CN105562050B - 一种多孔类石墨烯结构掺杂碳材料及其制备方法与应用 - Google Patents

一种多孔类石墨烯结构掺杂碳材料及其制备方法与应用 Download PDF

Info

Publication number
CN105562050B
CN105562050B CN201510938438.9A CN201510938438A CN105562050B CN 105562050 B CN105562050 B CN 105562050B CN 201510938438 A CN201510938438 A CN 201510938438A CN 105562050 B CN105562050 B CN 105562050B
Authority
CN
China
Prior art keywords
carbon material
class graphene
porous class
structured
preparation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201510938438.9A
Other languages
English (en)
Other versions
CN105562050A (zh
Inventor
王红娟
钟国玉
彭峰
余皓
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
South China University of Technology SCUT
Original Assignee
South China University of Technology SCUT
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by South China University of Technology SCUT filed Critical South China University of Technology SCUT
Priority to CN201510938438.9A priority Critical patent/CN105562050B/zh
Publication of CN105562050A publication Critical patent/CN105562050A/zh
Application granted granted Critical
Publication of CN105562050B publication Critical patent/CN105562050B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/24Nitrogen compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/20Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising free carbon; comprising carbon obtained by carbonising processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28054Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J20/28057Surface area, e.g. B.E.T specific surface area
    • B01J20/28066Surface area, e.g. B.E.T specific surface area being more than 1000 m2/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/61Surface area
    • B01J35/618Surface area more than 1000 m2/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2202/00Structure or properties of carbon nanotubes
    • C01B2202/20Nanotubes characterized by their properties
    • C01B2202/32Specific surface area
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/04Particle morphology depicted by an image obtained by TEM, STEM, STM or AFM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/62Submicrometer sized, i.e. from 0.1-1 micrometer

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Nanotechnology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Composite Materials (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

本发明属于无机纳米材料及电化学领域,具体涉及一种多孔类石墨烯结构掺杂碳材料及其制备方法与应用。所述的多孔类石墨烯结构掺杂碳材料的制备方法,包含如下步骤:(1)将壳聚糖、尿素和杂原子前驱体混合溶解于水中并混匀后干燥,得到混合粉末;(2)在惰性气体存在的条件下,将步骤(1)制备得到的混合粉末高温热解,得到多孔类石墨烯结构掺杂碳材料。与传统方法相比,本发明所使用的前驱体价格低廉易得,不需要使用金属催化剂、模板剂或者水热预处理,减少了制备流程,可以进行规模化制备。制备得到的多孔类石墨烯结构掺杂碳材料掺杂量高、掺杂元素可控、孔道多、比表面积大,具有广泛的应用前景。

Description

一种多孔类石墨烯结构掺杂碳材料及其制备方法与应用
技术领域
本发明属于无机纳米材料及电化学领域,具体涉及一种多孔类石墨烯结构掺杂碳材料及其制备方法与应用。
背景技术
碳材料由于其结构多样性、化学稳定性等特点,在储能、吸附、负载、催化等方面吸引了广泛的关注和研究,近年来,碳材料已经在化工、环保、催化、电子等领域取得了一定的应用。碳纳米管的掺杂是在碳纳米管的石墨碳六元环上掺入其它非金属杂元素,如氮、磷、硼、硫等。与纯碳材料相比、杂原子的掺杂能够改变碳材料的电子结构,从而改变其物理、化学性能,如氮掺杂的碳材料就具有替代铂用作氧还原反应电催化剂的潜力[Gong KP,etal.Science,2009,323(5915):760]。碳材料的微观结构对其性能影响很大,一般来说孔结构合适,比表面积大,石墨层薄的碳材料具有较好的性能。同时一些特殊的结构使碳材料,例如石墨烯、碳纳米管、纳米碳纤维等,具有独特的原子结构和电子结构使其表现出优异的光学、电学、力学和热学性能。所以,制备结构合适的掺杂碳材料具有重要的科学和实际意义,也是碳材料研究领域的重点之一。
掺杂碳材料的制备方法因掺杂方式的不同,分为后掺杂法和原位掺杂法。后掺杂法是在原有碳材料的基础上,加入含有杂原子的前驱体,通过水热、高温热解等方式将杂原子掺入碳材料中。例如Ho Seok Park将氧化石墨和苯硫醚混合,900℃高温热解制备了硫掺杂的石墨烯[Xu Yu,Ho Seok Park,carbon C A R B ON 77(2014)59-65Sulfur-incorporated,porous graphene films for highperformance flexibleelectrochemical capacitors]。后掺杂由于是在现有碳材料的基础上进行掺杂,所以通常具有掺杂量较低,掺杂形式不可控,掺杂稳定性差等缺点,不适合大规模制备掺杂碳材料。原位掺杂法则是将碳源、杂原子前驱体、模板或金属催化剂在一定条件,如高温、水热、电弧放电等条件下,实现碳材料的制备和掺杂同时进行的方法。原位掺杂法制备的碳材料,具有掺杂量高,掺杂形式合理、可控等优点,是目前采用较多的掺杂方法。
目前报道的原位掺杂方法主要包括:热解法、气相沉积法、水热法、电弧放电法、等离子体法等。气相沉积法需要特定的碳源和掺杂前驱体,制备过程复杂;水热法合成的掺杂碳材料虽然掺杂量高,但其掺杂形式一般不理想导致其性能一般较低;电弧放电和等离子体法制备过程复杂,可控性差,且产量极低;热分解法是一种适合大规模制备掺杂碳材料的方法。
热解法制备掺杂碳材料主要有以下三种方法。一、将碳源、杂原子前驱体和金属盐催化剂充分混合后,在催化剂催化作用下高温热解,酸洗除去金属杂质得到。如中国专利CN102923688B公布了“一种氮掺杂碳材料的制备方法及其应用”,该专利将含氮导电聚合物和路易斯酸催化剂(氯化铁、氯化锰、氯酸钾或碘酸钾)混合后高温热解,最后酸洗除去金属杂质,得到氮掺杂的碳材料。二、将碳源、杂原子前驱体和模板剂充分混合后高温热解,酸洗除去模板剂得到。如中国专利CN104399508A公布了“一种具有电催化氧还原活性的氮硫共掺杂碳材料及其制备方法”,该专利将毛发分解得到的固体氨基酸和硬模板剂热分解;所得样品用稀盐酸去除模板剂,洗涤、干燥,制得了氮硫共掺杂碳材料。三、将碳源、杂原子前驱体充分混合后先水热预处理后,再高温热解。如中国专利CN102627268B公布了“一种氮掺杂碳材料的制备方法”,该专利以蔗糖为碳源,氨水为氮源,经水热碳化和在惰性气氛中煅烧制备出了一种氮掺杂碳材料。综合这三种方法来看,目前已有的热解法除了必须的碳源和杂原子前驱体,还加入了金属催化剂或者模板剂,或者进行水热预处理。这些金属催化剂、模板剂或水热处理,起到了降低所需热解温度,提高碳材料掺杂量,提高碳材料石墨化程度,提高碳材料比表面积和孔结构的作用。如果不加入这些额外的金属催化剂、模板剂或者水热处理,制备出的掺杂碳材料微观结构、掺杂量等将受到很大影响,性能会大大下降,甚至可能制备不出掺杂碳材料。而这些金属催化剂、模板剂或水热处理的加入,提高了制备成本,同时需要额外的酸洗、除杂等过程,增加了制备流程,不利于该方法的大规模实际应用。
综上,尽管热解法是目前制备掺杂碳材料最具应用前景的方法,但是,它需要额外加入金属催化剂、模板剂或者水热处理过程,这提高了制备成本,增加了制备流程。因此,要想大规模、低成本、简便地制备出结构合适、比表面积大、掺杂量高的碳材料,仍需要对现有的热解法进行改进。
发明内容
为了克服现有技术的缺点与不足,本发明的首要目的在于提供一种多孔类石墨烯结构掺杂碳材料的制备方法,该方法以壳聚糖和尿素为原料,添加不同的杂原子前躯体,直接原位制备多孔类石墨烯结构掺杂碳材料,制备流程简单,产品微观结构优异,比表面积大,掺杂量高。
本发明的另一目的在于提供上述制备方法制备得到的多孔类石墨烯结构掺杂碳材料。
本发明的再一目的在于提供上述多孔类石墨烯结构掺杂碳材料的应用。
本发明的目的通过下述技术方案实现:
一种多孔类石墨烯结构掺杂碳材料的制备方法,包含如下步骤:
(1)将壳聚糖、尿素和杂原子前驱体按1:(6~15):(0~0.2)的质量比混合溶解于水中并混匀后干燥,得到混合粉末;
(2)在惰性气体存在的条件下,将步骤(1)制备得到的混合粉末升温至700~900℃,并保持1~4h;然后冷却,得到多孔类石墨烯结构掺杂碳材料;
步骤(1)所述的杂原子前驱体为磷酸、硫酸和硼酸中的一种;
步骤(1)所述的杂原子前驱体为磷酸时,壳聚糖、尿素、磷酸的质量比优选为1:(6~15):(0~0.2);
步骤(1)所述的杂原子前驱体为硫酸时,壳聚糖、尿素、硫酸的质量比优选为1:(6~15):(0~0.2);
步骤(1)所述的杂原子前驱体为硼酸时,壳聚糖、尿素、硼酸的质量比优选为1:(6~15):(0~0.1);
步骤(1)所述的干燥优选为冷冻干燥;
所述的冷冻干燥的条件优选为:-60~-50℃冷冻干燥2~3天;
步骤(2)所述的惰性气体为Ar或N2
步骤(2)中所述的升温的速率优选为5~15℃/min;
步骤(2)所述的多孔类石墨烯结构掺杂碳材料优选为黑色粉末;
一种多孔类石墨烯结构掺杂碳材料,通过上述制备方法制备得到;
所述的多孔类石墨烯结构掺杂碳材料在无机纳米材料及电化学领域中的应用;
所述的多孔类石墨烯结构掺杂碳材料可应用于制备催化剂、催化剂载体或者吸附剂等;
本发明的原理为:
(1)壳聚糖含有大量的羟基、酮基和氨基,在高温条件下这些基团分解为气体,这些气体具有造孔作用。
(2)尿素均匀地分散在壳聚糖之中,在高温条件下分解生成C3N4、氨气和二氧化碳。氨气和二氧化碳起造孔的作用;而C3N4为类石墨的层状结构起类似模板剂的作用。进一步提高温度壳聚糖完全碳化生成石墨碳,同时C3N4分解得到的N元素掺入石墨碳中,最终得到多孔类石墨烯结构掺杂碳材料。
(3)杂原子前驱体则在高温条件下分解并部分掺入石墨碳中。
与现有技术相比,本发明具有以下优点和有益效果:
(1)本发明的原材料前驱体来源丰富、成本低,廉价易得;不需要使用金属催化剂、模板剂或者水热预处理,降低了制备成本、简化了制备流程、避免了后续的除杂步骤,方法简便、易行。由于不使用金属催化剂和模板剂,制备出的碳材料也不含有相应的杂质。
(2)本发明制备方法可控性强,既可以制备单独氮掺杂碳材料,也可以制备氮及其它元素共掺杂的碳材料,同时掺杂量高(氮掺杂量最高可达9at%左右)。
(3)本发明制备出的多孔类石墨烯结构掺杂碳材料具有类似石墨烯的微观结构,孔道多,比表面积极大(1000m2/g以上),适合用作催化剂、催化剂载体或者吸附剂等。
附图说明
图1是实施例1制得的多孔类石墨烯结构氮掺杂碳材料的TEM图。
图2是实施例1制得的多孔类石墨烯结构氮掺杂碳材料的X射线光电子能谱(XPS)图。
图3是实施例1、2、3和4分别制得的多孔类石墨烯结构氮掺杂碳材料、多孔类石墨烯结构氮磷共掺杂碳材料、多孔类石墨烯结构氮硫共掺杂碳材料和多孔类石墨烯结构氮硼共掺杂碳材料的X射线衍射(XRD)图。
图4是实施例1和2分别制得的多孔类石墨烯结构氮掺杂碳材料和多孔类石墨烯结构氮磷共掺杂碳材料的N2吸脱附曲线图。
图5是实施例2制得的多孔类石墨烯结构氮磷共掺杂碳材料的TEM图。
图6是实施例2制得的多孔类石墨烯结构氮磷共掺杂碳材料的XPS图。
图7是实施例3制得的多孔类石墨烯结构氮硫共掺杂碳材料的TEM图。
图8是实施例3制得的多孔类石墨烯结构氮硫共掺杂碳材料的XPS图。
图9是实施例4制得的多孔类石墨烯结构氮硼共掺杂碳材料的TEM图。
图10是实施例4制得的多孔类石墨烯结构氮硼共掺杂碳材料的XPS图。
图11是实施例5制得的多孔类石墨烯结构氮磷共掺杂碳材料的TEM图。
图12是实施例1、5、6和7制得的产物和商业Pt/C的碱性条件下的氧还原极化曲线图。
图13是实施例6制得的多孔类石墨烯结构氮硫共掺杂碳材料的TEM图。
图14是实施例7制得的多孔类石墨烯结构氮硼共掺杂碳材料的TEM图。
具体实施方式
下面结合实施例及附图对本发明作进一步详细的描述,但本发明的实施方式不限于此。
实施例1 多孔类石墨烯结构氮掺杂碳材料的制备
(1)将1g壳聚糖和12g尿素溶解分散于20mL水中,超声半小时后,放入冰箱冻成冰块,放入冷冻干燥机中,-60℃冷冻干燥2天,得到混合粉末;
(2)将步骤(1)制备得到的混合粉末,放入瓷舟中,置于管式炉高温区,向管式炉中通入Ar,以10℃/min的升温速率升温至900℃,保持2h,自然冷却至室温,得到黑色粉末,即为多孔类石墨烯结构氮掺杂碳材料,样品的质量为0.3g;
本实施例制得的多孔类石墨烯结构氮掺杂碳材料的TEM图如图1所示,从图1可以看到,所得样品为超薄的石墨片,表面有褶皱,具有石墨烯的结构特征。该样品的XPS结果如图2所示,只含有碳,氮,氧三种元素(氧为掺杂碳材料中必然存在的元素),各元素的具体含量为,碳:77.73at%,氮:8.03at%,氧:14.24at%。该样品的XRD结果如图3所示,结果显示碳为结晶良好的石墨碳,并不含有其它晶相。该样品的N2吸脱附曲线(图4)说明,所制备的多孔类石墨烯结构氮掺杂碳材料含有介孔结构,且比表面积极大,其具体BET比表面积为2175.21m2/g。
测试本实例制得的多孔类石墨烯结构氮掺杂碳材料在氧气饱和的0.1MKOH溶液下的极化曲线如图12所示,发现其氧还原起始电位和极限电流接近商业Pt/C催化剂,表现出了优异的电催化氧还原活性。
实施例2 多孔类石墨烯结构氮磷共掺杂碳材料的制备
(1)将1g壳聚糖、12g尿素和0.2g磷酸分散于20mL水中,超声半小时后,放入冰箱冻成冰块,放入冷冻干燥机中,-50℃冷冻干燥3天,得到混合粉末;
(2)将步骤(1)制备得到的混合粉末,放入瓷舟中,置于管式炉高温区,向管式炉中通入Ar,以10℃/min的升温速率升温至700℃,保持2h,自然冷却至室温,得到黑色粉末,即为多孔类石墨烯结构氮磷共掺杂碳材料,样品的质量为0.3g;
本实施例制得的多孔类石墨烯结构氮磷共掺杂碳材料的TEM图如图5所示,该样品为超薄的石墨片,表面有丰富的褶皱,磷的加入没有改变材料的微观结构。该样品的XPS结果如图6所示,该样品只含有碳,氮,氧,磷元素,各元素的具体含量为,碳:83.99at%,氮:6.09at%,氧:8.03at%,磷:1.09at%。样品的XRD结果如图3所示,结果显示碳为结晶良好的石墨碳,并不含有其它晶相。该样品的N2吸脱附曲线(图4)说明,所制备的多孔类石墨烯结构氮磷共掺杂碳材料含有介孔结构,且比表面积极大,具体BET比表面积为2622.27m2/g。
实施例3 多孔类石墨烯氮硫共掺杂碳的制备
(1)将1g壳聚糖、6g尿素和0.2g硫酸分散于20mL水中,超声半小时后,放入冰箱冻成冰块,放入冷冻干燥机中,-60℃冷冻干燥2天,得到混合粉末;
(2)将步骤(1)制备得到的混合粉末,放入瓷舟中,置于管式炉高温区,向管式炉中通入Ar,以10℃/min的升温速率升温至900℃,保持2h,自然冷却至室温,得到黑色粉末,即为多孔类石墨烯结构氮硫共掺杂碳材料,样品的重量为0.3g;
本实施例制得的多孔类石墨烯结构氮硫共掺杂碳材料的TEM图如图7所示,该样品为超薄的石墨片,表面有丰富的褶皱,硫的加入没有改变材料的微观结构。该样品的XPS结果如图8所示,该样品只含有碳,氮,氧,硫元素,各元素的具体含量为,碳:82.45at%,氮:3.96at%,氧:13.18at%,硫:0.4at%。样品的XRD结果如图3所示,结果显示碳为结晶良好的石墨碳,并不含有其它晶相。
