯片端面,工艺快捷灵活、成本低。
本发明制备的光波导微流控集成芯片,其微流控通道导通良好,光波导平均传输损耗为1.5~3dB/cm(本发明采用下面公式计算平均传输损耗:平均传输损耗=(插入损耗-波导与光纤耦合损耗)/波导长度;抛光后波导的耦合损耗可以通过截断法测试没有集成微流控通道的同尺寸波导样品测得(0.5-3dB),插入损耗可由光功率计测得(与片长有关),光波导长度可以直接量出),本发明的光波导微流控集成芯片可用于液体与波导表面接触的倏逝波型液体传感器。
附图说明
图1:热压印微流控通道工艺流程图;
图2:热压印(紫外)压印模板结构图;
图3:紫外纳米压印微流控通道工艺流程图;
图4:压印微流控层芯片(微流控通道及注液孔);
图5:铝掩膜制备工艺流程;
图6:光波导芯片制备流程;
图7:光波导微流控芯片封装和波导写入流程;
图8:激光切割方向示意图。
具体实施方式
实施例1
热纳米压印PMMA,芯层SU-8-2005
具体工艺步骤如下:
用激光器1切割厚度1mm的表面抛光的甲基丙烯酸甲酯(PMMA)薄片(其玻璃态转化温度为105℃),切割功率为50W,走刀速度为10mm/s,切割出矩形的微流控基底2(长a为4cm,宽b为3cm);然后采用热压印方法制备微流控通道凹槽,采用硅模板3,通过热纳米压印机4压印凹槽,纳米压印过程的保压温度110℃,保压压力4kg/cm2,保压时间5min,压印后自然剥离模板,制备出微流控通道凹槽5(线宽9μm,深度9μm),引入引出线段长c为10mm,三线段结构的中间线段长e为20mm,三线段的两个间距均为d为9μm;在凹槽端口处用激光器1烧蚀出贯穿的圆形注液孔6(激光功率为50W,走刀速度为8mm/s;圆形半径R为3mm);然后用乙醇、去离子水依次擦拭或超声清洗。聚合物微流控基底2、微流控通道凹槽5、贯穿的圆形注液孔6共同构成热压印微流控层芯片A。
在热压印微流控层芯片A带有微流控凹槽5的一侧蒸发铝掩膜11(铝掩膜厚度30nm),铝掩膜11分布在凹槽底部和芯片表面,在蒸发的铝掩膜11上旋涂光刻胶12(BP218),转数3000r/min,时间20s,光刻胶分布在凹槽内的铝掩膜上以及芯片上的铝掩膜上(凹槽内光刻胶层的厚度为11μm,芯片上光刻胶层的厚度为4μm,凹槽处存在2μm的塌陷)。然后采用热板85℃加热20min,自然降温,而后曝光7s(200mW/cm2),用质量分数5‰氢氧化钠作为光刻胶显影液,显影40s后可去除芯片上侧的光刻胶层和光刻胶下平板层的铝膜,在凹槽底部有光刻胶残留,显影后继续曝光7s(200mW/cm2),用质量分数5‰氢氧化钠显影10s,去除光刻胶,但是保留铝膜,得到用于微流控光漂白的掩膜版13(在凹槽底部为铝掩膜)。
在波导聚合物PMMA衬底14(其玻璃态转化温度为105℃,长4cm,宽3cm,厚1mm)上表面靠近边缘处粘贴两条纸胶15,胶带覆盖区域为0.2cm×4cm,露出的PMMA衬底14区域,用于光敏层材料的旋涂),在贴有纸胶15的衬底薄片一侧旋涂光敏聚合物材料16(SU-8-2005),即将SU-8-2005材料滴在处理过(用乙醇清洗和超声清洗)的PMMA衬底14上,将衬底14置于旋转涂覆机上,在3000r/min的转速下旋转衬底进行涂膜,旋涂的时间为30s,使光敏聚合物材料14(SU-8-2005)均匀涂在衬底9上,厚度为6μm;固化光敏聚合物材料SU-8-2005(60℃加热5min,90℃热板加热10min)得到光敏聚合物材料14薄膜,而后去除其边缘处的纸胶15和上面的光敏聚合物材料16薄膜在纸胶15上的部分,得到光波导芯片17;
将光波导芯片17带有光敏感聚合物材料16薄膜的一侧和微流控光漂白掩膜版13带有凹槽5的一侧在压印机4上进行热压印,然后调整纳米压印过程的保压温度105℃,保压压力1.5kg/cm2,保压时间5min,压印后形成光波导微流控集成芯片18,以微流控光漂白掩膜版13为掩膜版,在光刻机19下曝光,功率200mW/cm2,曝光时间200s;
最后采用激光1对光波导与微流控集成芯片20进行切割,两端各切割5mm,(切割功率为60W,走刀速度为10mm/s),得到3cm长的样片,切割端面后用乙醇和去离子水擦拭清洗端面,然后抛光可得端面处理过的光波导微流控三维集成芯片14,其微流控通道导通良好,输入、输出采用石英光纤耦合(芯径9μm),一端输入光纤输入功率1mW,另外一端用光纤耦合输出,输出的另外一端连接光功率计测量芯片输出光纤的损耗,3cm长的芯片测得插入损耗-15.3dB,截断法测试没有集成微流控通道的同波导尺寸的样品耦合损耗为3dB,计算波导的传输损耗为3.1dB/cm。
实施例2
热纳米压印PMMA,芯层材料SU-8-100
具体工艺步骤如下:
用激光器1切割厚度1mm的表面抛光的甲基丙烯酸甲酯(PMMA)薄片(其玻璃态化温度为100℃),切割功率为50W,走刀速度为10mm/s,切割出矩形的微流控薄片基底2(4cm×2cm);然后采用热压印方法制备微流控通道凹槽,采用聚合物PDMS模板,通过热纳米压印机4压印凹槽,纳米压印过程的保压温度120℃,保压压力1kg/cm2,保压时间10min,压印后自然剥离模板,制备出微流控通道凹槽5(线宽为40μm,深度为40μm),引入引出线段长c为10mm,三线段结构的中间线段长e为20mm,三线段的两个间距均为d为40μm;在凹槽端口处用激光器1贯穿烧蚀初圆柱形注液孔6(激光功率为50W,走刀速度为8mm/s;圆形半径R为5mm);然后用乙醇、去离子水依次擦拭或超声清洗。聚合物微流控薄片基底2、微流控通道凹槽5、注液孔6共同构成上层微流控层芯片A。
将微流控层芯片A带有微流控凹槽5的一侧蒸发铝掩膜11(铝掩膜厚度30nm),铝掩膜11分布在凹槽内部和芯片表面,在蒸发的铝掩膜11的芯片上旋涂光刻胶12(BP218),转数3000r/min,时间20s,光刻胶分布在凹槽内的铝掩膜上侧以及芯片上铝掩膜上侧,凹槽内光刻胶层厚度为41μm,芯片上光刻胶的厚度为4μm,凹槽处光刻胶存在3μm塌陷。然后采用热板85℃加热20min,自然降温,而后曝光7s(200mW/cm2),用5‰氢氧化钠显影40s后可去除基底上侧平板层的光刻胶和铝,在凹槽内得到光刻胶残留和光刻胶下的铝残留,显影后继续曝光7s(200mW/cm2),用5‰氢氧化钠显影10s,得到用于微流控光漂白的掩膜版13。
在波导聚合物衬底PMMA薄片14(玻璃态转化温度为95℃,长4cm,宽3cm,厚1mm),面粘贴纸胶15,纸胶覆盖区域为0.2cm×4cm,在贴有胶带的衬底薄片一侧旋涂光敏聚合物材料16(SU-8-100),旋涂芯层材料,即将SU-8-100材料滴在处理过(用乙醇清洗和超声清洗)的PMMA衬底14带有纸胶15的一侧,将衬底14置于旋转涂覆机上,在6000r/min的转速下旋转衬底进行涂膜,旋涂的时间为30s,使光敏聚合物材料SU-8-100均匀涂在衬底9上,厚度为40μm;固化光敏聚合物材料SU-8-100,60℃加热10min,90℃热板加热20min,得到光敏聚合物材料16薄膜,而后去除其边缘处的纸胶14,得到光波导芯片17;
将光波导衬底薄片17带有光敏聚合物材料16的一侧和微流控光漂白掩膜版13带有压印凹槽5的一侧在压印机4上进行热压印,然后调整纳米压印过程的保压温度100℃,保压压力1.5kg/cm2,保压时间5min,压印后形成光波导微流控集成芯片18,把微流控层13作为掩膜版,在光刻机或曝光灯19下曝光,功率200mW/cm2,曝光时间180s;
最后采用激光1对光波导与微流控集成芯片20进行切割,两端分别切掉0.5cm(切割功率为60W,走刀速度为10mm/s),得到3cm长的样片,切割端面后用乙醇和去离子水擦拭清洗端面,然后抛光可得端面处理过的光波导微流控三维集成芯片14,制备的微流控通道导通良好,输入、输出采用聚合物光纤耦合(芯径0.5mm),一端输入光纤输入功率1mW(@1550nm),另外一端光纤耦合输出,光纤连接光功率计,用光功率计测量芯片输出光纤的损耗,3cm的芯片的插入损耗为-9.2dB,截断法测试没有集成微流控通道的同波导尺寸的样品耦合损耗为2.2dB,计算波导的传输损耗为1.6dB/cm。
实施例3
紫外纳米压印NOA63,芯层材料SU-8-2005
具体工艺步骤如下:
首先将液态NOA63材料7旋涂于聚二甲基硅氧烷PDMS压印模板3表面(模板上存在突起的三线段结构),旋涂转数500r/min,旋涂时间20s,形成0.5mm厚的薄膜,然后在紫外灯(200mW/cm2)充分曝光,曝光300s,固化液态NOA63材料7,形成固态NOA63薄膜8,薄膜上制备出微流控通道凹槽9(线宽为9μm,深度为9μm),引入引出线段长c为10mm,三线段结构的中间线段长e为20mm,三线段的两个间距均为d为9μm;在凹槽端口处用激光器1烧蚀出贯穿的圆形注液孔10(激光功率为40W,走刀速度为10mm/s;圆形半径R为3mm);然后用乙醇、去离子水依次擦拭或超声清洗。聚合物微流控基底8、微流控通道凹槽9、贯穿的圆形注液孔10共同构成热压印微流控层芯片B。
在紫外压印微流控层芯片B带有微流控凹槽9的一侧蒸发铝掩膜11(铝掩膜厚度30nm),铝掩膜11分布在凹槽底部和芯片表面,在蒸发的铝掩膜11上旋涂光刻胶12(BP218),转数3000r/min,时间20s,光刻胶分布在凹槽内的铝掩膜上以及芯片上的铝掩膜上(凹槽内光刻胶层的厚度为11μm,芯片上光刻胶层的厚度为4μm,凹槽处存在2μm的塌陷)。然后采用热板85℃加热20min,自然降温,而后曝光7s(200mW/cm2),用质量分数5‰氢氧化钠作为光刻胶显影液,显影40s后可去除芯片上侧的光刻胶层和光刻胶下平板层的铝膜,在凹槽底部有光刻胶残留,显影后继续曝光7s(200mW/cm2),用质量分数5‰氢氧化钠显影10s,去除光刻胶,但是保留铝膜,得到用于微流控光漂白的掩膜版13(在凹槽底部为铝掩膜)。
在波导聚合物NOA衬底14(其软化温度为75℃,长4cm,宽3cm,厚1mm)上表面靠近边缘处粘贴两条纸胶15,胶带覆盖区域为0.2cm×4cm,露出的PMMA衬底14区域,用于光敏层材料的旋涂),在贴有纸胶15的衬底薄片一侧旋涂光敏聚合物材料16(SU-8-2005),即将SU-8-2005材料滴在处理过(用乙醇清洗和超声清洗)的PMMA衬底14上,将衬底14置于旋转涂覆机上,在3000r/min的转速下旋转衬底进行涂膜,旋涂的时间为30s,使光敏聚合物材料14(SU-8-2005)均匀涂在衬底9上,厚度为6μm;固化光敏聚合物材料SU-8-2005(60℃加热5min,90℃热板加热10min)得到光敏聚合物材料14薄膜,而后去除其边缘处的纸胶15和上面的光敏聚合物材料16薄膜在纸胶15上的部分,得到光波导芯片17;
将光波导芯片17带有光敏感聚合物材料16薄膜的一侧和微流控光漂白掩膜版13带有凹槽5的一侧在压印机4上进行热压印,然后调整纳米压印过程的保压温度85℃,保压压力4kg/cm2,保压时间5min,压印后形成光波导微流控集成芯片18,以微流控光漂白掩膜版13为掩膜版,在光刻机19下曝光,功率200mW/cm2,曝光时间200s;
最后采用激光1对光波导与微流控集成芯片20进行切割,两端各切割5mm,(切割功率为60W,走刀速度为10mm/s),得到3cm长的样片,切割端面后用乙醇和去离子水擦拭清洗端面,然后抛光可得端面处理过的光波导微流控三维集成芯片14,其微流控通道导通良好,输入、输出采用石英光纤耦合(芯径9μm),一端输入光纤输入功率1mW,另外一端用光纤耦合输出,输出的另外一端连接光功率计测量芯片输出光纤的损耗,3cm的芯片测得插入损耗-5.5dB截断法测试没有集成微流控通道的同波导尺寸的样品耦合损耗为0.5dB,计算波导的传输损耗为1.5dB/cm。

Claims (5)

1.一种聚合物光漂白光波导与微流控免对版集成芯片的制备方法,其步骤如下所示:
1)制备微流控层芯片
用激光器(1)将表面抛光的聚合物基底切割为矩形结构的微流控基底(2),然后在微流控基底(2)上采用热纳米压印法或紫外纳米压印法制备微流控通道凹槽(5或9),微流控通道凹槽(5)由等高等宽且共线的前中后三线段式条形结构、与该条形结构中间线段的两端分别垂直连接的微流控液体的引入和引出通道组成;三线段式条形结构的前、后两线段与中间线段间具有一定的间隔;引入和引出通道为与中间线段等高等宽的条形结构,且位于中间线段的同一侧;在引入和引出通道的端口处用激光器(1)贯穿微流控基底(2)烧蚀出注液孔(6);然后用乙醇、去离子水依次擦拭或超声清洗微流控基底(2),微流控基底(2)、微流控通道凹槽(5或9)和注液孔(6)构成微流控层芯片;
2)在微流控层芯片上制备铝掩膜
将微流控层芯片带有微流控通道凹槽(5或9)的一侧蒸发铝掩膜(11),铝掩膜(11)分布在凹槽(5或9)的底部和微流控层芯片表面,在铝掩膜(11)上旋涂正性光刻胶(12),由于凹槽的存在,旋涂在凹槽(5或9)底部的光刻胶层的厚度大于旋涂在微流控层芯片表面的光刻胶层的厚度,对正性光刻胶(12)进行加热固化,然后根据微流控层芯片表面光刻胶层厚度所对应的曝光时间进行曝光,曝光后显影,显影后可去除微流控层芯片表面的光刻胶层;在凹槽(5或9)底部的光刻胶层由于较厚,所以有部分残留,显影后用质量分数3~5‰的氢氧化钠水溶液去除微流控层芯片表面的铝掩膜(11),而凹槽(5或9)底部的铝掩膜(11)由于部分残留光刻胶层的存在,得以保留;然后再用去胶试剂去除凹槽(5或9)内残留的光刻胶层,从而得到微流控光漂白掩膜版(13),其由微流控层芯片及在凹槽(5或9)内的铝掩膜(11)构成;
3)制备光波导芯片
在尺寸、材料与微流控基底(2)相同,玻璃态转化温度比微流控基底(2)低的波导聚合物衬底(14)的上表面靠近长边的两侧粘贴两条条形结构的胶带(15),在两条胶带间露出的需要制备波导的矩形区域上旋涂光敏聚合物材料,固化后得到光敏聚合物薄膜(16);而后剥离去除胶带(15),从而得到光波导芯片(17),由波导聚合物衬底(14)和在波导聚合物衬底(14)上的光敏聚合物薄膜(16)组成;
4)封装和波导的制备
将光波导芯片(17)带有光敏聚合物薄膜(16)的一侧和微流控光漂白掩膜版(13)带有微流控凹槽(5或9)的一侧放在一起进行热压印,压印后完成了芯片的封装,从而得到平板结构的聚合物平板光波导微流控集成芯片(18);以微流控光漂白掩膜版(13)为掩膜版,在紫外光(19)作用下,从微流控光漂白掩膜版(13)一侧曝光聚合物平板光波导微流控集成芯片(18),曝光后即在光敏聚合物薄膜(16)上得到了与微流控光漂白掩膜版(13)结构相同的波导图形,波导的厚度为光敏聚合物薄膜(16)的厚度;
5)采用激光器(1)对步骤4)所得器件沿垂直于三线段式条形结构的平面进行切割,切割位置与三线段式结构的前、后两线段相交且靠近衬底边缘;最后,将得到的切割端面用乙醇和去离子水擦拭清洗,抛光处理后得到条形光波导微流控三维集成芯片(20)。
2.如权利要求1所述的一种聚合物光漂白光波导与微流控免对版集成芯片的制备方法,其特征在于:热纳米压印法即将微流控基底(2)加热融化,压盖具有微流控凹槽(5)结构的压印模板(3),而后降温使得微流控基底(2)固化,分离微流控基底(2)和压印模板(3),即在微流控基底(2)上形成与压印模板(3)图形相契合的微流控凹槽(5)。
3.如权利要求1所述的一种聚合物光漂白光波导与微流控免对版集成芯片的制备方法,其特征在于:紫外纳米压印法即将液态紫外固化聚合物材料(7)滴加在具有聚合物突起结构的压印模板(3)上旋涂成膜,旋涂转数500~8000r/min,旋涂时间20~60s,形成0.2~1mm厚的薄膜,然后在紫外灯下充分曝光,曝光200~600s,曝光后,在压印模板(3)上得到紫外固化聚合物固体薄膜(8),而后将压印模板(3)和紫外固化聚合物固体薄膜(8)剥离,从在紫外固化聚合物固体薄膜(8)上形成微流控通道凹槽(9)。
4.如权利要求2所述的一种聚合物光漂白光波导与微流控免对版集成芯片的制备方法,其特征在于:激光器(1)的切割功率为40~60w,走刀速度为8~50mm/s;表面抛光的聚合物基底的厚度为1~3mm,材料为甲基丙烯酸甲酯PMMA,矩形结构微流控基底(2)的长度a为2~10cm,宽度b为3~5cm;具有微流控凹槽结构的压印模板(3)为与微流控基底(2)相同的矩形结构,厚度为1~3mm,材料是镍、Si或聚合物材料;模板上存在突起的条形结构,条形结构的高h为5~50μm,宽w为5~50μm,突起的条形结构为前、中、后三线段式结构;中间线段长度e为(1/3~3/4)a,三段式结构中的前、后两线段与中间线段间隔d为2~50μm,并延伸直至模板边缘,其长度为(a-2d-e)/2;与中间线段垂直连接的引入和引出通道的长度c为6~20mm;用激光器(1)贯穿烧蚀出注液孔(6)的半径R为1~5mm,激光烧蚀的功率为8~60W,走刀速度为8~50mm/s;铝掩膜厚度为20~40nm。
5.如权利要求1所述的一种聚合物光漂白光波导与微流控免对版集成芯片的制备方法,其特征在于:在注液孔(6)注入质量分数2~5‰的NaOH水溶液去除微流控通道表面的铝掩膜(11),而后用去离子水清洗。
CN201510974193.5A 2015-12-23 2015-12-23 一种聚合物光漂白光波导与微流控免对版集成芯片及其制备方法 Active CN105589129B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201510974193.5A CN105589129B (zh) 2015-12-23 2015-12-23 一种聚合物光漂白光波导与微流控免对版集成芯片及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201510974193.5A CN105589129B (zh) 2015-12-23 2015-12-23 一种聚合物光漂白光波导与微流控免对版集成芯片及其制备方法

Publications (2)

Publication Number Publication Date
CN105589129A CN105589129A (zh) 2016-05-18
CN105589129B true CN105589129B (zh) 2018-10-02

Family

ID=55928852

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201510974193.5A Active CN105589129B (zh) 2015-12-23 2015-12-23 一种聚合物光漂白光波导与微流控免对版集成芯片及其制备方法

Country Status (1)

Country Link
CN (1) CN105589129B (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106873074B (zh) * 2017-04-25 2019-03-29 吉林大学 一种基于光漂白的区间可调的非对称m-z光波导传感器及其制备方法
CN108855255A (zh) * 2018-04-17 2018-11-23 华中科技大学 测量动态光散射的微流控芯片、其制备方法和应用
CN108519373B (zh) * 2018-04-27 2024-03-15 广州万孚生物技术股份有限公司 一种化学发光微流控芯片及含其的分析仪器
CN110308572B (zh) * 2019-07-05 2020-06-19 吉林大学 一种倒三角形波导结构的m-z型聚合物热光开关及其制备方法
CN114895413B (zh) * 2022-03-28 2023-12-19 深圳技术大学 一种孔隙包层结构的波导及其制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07106704A (ja) * 1993-10-08 1995-04-21 Fujikura Ltd 半導体レーザの製造方法
CN102060262A (zh) * 2010-12-03 2011-05-18 合肥工业大学 低压键合制作微纳米流控系统的方法
CN103076284A (zh) * 2013-01-28 2013-05-01 中国科学院半导体研究所 集成有微流控系统的光学微纳生物传感器的制作方法
CN104459886A (zh) * 2014-12-31 2015-03-25 吉林大学 一种采用电印刷技术制备聚合物pmma光波导器件的方法
CN104503024A (zh) * 2014-12-20 2015-04-08 吉林大学 一种带有斜面耦合端口的聚合物光波导的制备方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007505747A (ja) * 2003-09-17 2007-03-15 ナノコムス・パテンツ・リミテッド マイクロ構造デバイス及びその製造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07106704A (ja) * 1993-10-08 1995-04-21 Fujikura Ltd 半導体レーザの製造方法
CN102060262A (zh) * 2010-12-03 2011-05-18 合肥工业大学 低压键合制作微纳米流控系统的方法
CN103076284A (zh) * 2013-01-28 2013-05-01 中国科学院半导体研究所 集成有微流控系统的光学微纳生物传感器的制作方法
CN104503024A (zh) * 2014-12-20 2015-04-08 吉林大学 一种带有斜面耦合端口的聚合物光波导的制备方法
CN104459886A (zh) * 2014-12-31 2015-03-25 吉林大学 一种采用电印刷技术制备聚合物pmma光波导器件的方法

Also Published As

Publication number Publication date
CN105589129A (zh) 2016-05-18

Similar Documents

Publication Publication Date Title
CN105589129B (zh) 一种聚合物光漂白光波导与微流控免对版集成芯片及其制备方法
CN105572795B (zh) 一种聚合物矩形光波导与微流控三维集成芯片及其制备方法
CN106873074B (zh) 一种基于光漂白的区间可调的非对称m-z光波导传感器及其制备方法
CN1307486C (zh) 聚二甲基硅氧烷微流控芯片复型光固化树脂模具制作方法
CN107176588B (zh) 一种中空微通道结构的制备方法
CN101510518B (zh) 一种微流控芯片的封接方法及其应用
CN102369467B (zh) 制造光波导芯部的方法、制造光波导的方法、光波导和光电复合配线板
CN106405736B (zh) 一种采用3d打印和热压印技术制备聚合物光波导侧面电极的方法
JP6303268B2 (ja) インプリントモールド、インプリント方法及び半導体装置の製造方法
CN103543602A (zh) 压印光刻
CN108761600A (zh) 一种预应力辅助纳米压印制作高密度衍射光栅的方法
CN104743506B (zh) 微流控芯片的复型模具制作以及它的微流控芯片检测系统制备
JP2004109927A (ja) 高分子光導波路の製造方法
CN104134749B (zh) 多层柔性平面内嵌迭片电极及其制备方法与在有机场单晶场效应晶体管中的应用
CN108535954A (zh) 一种浸润控制薄膜折射率的动态光子晶体图案的制备方法
CN104297948B (zh) 基于长周期金属表面等离子体的波导热光开关及其制备方法
CN105487174B (zh) 一种聚合物柔性的可变光衰减器及其制备方法
CN109799626A (zh) 一种基于掩埋石墨烯加热电极的低功耗脊型波导热光开关及其制备方法
CN104190482B (zh) 以感光干膜为抗腐蚀掩膜制作玻璃微流体装置的方法
CN110146114B (zh) 一种柔性阵列微电极制备方法
CN104503024B (zh) 一种带有斜面耦合端口的聚合物光波导的制备方法
JP2005144717A (ja) 樹脂硬化方法及び樹脂成型品等の製造方法
JP5707990B2 (ja) インプリント用モールド、およびインプリント方法
CN110308572B (zh) 一种倒三角形波导结构的m-z型聚合物热光开关及其制备方法
KR20160021930A (ko) 투명 나노 금속 메쉬 발열체 및 이의 제조방법

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant