CN105575929B - 电性连接结构及其制备方法 - Google Patents

电性连接结构及其制备方法 Download PDF

Info

Publication number
CN105575929B
CN105575929B CN201510735735.3A CN201510735735A CN105575929B CN 105575929 B CN105575929 B CN 105575929B CN 201510735735 A CN201510735735 A CN 201510735735A CN 105575929 B CN105575929 B CN 105575929B
Authority
CN
China
Prior art keywords
copper
connection structure
electric connection
layers
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201510735735.3A
Other languages
English (en)
Other versions
CN105575929A (zh
Inventor
林士刚
张皓淼
王玫珺
卓政梁
叶哲瑜
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Cheng Kung University NCKU
Original Assignee
National Cheng Kung University NCKU
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Cheng Kung University NCKU filed Critical National Cheng Kung University NCKU
Publication of CN105575929A publication Critical patent/CN105575929A/zh
Application granted granted Critical
Publication of CN105575929B publication Critical patent/CN105575929B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/01Layered products comprising a layer of metal all layers being exclusively metallic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/02Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of metals or alloys
    • H01B1/026Alloys based on copper
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L24/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C19/00Alloys based on nickel or cobalt
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C19/00Alloys based on nickel or cobalt
    • C22C19/002Alloys based on nickel or cobalt with copper as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C19/00Alloys based on nickel or cobalt
    • C22C19/03Alloys based on nickel or cobalt based on nickel
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/481Internal lead connections, e.g. via connections, feedthrough structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/482Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of lead-in layers inseparably applied to the semiconductor body
    • H01L23/4827Materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01028Nickel [Ni]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01029Copper [Cu]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01031Gallium [Ga]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12493Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
    • Y10T428/12771Transition metal-base component
    • Y10T428/12861Group VIII or IB metal-base component
    • Y10T428/12903Cu-base component
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12493Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
    • Y10T428/12771Transition metal-base component
    • Y10T428/12861Group VIII or IB metal-base component
    • Y10T428/12903Cu-base component
    • Y10T428/1291Next to Co-, Cu-, or Ni-base component
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12493Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
    • Y10T428/12771Transition metal-base component
    • Y10T428/12861Group VIII or IB metal-base component
    • Y10T428/12944Ni-base component

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Pressure Welding/Diffusion-Bonding (AREA)
  • Electroplating Methods And Accessories (AREA)
  • Electric Connection Of Electric Components To Printed Circuits (AREA)
  • Wire Bonding (AREA)

Abstract

本发明公开一种电性连接结构,其包含:一第一铜层;一第二铜层;以及一复合金属层,配置于所述第一铜层和所述第二铜层之间,其中所述复合金属层包含0.01重量%≦镓≦20重量%、0.01重量%≦铜≦50重量%和30重量%≦镍≦99.98重量%。本发明另提供一种电性连接结构的制造方法,包括步骤:(1)提供一第一铜层和一第二铜层;(2)形成一第一镍层于所述第一铜层上;(3)形成一第二镍层于所述第二铜层上;(4)形成一镓层于所述第一镍层上;以及(5)使所述第二镍层和所述镓层接触,并进行热压接合,以形成所述电性连接结构。

Description

电性连接结构及其制备方法
技术领域
本发明是关于一种电性连接结构及其制造方法,特别是关于一种铜对铜的电性连接结构及其制造方法。
背景技术
近年来电子半导体的发展趋势中,持续追求小型化、高效率、低消耗及低成本。由于硅穿孔(TSV,Through Silicon Via)是利用激光在晶圆或芯片上钻出孔洞(Via),再将导电材料填充至孔洞中形成导电通路,藉此垂直联络同一芯片的上下表面,有利于堆叠多个芯片,这种技术称为三维度集成电路(3D IC)构装技术。相较于以往的多芯片封装,立体构装技术可透过多个芯片的堆叠来缩短讯号传递路径,使讯号传递更快速,同时也可减少封装体所占据的空间,这些优点使得3D IC成为各半导体大厂竞相发展的技术,也成为国内集成电路制造与封测产业维持竞争力的关键。
各半导体大厂,例如台积电、日月光、硅品、力成等,在近几年皆积极架构2.5D与3DIC的封测产能。除此之外,其他半导体大厂如三星、尔必达及英特尔等公司都已同样投入3DIC的研发和生产。可预期3D IC产品将会成为下世代的主流电子商品。
在3D IC构装技术中,硅芯片透过垂直堆叠的方式连结,可大幅缩小元件体积、增加效率、降低能量消耗与提高功能性。其中,TSV连通为3D IC的核心科技,其关键制程包含了晶圆薄化、直通硅穿孔与铜对铜连结等。而在铜对铜连结中,可通过直接扩散接合法或微凸块接合法来达成。直接扩散接合法不需引入其他材料,可形成高纯度的铜对铜接点。但为驱动铜原子的扩散,必须给予高温(通常300℃或更高)和高压(25bar以上),加上铜基材表面通常需要前处理等额外的制程,以活化铜的接合表面。这些复杂的工序以及预先处理的方式使得直接扩散接合法为一相当耗费成本且繁杂的制程。此外,于接合时所须的高压不但耗费成本,也可能对已形成在芯片上的电子部件造成损害。另一方面,微凸块接合法则是包含焊接工序,即熔融状态的焊料湿润基板且固化,以形成电性连接,因此不需要复杂的前处理和高的加工压力。然而,焊锡通常是锡所组成的,会和作为基材的铜金属反应,在接点中生成大部份的脆性且阻碍电性的介金属化合物(Intermetallic compound,IMC),因而大幅降低接点的可靠度。
故,有必要提供一种电性连接结构及其制造方法,提供具有高可靠度的铜对铜接合结构,以解决习用技术所存在的问题。
发明内容
本发明的主要目的在于提供一种电性连接结构及其制造方法。在铜对铜的接点之间引进纯镓与镍,由于现有介金属化合物不会在焊接过程中形成,因此解决了因介金属化合物的生成而降低铜对铜接合可靠度的问题。此外,利用镓金属所特有的低熔点(仅为29.7℃)及在一般温度下的高流动性,于接合时仅需相对较低的接合温度及压力就可以形成具有可靠度的铜对铜接合。
为达上述的目的,本发明的一实施例提供一种电性连接结构,其中所述电性连接结构包含:一第一铜层;一第二铜层;以及一复合金属层,配置于所述第一铜层和所述第二铜层之间,其中所述复合金属层包含0.01重量%≦镓≦20重量%、0.01重量%≦铜≦50重量%和30重量%≦镍≦99.98重量%。
在本发明的一实施例中,所述复合金属层具有面心立方晶体结构。
在本发明的一实施例中,所述复合金属层包含0.01~10重量%的镓、0.01~10重量%的铜以及80~99.98重量%的镍。
本发明的另一实施例提供一种电性连接结构的制造方法,其中所述制造方法包括步骤:(1)提供一第一铜层和一第二铜层;(2)形成一第一镍层于所述第一铜层上;(3)形成一第二镍层于所述第二铜层上;(4)形成一镓层于所述第一镍层上;以及(5)使所述第二镍层和所述镓层接触,并进行热压接合,以形成上述电性连接结构。
在本发明的一实施例中,所述步骤(2)之前另包含一步骤(1a):对所述第一铜层进行表面处理。
在本发明的一实施例中,所述表面处理是使用研磨或使用酸性溶液与溶剂清洗所述第一铜层。
在本发明的一实施例中,所述步骤(3)之前另包含一步骤(1b):对所述第二铜层进行表面处理。
在本发明的一实施例中,所述表面处理是使用研磨或使用酸性溶液与溶剂清洗所述第二铜层。
在本发明的一实施例中,所述步骤(2)是利用电镀或蒸镀法形成所述第一镍层。
在本发明的一实施例中,所述步骤(3)是利用电镀或蒸镀法形成所述第二镍层。
在本发明的一实施例中,所述步骤(4)是利用电镀或蒸镀法形成所述镓层。
在本发明的一实施例中,所述步骤(5)中的热压接合的温度为300-400℃,以及压力为4-8巴(bar)。
在本发明的一实施例中,所述第一镍层、所述第二镍层以及所述镓层的厚度比为0.5~20:0.5~20:0.01~5。
为让本发明的上述内容能更明显易懂,下文特举优选实施例,并配合所附图式,作详细说明如下:
附图说明
图1是本发明一实施例的电性连接结构的结构示意图。
图2a至2d是本发明一实施例的电性连接结构的制造方法的流程示意图。
图3是本发明一实施例的电性连接结构利用金相显微镜(MetallographicMicroscope)观察的照片。
图4是本发明一实施例的电性连接结构经韦氏硬度仪(Vickers HardnessTester)分析后,利用金相显微镜观察的照片。
具体实施方式
为了让本发明的上述及其他目的、特征、优点能更明显易懂,下文将特举本发明较佳实施例,并配合所附图式,作详细说明如下。再者,本发明所提到的方向用语,例如上、下、顶、底、前、后、左、右、内、外、侧面、周围、中央、水平、横向、垂直、纵向、轴向、径向、最上层或最下层等,仅是参考附加图式的方向。此外,本发明所提到的单数形式“一”、“一个”和“所述”包括复数引用,除非上下文另有明确规定。例如,术语“一化合物”或“至少一种化合物”可以包括多个化合物,包括其混合物;本发明文中提及的「%」若无特定说明皆指「重量百分比(wt%)」;数值范围(如10%~11%的A)若无特定说明皆包含上、下限值(即10%≦A≦11%);数值范围若未界定下限值(如低于0.2%的B,或0.2%以下的B),则皆指其下限值可能为0(即0%≦B≦0.2%);各成份的「重量百分比」的比例关系亦可置换为「重量份」的比例关系。上述方向和数值相关用语是用以说明及理解本发明,而非用以限制本发明。
请参照图1所示,本发明一实施例的电性连接结构1主要包含一第一铜层11、一第二铜层12以及一复合金属层41。所述复合金属层41配置于所述第一铜层11和所述第二铜层12之间,包含有0.01重量%≦镓≦20重量%、0.01重量%≦铜≦50重量%和30重量%≦镍≦99.98重量%。优选的,所述复合金属层包含0.01~10重量%的镓、0.01~10重量%的铜以及80~99.98重量%的镍,可例如是0.8重量%的镓、1.1重量%的铜以及98.1重量%的镍,然不限于此。再者,所述复合金属层41具有面心立方(Face-Centered Cubic)晶体结构。
请再参照图2a至2d所示,本发明再一实施例的电性连接结构1的制造方法,其主要包括步骤:(S1)提供一第一铜层11和一第二铜层12;(S2)形成一第一镍层21于所述第一铜层11上;(S3)形成一第二镍层22于所述第二铜层12上;(S4)形成一镓层31于所述第一镍层21上;以及(S5)使所述第二镍层22和所述镓层31接触,并进行热压接合。本发明将于下文逐一详细说明所述实施例的上述各步骤的实施细节及其原理。
如图2a所示,本发明实施例的电性连接结构1的制造方法首先是:(S1)提供一第一铜层11和一第二铜层12。所述第一铜层11和所述第二铜层12可例如是硅穿孔技术中不同芯片上的铜垫(Copper pads),通过铜垫和铜垫之间的电性接合,可完成3D IC的集成电路构装。
请接着参考图2b,本发明实施例的电性连接结构1的制造方法接着是:(S2)形成一第一镍层21于所述第一铜层11上;以及(S3)形成一第二镍层22于所述第二铜层12上。优选的,在所述步骤(S2)之前可另包含一步骤:(S1a)对所述第一铜层11进行表面处理。同样的,在所述步骤(S3)之前可另包含一步骤:(S1b)对所述第二铜层12进行表面处理。在所述步骤(S1a)或(S1b)的表面处理中,使用研磨或利用一酸性溶液与一溶剂清洗所述第一铜层11或所述第二铜层12。其中所述酸性溶液可例如是盐酸、硝酸或醋酸,然不限于此;所述溶剂可例如是丙酮、甲醇或乙醇,然不限于此。此外,所述步骤(S2)是利用电镀或蒸镀法形成所述第一镍层21。所述步骤(S3)是利用电镀或蒸镀法形成所述第二镍层22。优选的,所述第一镍层21和所述第二镍层22可利用同一种方法,即电镀或蒸镀法同时形成,简化制造流程。举例来说,所述第一镍层21和所述第二镍层22利用电镀法形成时,电镀溶液为一标准的瓦特镍溶液(Watts’Nickel Solution),所述瓦特镍溶液中包含有300g/L的六水合硫酸镍(NiSO4·6H2O)、45g/L的六水合氯化镍(NiCl2·6H2O)以及40g/L的硼酸(H3BO3),于pH值3.8、温度50℃以及电流密度2安培/平方分米(A/dm2),以纯铜为阴极进行电镀。
请参照图2c,本发明实施例的电性连接结构1的制造方法接着是:(S4)形成一镓层31于所述第一镍层21上。在本步骤中,所述镓层31是利用电镀或蒸镀法形成于所述第一镍层21上。举例来说,当利用电镀法形成镓层31,可例如使用白金电极为辅助电极,使用Hg|Hg2Cl2(Saturated Calomel Electrode,SCE)为参考电极,电解液包含有镓离子浓度0.25M及pH值大于10的0.5M柠檬酸钠,以电流密度10毫安培/平方厘米(mA/cm2)控制电压,在室温下进行镓层的电镀。
请接着参照图2d,本发明实施例的电性连接结构1的制造方法接着是:(S5)使所述第二镍层22和所述镓层31接触,并进行热压接合。在本步骤中,热压接合的温度为300-400℃,可例如是300℃,然不限于此。压力为4-8巴(bar)。在完成接合后,即可形成如上所述的所述电性连接结构1。
再者,依照本发明实施例的电性连接结构1的制造方法,所述第一镍层21、所述第二镍层22以及所述镓层31的厚度比是0.5~20:0.5~20:0.01~5。优选的,所述第一镍层21的厚度是0.5~20微米(μm),可例如是0.5、5、10或15微米,然不限于此。优选的,所述第二镍层22的厚度是0.5~20微米,可例如是0.5、5、10或15微米,然不限于此。优选的,所述镓层31的厚度是0.01~5微米(μm),可例如是0.5、1.5、3或4.5微米,然不限于此。
为使本发明的电性连接结构及其制造方法更明确,请参考下文所述的实际制造流程。
首先,准备一纯铜(Cu)基材,并进行碳化硅(SiC)砂纸研磨,再以1μm的氧化铝粉抛光。接着,将Cu基材以电镀方式涂布一纯镍(Ni)层,电镀浴为硫酸镍的酸性溶液。其后,于两片已镀上镍的铜基材之间置入微量的纯镓金属(Ga),之后将此三明治结构置入真空管状炉中热压接合,时间至少30分钟。
当涂布10μm厚度的镍层时,在300℃下接合后即可生成如图3所示的结构。从图3中可见,两片铜基材间仅生成一延性富镍的面心立方的(Ni-Face Centered Cubic,Ni-F.C.C.)固溶相,有此结果的原因推测是因为镓和镍均可溶入富镍的面心立方相内(Ni-FCC)。
再者,对此结构以韦氏硬度仪分析其机械性质,结果请见图4。从图4中可见,当同样以10gf的负重在中央的Ni-FCC上产生的刻痕比铜基材上的刻痕小。此外,在结构中的不同位置所测得的硬度平均值分别为Ni-FCC:2749.62MPa;Cu:715.62MPa。另外,纯镍基材以同机台做硬度分析,测出的硬度值为2121.26MPa。此硬度测试的结果显示了本发明实施例的电性连接结构具有非常良好的机械性质。一般而言,现有焊锡接点是随着接面的IMC厚度的增加,拉伸强度(tensile strength)及剥离强度(peel strength)皆呈下降趋势。而在本发明本实施例中,由於并无IMC形成且仅有FCC晶体结构的固溶相在接点中形成,由此可推测其机械性质皆优于任何现有含有IMC的接合结构,可靠度较好。以上实验成果与分析证明本发明所提供的电性连接结构以及其制造方法可避免铜对铜接合中形成脆性介金属化合物,可获得一具有高延展性的Cu对Cu接点,具有高可靠度且可被广泛的应用。
相较于现有技术,依照本发明所提供的电性连接结构及其制造方法,可形成具有高延性的固容相的复合金属层,由于不存在介金属化合物,因此解决了以往铜对铜接合可靠度的问题。此外,温和的加工温度及压力适合用於形成此铜对铜接合,且可直接反映在制程成本及材料的相容性上,在量产及经济效益上,十分具有发展潜力。
本发明已由上述相关实施例加以描述,然而上述实施例仅为实施本发明的范例。必需指出的是,已公开的实施例并未限制本发明的范围。相反地,包含于权利要求书的精神及范围的修改及均等设置均包括于本发明的范围内。

Claims (13)

1.一种电性连接结构,其特征在于:所述电性连接结构包含:
一第一铜层;
一第二铜层;以及
一复合金属层,配置于所述第一铜层和所述第二铜层之间,其中所述复合金属层包含0.01重量%≦镓≦20重量%、0.01重量%≦铜≦50重量%和30重量%≦镍≦99.98重量%,并且所述复合金属层不具有介金属化合物。
2.如权利要求1所述的电性连接结构,其特征在于:所述复合金属层具有面心立方晶体结构。
3.如权利要求1所述的电性连接结构,其特征在于:所述复合金属层包含0.01~10重量%的镓、0.01~10重量%的铜以及80~99.98重量%的镍。
4.一种电性连接结构的制造方法,其特征在于:所述制造方法包含步骤:
(1)提供一第一铜层和一第二铜层;
(2)形成一第一镍层于所述第一铜层上;
(3)形成一第二镍层于所述第二铜层上;
(4)形成一镓层于所述第一镍层上;以及
(5)使所述第二镍层和所述镓层接触,并进行热压接合,以形成一如权利要求1所述的电性连接结构。
5.如权利要求4所述的电性连接结构的制造方法,其特征在于:所述步骤(2)之前另包含一步骤(1a):对所述第一铜层进行表面处理。
6.如权利要求5所述的电性连接结构的制造方法,其特征在于:所述表面处理是使用研磨或使用酸性溶液与溶剂清洗所述第一铜层。
7.如权利要求4所述的电性连接结构的制造方法,其特征在于:所述步骤(3)之前另包含一步骤(1b):对所述第二铜层进行表面处理。
8.如权利要求7所述的电性连接结构的制造方法,其特征在于:所述表面处理是使用研磨或使用酸性溶液与溶剂清洗所述第二铜层。
9.如权利要求4所述的电性连接结构的制造方法,其特征在于:所述步骤(2)是利用电镀或蒸镀法形成所述第一镍层。
10.如权利要求4所述的电性连接结构的制造方法,其特征在于:所述步骤(3)是利用电镀或蒸镀法形成所述第二镍层。
11.如权利要求4所述的电性连接结构的制造方法,其特征在于:所述步骤(4)是利用电镀或蒸镀法形成所述镓层。
12.如权利要求4所述的电性连接结构的制造方法,其特征在于:所述步骤(5)中的热压接合的温度为300-400℃,以及压力为4-8巴。
13.如权利要求4所述的电性连接结构的制造方法,其特征在于:所述第一镍层、所述第二镍层以及所述镓层的厚度比为0.5~20:0.5~20:0.01~5。
CN201510735735.3A 2014-11-03 2015-11-03 电性连接结构及其制备方法 Expired - Fee Related CN105575929B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
TW103138070 2014-11-03
TW103138070A TWI667758B (zh) 2014-11-03 2014-11-03 電性連接結構及其製備方法

Publications (2)

Publication Number Publication Date
CN105575929A CN105575929A (zh) 2016-05-11
CN105575929B true CN105575929B (zh) 2018-06-08

Family

ID=55851657

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201510735735.3A Expired - Fee Related CN105575929B (zh) 2014-11-03 2015-11-03 电性连接结构及其制备方法

Country Status (4)

Country Link
US (1) US10213986B2 (zh)
JP (1) JP6290156B2 (zh)
CN (1) CN105575929B (zh)
TW (1) TWI667758B (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10032702B2 (en) 2016-12-09 2018-07-24 Dyi-chung Hu Package structure and manufacturing method thereof
CN112867239A (zh) * 2021-01-12 2021-05-28 深圳市鑫诺诚科技有限公司 一种超厚、低电阻铜箔材料
CN113471163B (zh) * 2021-07-23 2023-06-20 重庆平创半导体研究院有限责任公司 一种晶圆互连结构及工艺

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4785137A (en) * 1984-04-30 1988-11-15 Allied Corporation Novel nickel/indium/other metal alloy for use in the manufacture of electrical contact areas of electrical devices
JPH01220840A (ja) * 1988-02-29 1989-09-04 Nec Corp 半導体素子の接続構造
US5519192A (en) * 1995-01-17 1996-05-21 Cardell Corporation Method and apparatus for inductively soldering electrical connector elements
EP0834587A1 (en) * 1996-10-01 1998-04-08 Siemens Aktiengesellschaft Nickel-base alloy and article manufactured thereof
US5964966A (en) * 1997-09-19 1999-10-12 Lockheed Martin Energy Research Corporation Method of forming biaxially textured alloy substrates and devices thereon
JP2002134806A (ja) * 2000-10-19 2002-05-10 Canon Inc 圧電膜型アクチュエータおよび液体噴射ヘッドとその製造方法
US8981211B2 (en) * 2008-03-18 2015-03-17 Zetta Research and Development LLC—AQT Series Interlayer design for epitaxial growth of semiconductor layers
KR20110070987A (ko) * 2008-10-21 2011-06-27 아토테크더치랜드게엠베하 기판 상에 땜납 용착물을 형성하는 방법
CN102089397A (zh) * 2008-12-05 2011-06-08 德莎欧洲公司 用于将金属部件粘合至塑料,玻璃和金属的拉伸的热塑性树脂,及其生产方法
JP4637966B1 (ja) * 2010-02-15 2011-02-23 有限会社ナプラ 電子デバイスの製造方法

Also Published As

Publication number Publication date
JP6290156B2 (ja) 2018-03-07
JP2016096334A (ja) 2016-05-26
CN105575929A (zh) 2016-05-11
US10213986B2 (en) 2019-02-26
US20160121582A1 (en) 2016-05-05
TW201618260A (zh) 2016-05-16
TWI667758B (zh) 2019-08-01

Similar Documents

Publication Publication Date Title
CN105575929B (zh) 电性连接结构及其制备方法
Liu et al. Complexing agent study via computational chemistry for environmentally friendly silver electrodeposition and the application of a silver deposit
CN106271177B (zh) 一种互连钎料及其互连成形方法
CN102937695A (zh) 一种硅通孔超薄晶圆测试结构及测试方法
TW200302553A (en) High density area array solder microjoining interconnect structure and fabrication method
CN104051406B (zh) 半导体结构及其制造方法
Lv et al. A reliable Cu–Sn stack bonding technology for 3D-TSV packaging
Zhang et al. Nanoscale characterization of 1D Sn-3.5 Ag nanosolders and their application into nanowelding at the nanoscale
Osborn et al. Electroless copper deposition with PEG suppression for all-copper flip-chip connections
Tseng et al. Epitaxial growth of (111) nanotwinned Ag on (111) nanotwinned Cu films for low-temperature Cu–Cu bonding
Jung et al. A review of soft errors and the low α-solder bumping process in 3-D packaging technology
WO2009090349A3 (fr) Procede de fabrication d'un element d'interconnexion mecanique conducteur d'electricite
Dimitrijević et al. Temperature effect on decorative gold coatings obtained from electrolyte based on mercaptotriazole–comparison with cyanide
US20120013008A1 (en) Metallization processes, mixtures, and electronic devices
Koo et al. Electroless copper bonding with local suppression for void-free chip-to-package connections
Park et al. Mechanical stabilities of ultrasonic Al ribbon bonding on electroless nickel immersion gold finished Cu substrates
Brunschwiler et al. Investigation of novel solder patterns for power delivery and heat removal support
CN107180811A (zh) 一种ic卡载板结构及其制作工艺
Zenin et al. Coatings of contact areas of crystals and the traverse of packages for microwelding of internal outputs of 3D wares
KR102535483B1 (ko) 금속 전해도금막을 이용한 구리 대 구리 직접 접합 방법, 이를 이용한 웨이퍼 레벨 패키징 방법 및 이를 이용하여 제조된 반도체 소자
CN105489506B (zh) 高焊线质量的芯片框架及其制造方法
Del Carro Sintering of copper nanoparticle pastes for microelectronic packaging
Wang et al. Fabrication of nanoporous gold and the application for substrate bonding at low temperature
Wiemer et al. Low-Temperature Particle-and Printing Based Wafer Level Bonding Processes
Park et al. Effects of wet treatment conditions and pattern densities on interfacial bonding characteristics of Cu–Cu direct bonds

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20180608

Termination date: 20181103