CN105567692A - 一种特异性靶向QKI基因的sgRNA及其应用 - Google Patents

一种特异性靶向QKI基因的sgRNA及其应用 Download PDF

Info

Publication number
CN105567692A
CN105567692A CN201610108864.4A CN201610108864A CN105567692A CN 105567692 A CN105567692 A CN 105567692A CN 201610108864 A CN201610108864 A CN 201610108864A CN 105567692 A CN105567692 A CN 105567692A
Authority
CN
China
Prior art keywords
sgrna
qki
gene
pspcas9
sequence
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201610108864.4A
Other languages
English (en)
Other versions
CN105567692B (zh
Inventor
郑良荣
赵文婷
孙泽玮
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zhejiang University ZJU
Original Assignee
Zhejiang University ZJU
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhejiang University ZJU filed Critical Zhejiang University ZJU
Priority to CN201610108864.4A priority Critical patent/CN105567692B/zh
Publication of CN105567692A publication Critical patent/CN105567692A/zh
Application granted granted Critical
Publication of CN105567692B publication Critical patent/CN105567692B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • C12N15/113Non-coding nucleic acids modulating the expression of genes, e.g. antisense oligonucleotides; Antisense DNA or RNA; Triplex- forming oligonucleotides; Catalytic nucleic acids, e.g. ribozymes; Nucleic acids used in co-suppression or gene silencing
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/46Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates
    • C07K14/47Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates from mammals
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/85Vectors or expression systems specially adapted for eukaryotic hosts for animal cells
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2310/00Structure or type of the nucleic acid
    • C12N2310/10Type of nucleic acid
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2800/00Nucleic acids vectors
    • C12N2800/10Plasmid DNA
    • C12N2800/106Plasmid DNA for vertebrates
    • C12N2800/107Plasmid DNA for vertebrates for mammalian

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Biomedical Technology (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Biotechnology (AREA)
  • General Engineering & Computer Science (AREA)
  • Molecular Biology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biophysics (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Microbiology (AREA)
  • Plant Pathology (AREA)
  • Physics & Mathematics (AREA)
  • Toxicology (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Medicinal Chemistry (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

本发明提供制备特异性靶向目标基因QKI的sgRNA,其序列如SEQ?ID?NO.1所示。利用本发明提供的sgRNA,合成双链sgRNA寡聚核苷酸,将sgRNA构建至pSpCas9(BB)-2A-Puro载体,鉴定并扩增,转染HEK293T细胞获得QKI基因敲除细胞。本发明能够在较短时间内精确靶向人QKI基因并且实现基因敲除,免去了购买QKI基因敲除小鼠分离原代细胞的复杂操作,且价格低廉,有助于进一步深入研究QKI的生物学功能。本发明方法步骤简单、sgRNA靶向性好,QKI基因敲除效率高。

Description

一种特异性靶向QKI基因的sgRNA及其应用
技术领域
本发明属于基因工程领域,更具体地说涉及一种特异性靶向QKI基因的sgRNA,以及CRISPR-Cas9特异性敲除人HEK293T细胞QKI基因的方法。
背景技术
规律成簇间隔短回文重复系统(clusteredregularlyinterspacedshortpalindromicrepeat;CRISPR-associated,CRISPR-Cas9)是一种具有核酸内切酶活性的复合体,识别特定的DNA序列,进行特定位点切割造成双链DNA断裂(Double-strandbreaks,DSB),在没有模板的条件下,发生非同源重组末端连接(Non-homologousendjoining,NHEJ),造成移码突变(frameshiftmutation),导致基因敲除。
Cas9靶向切割DNA是通过向导核糖核酸(guideRNA,sgRNA)和靶序列互补识别的原理实现的。sgRNA的特异性决定了基因编辑的精确程度。因此,设计、制备出精确性和特异性靶向目标基因的sgRNA成为CRISPR-Cas9基因敲除的关键技术。
QKI是一类RNA结合蛋白,具有调控RNA剪切、运输等多个生物学功能。
CRISPR-Cas9快速、简便、高效、特异性靶向敲除基因,通过靶向敲除QKI基因,有助于深入研究其功能。而能否设计、制备出精确性和特异性靶向QKI基因的sgRNA以及通过分子生物学方法制备出靶向QKI基因的CRISPR-Cas9系统成为实现QKI基因敲除的关键技术。
参考文献:
Ran,F.A.etal.,GenomeengineeringusingtheCRISPR-Cas9system.NATPROTOC82281(2013)。
Lauriat,T.L.etal.,Developmentalexpressionprofileofquaking,acandidategeneforschizophrenia,anditstargetgenesinhumanprefrontalcortexandhippocampusshowsregionalspecificity.JNEUROSCIRES86785(2008)。
发明内容
本发明的目的是提供制备特异性靶向目标基因QKI的sgRNA,序列如SEQIDNO.1所示。
本发明的另一个目的是提供CRISPR-Cas9特异性敲除人HEK293T细胞QKI基因的方法,通过以下步骤实现。
一、sgRNA寡核苷酸的设计和选择
靶向QKI基因的sgRNA的设计按如下原则:
1.在QKI基因上选择特征为5’-N(19)GG或5’-N(20)GG-3’或5’-N(21)GG-3’的序列。
2.sgRNA在QKI基因上的靶向位点位于不同的各种剪切形式的共有外显子上。
3.sgRNA在QKI基因上的靶向位点位于整个基因的前半段,尤其宜在基因的功能结构域中;
按以上原则,设计得到sgRNA,序列为SEQNo.1。
二、合成双链sgRNA寡聚核苷酸
根据选择的sgRNA,去除3’端NGG三个碱基,在其5’端加上CACCG得到正向寡核苷酸;根据选择的sgRNA,去除3’端NGG三个碱基,获得对应DNA的互补链,并且在其5’加上AAAC,3’端加上C得到反向寡核苷酸。上述正向、反向寡核苷酸序列见SEQNO.2和SEQNO.3。
分别合成上述正向寡核苷酸和反向寡核苷酸,将合成的sgRNA寡聚核苷酸变性、退火,形成可以连入pSpCas9(BB)真核表达载体的双链。
三、将sgRNA构建至pSpCas9(BB)-2A-Puro载体,鉴定并扩增
1.将退火的sgRNA寡聚核苷酸双链与pSpCas9(BB)-2A-Puro载体(序列见SEQNO.4)连接获得pSpCas9(BB)-2A-Puro-QKIsg质粒(序列见SEQNO.5)。
2.转化并涂Amp+平板。
3.用SEQIDNO.6的通用引物U6测序的方法鉴定阳性克隆。
4.37℃摇床摇菌过夜并抽提pSpCas9(BB)-2A-Puro-QKIsg质粒。
四、转染HEK293T细胞获得QKI基因敲除细胞
1、按照DNA&siRNATransfectionReagent(Polyplustransfection,114-01)的操作手册,将pSpCas9(BB)-2A-Puro-QKIsg质粒转染至HEK293T细胞。
2.转染后细胞加入10μg/mlPuromycin(Merck,540411)药筛,消化存活细胞,将单个细胞接种于96孔板。
3、待细胞扩增后,提取基因组DNA,RT-PCR扩增靶向QKI区域片段,所用引物序列见SEQNO.7和SEQNO.8,用Sanger法测序检测sgRNA靶向区域附近基因序列,测序引物见SEQNO.8,确认是否发生移码突变。用WesternBlot检测QKI基因已经被敲除。
本发明可以在较短时间内实现QKI基因敲除,免去了购买QKI基因敲除小鼠分离原代细胞的复杂操作,且价格低廉,有助于进一步深入研究QKI的生物学功能。利用本发明制备的特异性靶向人QKI基因的sgRNA能够精确靶向人QKI基因并且实现基因敲除。该制备方法步骤简单、sgRNA靶向性好,QKI基因敲除效率高。
附图说明
Sanger法测序确认QKI阅读框发生移码突变,与参考序列相比缺失22个碱基(图1和图2)。
WesternBlot确认QKI基因敲除(图3)。
具体实施方式
下面结合附图和具体的实施例对本发明的技术方案做进一步介绍。
实施例1靶向人QKI基因的sgRNA的设计和合成
1.靶向人QKI基因的sgRNA的设计。
(1)在QKI基因上选择特征为5’-N(19)GG或5’-N(20)GG-3’或5’-N(21)GG-3’的序列。
(2)sgRNA在QKI基因上的靶向位点位于不同的各种剪切形式的共有外显子上。
(3)sgRNA在QKI基因上的靶向位点位于整个基因的前半段,尤其宜在基因的功能结构域中。
按以上原则,设计得到sgRNA,序列为SEQNo.1。
3.靶向人QKI基因的sgRNA寡聚核苷酸的合成和构建。
根据选择的sgRNA,去除3’端NGG三个碱基,在其5’端加上CACCG得到正向寡核苷酸;根据选择的sgRNA,去除3’端NGG三个碱基,获得对应DNA的互补链,并且在其5’加上AAAC,3’端加上C得到反向寡核苷酸。序列见SEQNO.2和SEQNO.3。分别合成上述正向寡核苷酸和反向寡核苷酸,将合成的sgRNA寡聚核苷酸变性、退火,形成可以连入pSpCas9(BB)-2A-Puro真核表达载体的双链sgRNA寡聚核苷酸。
变性、退火反应体系为:
1μl正向寡核苷酸(100μM)
1μl反向寡核苷酸(100μM)
1μlT4ligationbuffer(NewEnglandBioLabs公司,货号:B0202S)
1μlT4PNK(NewEnglandBioLabs公司,货号:M0201S)
6μl灭菌水。
在PCR仪中按照以下程序运行:37℃,30min;95℃,5min;0.1℃/sec由95℃降至25℃。
实施例2将双链sgRNA构建至pSpCas9(BB)-2A-Puro载体
将变性、退火后所得双链sgRNA按1:200比例稀释。
将双链sgRNA构建至pSpCas9(BB)-2A-Puro载体(序列见SEQNO.4),反应体系如下:
100ngpSpCas9(BB)-2A-Puro质粒
2μl稀释后双链sgRNA
2μlTangobuffer,10X(ThermoScientific,货号BY5)
1μlDTT,10mM(ThermoScientific,货号R0862)
1μlATP,10mM(ThermoScientific,货号AM8110G)
1μlFastDigestBbsⅠ(ThermoScientific,货号FD1014)
0.5μlT7ligase(Enzymatics,货号L602L)
灭菌水,补足至20μl。
反应条件:37℃5min,21℃5min。共6个循环.
将上述步骤获得的连接产物转化Stbl3感受态细胞(ThermoScientific,货号C7373-03)并涂Amp+平板(50μg/ml),并挑取克隆。
用如序列表SEQIDNO.6所示的通用引物U6,用Sanger法测序的方法鉴定获得阳性克隆。
37℃摇床摇菌过夜培养阳性克隆,抽提质粒,获得pSpCas9(BB)-2A-Puro-QKIsg质粒(如序列表SEQIDNO.5所示)。
实施例3构建人HEK293T细胞QKI基因敲除
1、细胞培养与转染。
(1)HEK293T细胞接种培养于DMEM高糖培养液中(ThermoScientific,货号11995-065),其中含10%FBS(ThermoScientific,货号10099-141),penicillin(100U/ml)和streptomycin(100μg/ml)。
(2)在转染前将细胞接种至6孔板中,待70%~80%密度时进行转染。
(3)按照DNA&siRNATransfectionReagent(Polyplustransfection,114-01)操作手册,将2μgpSpCas9(BB)-2A-Puro-QKIsg质粒转染至每孔细胞中,6~8小时后换液,并加入10μg/mlPuromycin(Merck,540411)药筛,48小时后收取细胞。
2、挑选单克隆:
将Puromycin筛选后细胞消化后计数,取60个细胞接种至一块96孔板上,接种24h后,显微镜下观察,挑选只含单个细胞的孔,继续培养至90%密度。
将上述细胞消化后接种至24孔板,扩大培养,继续培养至90%密度。
3、Sanger法测序鉴定基因突变:
消化细胞,离心后取一半细胞继续培养,一半细胞提取基因组DNA(生工,货号B518401),RT-PCR扩增包含sgRNA靶向QKI的片段,所用引物见SEQNO.7和SEQNO.8。
Sanger法测序,测序引物即SEQNO.8,并与Ensemble数据库参考序列比对,鉴定QKI阅读框有无发生移码突变,结果见图1和图2。
4、WesternBlot鉴定QKI敲除情况:
提取对照组和敲除组细胞蛋白,进行蛋白电泳,随后转膜,封闭,加入抗QKI一抗孵育(Abcam,货号ab126742)过夜,次日去除一抗并洗涤30min,加入二抗(Abcam,ab6721)孵育1小时,随后再次洗涤30min后显影,结果见图3。

Claims (2)

1.一种制备特异性靶向目标基因QKI的sgRNA,其特征在于,其序列如SEQIDNO.1所示。
2.一种CRISPR-Cas9特异性敲除人HEK293T细胞QKI基因的方法,其特征在于,通过以下步骤实现:
(1)利用sgRNA,去除3’端NGG三个碱基,在其5’端加上CACCG得到正向寡核苷酸;根据选择的sgRNA,去除3’端NGG三个碱基,获得对应DNA的互补链,并且在其5’加上AAAC,3’端加上C得到反向寡核苷酸,上述正向、反向寡核苷酸序列见SEQNO.2和SEQNO.3,分别合成上述正向寡核苷酸和反向寡核苷酸,将合成的sgRNA寡聚核苷酸变性、退火,形成可以连入pSpCas9(BB)真核表达载体的双链;
(2)将退火的双链sgRNA寡聚核苷酸与序列为SEQNo.4的pSpCas9(BB)-2A-Puro质粒,连接获得序列为SEQNo.5的pSpCas9(BB)-2A-Puro-QKIsg质粒,pSpCas9(BB)-2A-Puro-QKIsg质粒转化感受态细菌并涂Amp+平板,挑选阳性克隆并用序列如SEQIDNO.6所示的通用引物U6测序的方法鉴定出阳性克隆,37℃摇床摇阳性克隆菌过夜并用抽提pSpCas9(BB)-2A-Puro-QKIsg质粒;
(3)用脂质体装载pSpCas9(BB)-2A-Puro-QKIsg质粒,转染HEK293T细胞;
(4)转染后用Puromycin筛选,将单个存活细胞接种至培养板;
(5)待细胞增殖形成单克隆后,提取基因组DNA,用Sanger法测序确认QKI基因阅读框发生移码突变,WesternBlot确认QKI已经被敲除并获得基因敲除的细胞。
CN201610108864.4A 2016-02-26 2016-02-26 一种特异性靶向QKI基因的sgRNA及其应用 Expired - Fee Related CN105567692B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610108864.4A CN105567692B (zh) 2016-02-26 2016-02-26 一种特异性靶向QKI基因的sgRNA及其应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610108864.4A CN105567692B (zh) 2016-02-26 2016-02-26 一种特异性靶向QKI基因的sgRNA及其应用

Publications (2)

Publication Number Publication Date
CN105567692A true CN105567692A (zh) 2016-05-11
CN105567692B CN105567692B (zh) 2018-08-14

Family

ID=55878320

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610108864.4A Expired - Fee Related CN105567692B (zh) 2016-02-26 2016-02-26 一种特异性靶向QKI基因的sgRNA及其应用

Country Status (1)

Country Link
CN (1) CN105567692B (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106636199A (zh) * 2016-12-02 2017-05-10 中国人民解放军军事医学科学院野战输血研究所 用CRISPR/Cas9技术易于筛选获得目的基因敲除细胞系的方法及产品
CN106987560A (zh) * 2017-03-29 2017-07-28 中国农业科学院上海兽医研究所 Rk‑13细胞hb基因敲除稳定株的构建方法
CN108913692A (zh) * 2018-07-17 2018-11-30 浙江大学 特异性靶向SATB1基因的sgRNA及其在转录激活中的应用

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102416182A (zh) * 2011-12-06 2012-04-18 厦门大学 miR-574-5p的用途
CN103668472A (zh) * 2013-12-31 2014-03-26 北京大学 利用CRISPR/Cas9系统构建真核基因敲除文库的方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102416182A (zh) * 2011-12-06 2012-04-18 厦门大学 miR-574-5p的用途
CN103668472A (zh) * 2013-12-31 2014-03-26 北京大学 利用CRISPR/Cas9系统构建真核基因敲除文库的方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
俞珺瑶等: "Cas9-sgRNA共质粒系统提高在AAVS1位点的打靶效率", 《生物技术通讯》 *
梁振伟等: "通过CRISPR/Cas9系统敲除人源PDE10A基因", 《基础医学与临床》 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106636199A (zh) * 2016-12-02 2017-05-10 中国人民解放军军事医学科学院野战输血研究所 用CRISPR/Cas9技术易于筛选获得目的基因敲除细胞系的方法及产品
CN106987560A (zh) * 2017-03-29 2017-07-28 中国农业科学院上海兽医研究所 Rk‑13细胞hb基因敲除稳定株的构建方法
CN108913692A (zh) * 2018-07-17 2018-11-30 浙江大学 特异性靶向SATB1基因的sgRNA及其在转录激活中的应用
CN108913692B (zh) * 2018-07-17 2019-07-09 浙江大学 特异性靶向SATB1基因的sgRNA及其在转录激活中的应用

Also Published As

Publication number Publication date
CN105567692B (zh) 2018-08-14

Similar Documents

Publication Publication Date Title
CN103820441B (zh) CRISPR‑Cas9特异性敲除人CTLA4基因的方法以及用于特异性靶向CTLA4基因的sgRNA
Noer et al. Stable CpG hypomethylation of adipogenic promoters in freshly isolated, cultured, and differentiated mesenchymal stem cells from adipose tissue
US9879283B2 (en) CRISPR oligonucleotides and gene editing
Bialk et al. Regulation of gene editing activity directed by single-stranded oligonucleotides and CRISPR/Cas9 systems
Barroso-delJesus et al. Embryonic stem cell-specific miR302-367 cluster: human gene structure and functional characterization of its core promoter
Ji et al. Identification of microRNA‐181 by genome‐wide screening as a critical player in EpCAM–positive hepatic cancer stem cells
CN108148835A (zh) CRISPR-Cas9靶向敲除SLC30A1基因及其特异性的sgRNA
CN105886498A (zh) CRISPR-Cas9特异性敲除人PCSK9基因的方法以及用于特异性靶向PCSK9基因的sgRNA
JP2017513477A5 (zh)
FI3250691T3 (fi) Crispr hybridi dna/rna polynukleotidit ja käyttömenetelmät
CN105602987A (zh) 一种高效的dc细胞xbp1基因敲除方法
KR20220070443A (ko) 반복성 dna와 연관된 장애의 치료용 조성물 및 방법
Meng et al. MicroRNA profiling analysis revealed different cellular senescence mechanisms in human mesenchymal stem cells derived from different origin
CN105567692A (zh) 一种特异性靶向QKI基因的sgRNA及其应用
Kim et al. Phytohormonal networks promote differentiation of fiber initials on pre-anthesis cotton ovules grown in vitro and in planta
CN109706148A (zh) 一种用于敲除BCL11A基因或者BCL11A基因增强子的gRNA、gRNA组合物以及电转方法
CN108441516A (zh) 一种慢病毒CMV-CBh双启动子改造载体构建及应用
Chateauvieux et al. Molecular profile of mouse stromal mesenchymal stem cells
Kehler et al. RNA‐generated and gene‐edited induced pluripotent stem cells for disease modeling and therapy
Sargent et al. Nuclease-mediated double-strand break (DSB) enhancement of small fragment homologous recombination (SFHR) gene modification in human-induced pluripotent stem cells (hiPSCs)
CN103805606B (zh) 一对特异识别绵羊DKK1基因的sgRNA及其编码DNA和应用
CN105018438A (zh) 参与甜瓜葫芦素b合成的基因簇及其应用
Labi et al. miR-17∼ 92 in lymphocyte development and lymphomagenesis
CN109055433A (zh) 一种激活内源性Ngn3和MAFA基因表达的方法
US20200276334A1 (en) New Therapy for Pompe Disease

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20180814

Termination date: 20210226