实施例4 多孔类石墨烯结构氮硼共掺杂碳材料的制备
(1)将1g壳聚糖、15g尿素和0.1g硼酸溶解分散于20mL水中,超声半小时后,放入冰箱冻成冰块,放入冷冻干燥机中,-60℃冷冻干燥2天,得到混合粉末;
(2)将步骤(1)制备得到的混合粉末,放入瓷舟中,置于管式炉高温区,向管式炉中通入Ar,以10℃/min的升温速率升温至900℃,保持2h,自然冷却至室温,得到黑色粉末,即为多孔类石墨烯结构氮硼共掺杂碳材料,样品的重量为0.3g;
本实施例制得的多孔类石墨烯结构氮硼共掺杂碳材料的TEM图如图9所示,样品为超薄的石墨片,表面有丰富的褶皱,硼的加入没有改变材料的微观结构。样品的XPS结果如图10所示,该样品只含有碳,氮,氧,硼元素,各元素的具体含量为,碳:80.88at%,氮:9.31at%,氧:7.59at%,硼:2.22at%。样品的XRD结果如图3所示,结果显示碳为结晶良好的石墨碳,并不含有其它晶相。
实施例5 多孔类石墨烯结构氮磷共掺杂碳材料的制备
(1)将1g壳聚糖、12g尿素和0.1g磷酸分散于20mL水中,超声半小时后,放入冰箱冻成冰块,放入冷冻干燥机中,-50℃冷冻干燥3天,得到混合粉末;
(2)将步骤(1)制备得到的混合粉末,放入瓷舟中,置于管式炉高温区,向管式炉中通入Ar,以15℃/min的升温速率升温至800℃,保持4h,自然冷却至室温,得到黑色粉末,即为多孔类石墨烯结构氮磷共掺杂碳材料,样品的质量为0.3g。
本实施例制得的多孔类石墨烯结构氮磷共掺杂碳材料的TEM图如图11所示,样品为超薄的石墨片,表面有丰富的褶皱,和其他实例结构类似。
测试本实例制得的多孔类石墨烯结构氮磷共掺杂碳材料在氧气饱和的0.1M KOH溶液下的极化曲线如图12所示,发现其氧还原起始电位接近商业Pt/C催化剂,其极限电流明显大于商业Pt/C催化剂,表现出了优异的电催化氧还原活性。
实施例6 多孔类石墨烯氮硫共掺杂碳的制备
(1)将1g壳聚糖、12g尿素和0.1g硫酸分散于20mL水中,超声半小时后,放入冰箱冻成冰块,放入冷冻干燥机中,-60℃冷冻干燥2天,得到混合粉末;
(2)将步骤(1)制备得到的混合粉末,放入瓷舟中,置于管式炉高温区,向管式炉中通入Ar,以10℃/min的升温速率升温至700℃,保持1h,自然冷却至室温,得到黑色粉末,即为多孔类石墨烯结构氮硫共掺杂碳材料,样品的重量为0.3g。
本实施例制得的多孔类石墨烯结构氮硫共掺杂碳材料的TEM图如图13所示,样品为超薄的石墨片,表面有丰富的褶皱,和其他实例结构类似。
测试本实例制得的多孔类石墨烯结构氮硫共掺杂碳材料在氧气饱和的0.1M KOH溶液下的极化曲线如图12所示,发现其氧还原起始电位接近商业Pt/C催化剂,其极限电流明显大于商业Pt/C催化剂,表现出了优异的电催化氧还原活性。
实施例7 多孔类石墨烯结构氮硼共掺杂碳材料的制备
(1)将1g壳聚糖、12g尿素和0.05g硼酸溶解分散于20mL水中,超声半小时后,放入冰箱冻成冰块,放入冷冻干燥机中,-60℃冷冻干燥2天,得到混合粉末;
(2)将步骤(1)制备得到的混合粉末,放入瓷舟中,置于管式炉高温区,向管式炉中通入Ar,以10℃/min的升温速率升温至900℃,保持2h,自然冷却至室温,得到黑色粉末,即为多孔类石墨烯结构氮硼共掺杂碳材料,样品的重量为0.3g。
本实施例制得的多孔类石墨烯结构氮硼共掺杂碳材料的TEM图如图14所示,样品为超薄的石墨片,表面有丰富的褶皱,和其他实例结构类似。
测试本实例制得的多孔类石墨烯结构氮硼共掺杂碳材料在氧气饱和的0.1M KOH溶液下的极化曲线如图12所示,发现其氧还原起始电位接近商业Pt/C催化剂,其极限电流明显大于商业Pt/C催化剂,表现出了优异的电催化氧还原活性。
上述实施例为本发明较佳的实施方式,但本发明的实施方式并不受上述实施例的限制,其他的任何未背离本发明的精神实质与原理下所作的改变、修饰、替代、组合、简化,均应为等效的置换方式,都包含在本发明的保护范围之内。

Claims (8)

1.一种多孔类石墨烯结构掺杂碳材料的制备方法,其特征在于包含如下步骤:
(1)将壳聚糖、尿素和杂原子前驱体按1:(6~15):(0~0.2)的质量比混合溶解于水中并混匀后干燥,得到混合粉末;
(2)在惰性气体存在的条件下,将步骤(1)制备得到的混合粉末升温至700~900℃,并保持1~4h;然后冷却,得到多孔类石墨烯结构掺杂碳材料;
步骤(1)所述的干燥为冷冻干燥;
步骤(2)中所述的升温的速率为5~15℃/min。
2.根据权利要求1所述的多孔类石墨烯结构掺杂碳材料的制备方法,其特征在于:
步骤(1)所述的杂原子前驱体为磷酸、硫酸和硼酸中的一种。
3.根据权利要求2所述的多孔类石墨烯结构掺杂碳材料的制备方法,其特征在于:
步骤(1)所述的杂原子前驱体为硼酸时,壳聚糖、尿素、硼酸的质量比为1:(6~15):(0~0.1)。
4.根据权利要求1所述的多孔类石墨烯结构掺杂碳材料的制备方法,其特征在于:
所述的冷冻干燥的条件为:-60~-50℃冷冻干燥2~3天。
5.根据权利要求1所述的多孔类石墨烯结构掺杂碳材料的制备方法,其特征在于:
步骤(2)所述的惰性气体为Ar或N2
6.一种多孔类石墨烯结构掺杂碳材料,其特征在于:通过权利要求1~5任一项所述的制备方法制备得到。
7.权利要求6所述的多孔类石墨烯结构掺杂碳材料在无机纳米材料或电化学领域中的应用。
8.根据权利要求7所述的多孔类石墨烯结构掺杂碳材料在无机纳米材料或电化学领域中的应用,其特征在于:
所述的多孔类石墨烯结构掺杂碳材料应用于制备催化剂、催化剂载体或者吸附剂。
CN201510938438.9A 2015-12-15 2015-12-15 一种多孔类石墨烯结构掺杂碳材料及其制备方法与应用 Active CN105562050B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201510938438.9A CN105562050B (zh) 2015-12-15 2015-12-15 一种多孔类石墨烯结构掺杂碳材料及其制备方法与应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201510938438.9A CN105562050B (zh) 2015-12-15 2015-12-15 一种多孔类石墨烯结构掺杂碳材料及其制备方法与应用

Publications (2)

Publication Number Publication Date
CN105562050A CN105562050A (zh) 2016-05-11
CN105562050B true CN105562050B (zh) 2018-12-11

Family

ID=55873003

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201510938438.9A Active CN105562050B (zh) 2015-12-15 2015-12-15 一种多孔类石墨烯结构掺杂碳材料及其制备方法与应用

Country Status (1)

Country Link
CN (1) CN105562050B (zh)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105870419B (zh) * 2016-05-25 2018-04-13 广东石油化工学院 一种石墨烯/富勒烯复合纳米材料的制备方法及其应用
CN107965263A (zh) * 2017-12-21 2018-04-27 大连轶德科技有限公司 多功能卫生环保纱窗及其制备方法
CN108579790B (zh) * 2018-05-25 2021-03-09 万华化学集团股份有限公司 一种氮掺杂多孔碳催化剂及其制备方法,以及β-异佛尔酮的制备方法
CN108892124B (zh) * 2018-06-25 2021-11-05 广东药科大学附属第一医院 一种制备石墨烯/纳米羟基磷灰石复合材料的方法及应用
CN108821267B (zh) * 2018-09-12 2021-09-07 芦露华 一种基于真菌制备石墨烯的方法
CN109888212B (zh) * 2019-01-30 2021-02-09 北京碳极极电科技有限公司 氮硼共掺杂多孔碳复合材料的制备方法
CN115140728A (zh) * 2022-06-27 2022-10-04 盐城工学院 一种氮硼共掺杂多孔碳材料的制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104528703A (zh) * 2014-12-29 2015-04-22 中国科学院宁波材料技术与工程研究所 氮磷共掺杂石墨烯的制备方法
CN104710445A (zh) * 2013-12-15 2015-06-17 中国科学院大连化学物理研究所 一种硼、氮共掺杂石墨烯及其制备和应用
CN104795565A (zh) * 2015-05-11 2015-07-22 内蒙古民族大学 富含杂原子的多孔石墨烯粉体及其制备方法和应用
CN104959134A (zh) * 2015-06-30 2015-10-07 华南理工大学 一种杂原子掺杂多孔石墨烯电催化剂及制备与应用和装置

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20140056570A (ko) * 2012-10-29 2014-05-12 한국과학기술연구원 마이크로웨이브를 이용한 도핑된 그래핀의 제조방법

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104710445A (zh) * 2013-12-15 2015-06-17 中国科学院大连化学物理研究所 一种硼、氮共掺杂石墨烯及其制备和应用
CN104528703A (zh) * 2014-12-29 2015-04-22 中国科学院宁波材料技术与工程研究所 氮磷共掺杂石墨烯的制备方法
CN104795565A (zh) * 2015-05-11 2015-07-22 内蒙古民族大学 富含杂原子的多孔石墨烯粉体及其制备方法和应用
CN104959134A (zh) * 2015-06-30 2015-10-07 华南理工大学 一种杂原子掺杂多孔石墨烯电催化剂及制备与应用和装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Sulfur and Nitrogen dual-doped mesoporous grapheme electrocatalyst for oxygen reduction with synergistically enhanced performance;Li Liang, et al;《Angewandte Communication》;20121010;第51卷;第11496页右栏第2段 *

Also Published As

Publication number Publication date
CN105562050A (zh) 2016-05-11

Similar Documents

Publication Publication Date Title
CN105562050B (zh) 一种多孔类石墨烯结构掺杂碳材料及其制备方法与应用
Luo et al. Synthesis of 3D-interconnected hierarchical porous carbon from heavy fraction of bio-oil using crayfish shell as the biological template for high-performance supercapacitors
Li et al. Porous nitrogen-doped carbon vegetable-sponges with enhanced lithium storage performance
Xin et al. Preparation and electrochemical characterization of nitrogen doped graphene by microwave as supporting materials for fuel cell catalysts
Yuan et al. Preparation of pitch-based carbon microbeads by a simultaneous spheroidization and stabilization process for lithium-ion batteries
Kim et al. Heteroatom-doped porous carbon with tunable pore structure and high specific surface area for high performance supercapacitors
CN105271217B (zh) 一种氮掺杂的三维石墨烯的制备方法
WO2019113993A1 (zh) 一种碳纳米管及其制备方法
Chen et al. A facile self-catalyzed CVD method to synthesize Fe3C/N-doped carbon nanofibers as lithium storage anode with improved rate capability and cyclability
US20130230709A1 (en) Porous graphene material and preparation method and uses as electrode material thereof
JP5876499B2 (ja) メソ細孔が形成された多孔性炭素材料の製造方法及びこれから製造された燃料電池用触媒の担持体
Liu et al. Optimized synthesis of nitrogen-doped carbon with extremely high surface area for adsorption and supercapacitor
CN108123112B (zh) 一种氮掺杂多孔石墨烯聚集体及其制备方法和应用
Wang et al. Preparation and electrochemical performance of ultra-short carbon nanotubes
El-Gendy et al. Green, single-pot synthesis of functionalized Na/N/P co-doped graphene nanosheets for high-performance supercapacitors
CN104071786A (zh) 一种石墨化活性炭的制备方法
Wu et al. One-step synthesis of hierarchical metal oxide nanosheet/carbon nanotube composites by chemical vapor deposition
Xu et al. Synthesis of multiwall carbon nanotubes via an inert atmosphere absent autogenetic-pressure method for supercapacitor
KR20130079144A (ko) 분무열분해 공정을 이용한 그래핀-탄소나노튜브 복합체의 제조방법 및 그 제조방법으로 제조된 그래핀-탄소나노튜브 복합체
CN107416820A (zh) 一种n,o,s掺杂的网状石墨化碳纳米材料的制备方法
Lei et al. Nitrogen− carbon materials base on pyrolytic graphene hydrogel for oxygen reduction
Meng et al. Synthesis of N-doped carbon by microwave-assisited pyrolysis ionic liquid for lithium-ion batteries
Sun et al. A novel N-doped organic porous carbon derive from water-based alkyd resin for lithium ion battery anode materials
Min et al. High performance lithium ion battery cathode based reduced holey graphene oxides from spent lithium ion batteries
Wang et al. Sustainable synthesis of Co NPs@ Graphited carbon microspheres as an efficient electrocatalyst for the oxygen-evolution reaction

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant