CN105555705B - 硅纳米线阵列的制备方法 - Google Patents

硅纳米线阵列的制备方法 Download PDF

Info

Publication number
CN105555705B
CN105555705B CN201480052091.1A CN201480052091A CN105555705B CN 105555705 B CN105555705 B CN 105555705B CN 201480052091 A CN201480052091 A CN 201480052091A CN 105555705 B CN105555705 B CN 105555705B
Authority
CN
China
Prior art keywords
silicon
preparation
nanowire array
plastic pellet
silicon nanowire
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201480052091.1A
Other languages
English (en)
Other versions
CN105555705A (zh
Inventor
尹明汉
李世宁
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Gwangju Institute of Science and Technology
Original Assignee
Gwangju Institute of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Gwangju Institute of Science and Technology filed Critical Gwangju Institute of Science and Technology
Publication of CN105555705A publication Critical patent/CN105555705A/zh
Application granted granted Critical
Publication of CN105555705B publication Critical patent/CN105555705B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0657Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape of the body
    • H01L29/0665Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape of the body the shape of the body defining a nanostructure
    • H01L29/0669Nanowires or nanotubes
    • H01L29/0676Nanowires or nanotubes oriented perpendicular or at an angle to a substrate
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81CPROCESSES OR APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OR TREATMENT OF MICROSTRUCTURAL DEVICES OR SYSTEMS
    • B81C1/00Manufacture or treatment of devices or systems in or on a substrate
    • B81C1/00015Manufacture or treatment of devices or systems in or on a substrate for manufacturing microsystems
    • B81C1/00023Manufacture or treatment of devices or systems in or on a substrate for manufacturing microsystems without movable or flexible elements
    • B81C1/00031Regular or irregular arrays of nanoscale structures, e.g. etch mask layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y10/00Nanotechnology for information processing, storage or transmission, e.g. quantum computing or single electron logic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02118Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer carbon based polymeric organic or inorganic material, e.g. polyimides, poly cyclobutene or PVC
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/022Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates the layer being a laminate, i.e. composed of sublayers, e.g. stacks of alternating high-k metal oxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • H01L21/0226Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process
    • H01L21/02282Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process liquid deposition, e.g. spin-coating, sol-gel techniques, spray coating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/306Chemical or electrical treatment, e.g. electrolytic etching
    • H01L21/30604Chemical etching
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/306Chemical or electrical treatment, e.g. electrolytic etching
    • H01L21/308Chemical or electrical treatment, e.g. electrolytic etching using masks
    • H01L21/3081Chemical or electrical treatment, e.g. electrolytic etching using masks characterised by their composition, e.g. multilayer masks, materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/306Chemical or electrical treatment, e.g. electrolytic etching
    • H01L21/308Chemical or electrical treatment, e.g. electrolytic etching using masks
    • H01L21/3083Chemical or electrical treatment, e.g. electrolytic etching using masks characterised by their size, orientation, disposition, behaviour, shape, in horizontal or vertical plane
    • H01L21/3086Chemical or electrical treatment, e.g. electrolytic etching using masks characterised by their size, orientation, disposition, behaviour, shape, in horizontal or vertical plane characterised by the process involved to create the mask, e.g. lift-off masks, sidewalls, or to modify the mask, e.g. pre-treatment, post-treatment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/3205Deposition of non-insulating-, e.g. conductive- or resistive-, layers on insulating layers; After-treatment of these layers
    • H01L21/32051Deposition of metallic or metal-silicide layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/16Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only elements of Group IV of the Periodic Table
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81BMICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
    • B81B2203/00Basic microelectromechanical structures
    • B81B2203/03Static structures
    • B81B2203/0361Tips, pillars
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81CPROCESSES OR APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OR TREATMENT OF MICROSTRUCTURAL DEVICES OR SYSTEMS
    • B81C2201/00Manufacture or treatment of microstructural devices or systems
    • B81C2201/01Manufacture or treatment of microstructural devices or systems in or on a substrate
    • B81C2201/0101Shaping material; Structuring the bulk substrate or layers on the substrate; Film patterning
    • B81C2201/0128Processes for removing material
    • B81C2201/013Etching
    • B81C2201/0133Wet etching
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81CPROCESSES OR APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OR TREATMENT OF MICROSTRUCTURAL DEVICES OR SYSTEMS
    • B81C2201/00Manufacture or treatment of microstructural devices or systems
    • B81C2201/01Manufacture or treatment of microstructural devices or systems in or on a substrate
    • B81C2201/0101Shaping material; Structuring the bulk substrate or layers on the substrate; Film patterning
    • B81C2201/0147Film patterning
    • B81C2201/0149Forming nanoscale microstructures using auto-arranging or self-assembling material

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Chemical & Material Sciences (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Nanotechnology (AREA)
  • Computer Hardware Design (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Analytical Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Mathematical Physics (AREA)
  • Theoretical Computer Science (AREA)
  • Silicon Compounds (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Optics & Photonics (AREA)
  • Biophysics (AREA)
  • Molecular Biology (AREA)
  • General Health & Medical Sciences (AREA)
  • Health & Medical Sciences (AREA)

Abstract

本发明提供一种硅纳米线阵列的制备方法,包括以下步骤:使塑料粒子以均匀随机图案相互隔离地布置于硅基板上;在所述塑料粒子之间形成催化剂层;除去所述塑料粒子;垂直蚀刻与所述催化剂层接触的硅基板部位;及除去所述催化剂层。根据本发明,工艺简单,费用低,通过大面积工艺能够实现批量生产,在资源有限的地方也能够制备纳米线,可以独立控制纳米线的结构。

Description

硅纳米线阵列的制备方法
技术领域
本发明涉及一种硅纳米线阵列的制备方法。
背景技术
纳米线(nano wire)是指作为各种半导体纳米结构物之一,具有纳米级尺寸的线结构体。其涵盖大体上直径从小于10nm到数百nm的纳米线。
关于这些纳米线所提出的制备方法大致分为三种。
首先,提出了通过电子束光刻(e-beam lithography)设备将光刻胶图案化为纳米级图案,通过将图案化的光刻胶用作掩模来对硅进行纳米蚀刻以制得二维硅纳米线的方法。
但根据这些现有硅纳米线的制备方法,纳米线的制备成本高,不适合于大规模生产。
其次,提出了在形成纳米级金属催化剂之后,在保持950℃左右高温的状态下注入反应气体(SiH4)以成长二维硅纳米线的自对准方式的VLS(Vapor-Liquid-Solid)法。
但这些方法难以控制纳米线的结构,且无法控制硅纳米线的成长方向。
最后,提出了利用溶液工艺的蚀刻方法。利用溶液工艺的蚀刻方法与自对准方法相比具有节省时间和费用的效果,而利用溶液工艺的硅纳米线制备方法中作为正确调节硅纳米线的几何学变量(直径、高度、密度等)的方法,主要使用利用纳米结构的六边形格子图案的方法。但此方法无法独立调节纳米线的几何学变量,尤其难以制备大面积纳米线。
发明内容
解决的技术问题
在本发明的一个方面提出能够独立控制纳米线的几何学变量(直径、长度、密度、位置等),费用低,可以批量生产的纳米线阵列的制备方法。
技术方案
为了达到上述目的,本发明的一个方面提供一种硅纳米线阵列的制备方法,包括以下步骤:使塑料粒子以均匀随机图案相互隔离地布置于硅基板上;在所述塑料粒子之间形成催化剂层;除去所述塑料粒子;垂直蚀刻与所述催化剂层接触的硅基板部位;及除去所述催化剂层。
发明的效果
根据本发明,工艺简单,费用低,通过大面积工艺能够实现批量生产,在资源有限的地方也能够制备纳米线。尤其,可以独立控制纳米线的结构,因此,通过利用纳米结构,可以期待广泛应用于电子元件和太阳能等光能产业、生物传感器等各种产业。
附图说明
图1为根据本发明的一实施例的纳米线阵列的制备方法的工艺图。
图2为示出根据本发明的一实施例的金属催化剂化学蚀刻机制的图。
图3为示出根据本发明的一实施例的根据聚苯乙烯珠粒的大小的硅纳米线的直径的照片。
图4为示出根据本发明的一实施例的根据蚀刻时间的硅纳米线的高度的照片。
图5为示出根据本发明的一实施例的根据聚苯乙烯珠粒的密度的硅纳米线阵列的密度的照片。
图6为根据本发明的一实施例制备的硅纳米线的TEM及EDX分析图。
图7为示出根据本发明的一实施例的垂直结构的硅纳米线阵列(vSiNWA)的图案化工艺的图。
图8为以硅纳米线为模板形成FeOx的核-壳结构的照片。
图9为观察根据不同聚合物层数的不同大小的塑料粒子的分布程度的结果图表。
具体实施方式
本文中所使用的术语“纳米级”或“纳米”可以解释为1至小于1千纳米,但不限于此。
下面,参照附图对本发明的硅纳米线阵列的制备方法进行详细说明,以使所属领域的技术人员可以容易实施本发明。
纳米级材料具有独特的电性、光学及机器特性等新的物理和化学性质,因此,目前作为非常重要的研究领域正在抬头。并且,至今对纳米结构进行的研究显示作为未来的新光元件材料的可能性。尤其,纳米级元件体积小,因此表面积/体积的比增加,在表面上发生的电气和化学反应变得优势,从而可以应用于各种传感器。尤其,垂直结构的硅纳米线阵列(vSiNWA)具有有用的电性质、大表面积、量子局限效应、生物相容性等,因此受到广泛的关注。
然而,大部分的纳米元件很难人为操作,使实际应用遇到困难,因此,作为替代,对容易操作的如纳米线(nanowire)等用于纳米元件的材料进行研究。纳米线可以广泛应用于生物传感器、如激光等光元件、晶体管及存储器元件等各种领域。
目前纳米线大凡通过利用催化剂的成长法制备。根据这些纳米线制备方法,在纳米线形成为预定长度后除去所用的催化剂。但在此情况下,无法自由控制纳米线的直径、长度、密度、位置等。
为了解决上述现有技术的问题,本发明提供通过基于溶液工艺的化学蚀刻方法制备垂直结构的硅纳米线的方法。为此,如图1所示,本发明的一个方面提供一种硅纳米线阵列的制备方法,包括以下步骤:使塑料粒子以均匀随机图案相互隔离地布置于硅基板上;在所述塑料粒子之间形成催化剂层;除去所述塑料粒子;垂直蚀刻与所述催化剂层接触的硅基板部位;及除去所述催化剂层。
在本发明中,作为纳米线的材料选用结晶硅(Si),但不限于此,对于非晶硅(a-Si)和多晶硅(polycrystalline-Si)也可以通过类似的溶液工艺制备大面积纳米线和纳米图案。
在本发明中,以利用硅制备纳米线阵列的工艺为中心进行说明。
首先,将塑料粒子相互隔离地布置在硅基板上。在所述硅基板上布置塑料粒子之前,可以在所述硅基板上形成聚合物层。为此,通过交替进行在所述硅基板上涂布阳离子聚电解质溶液的工艺和涂布阴离子聚电解质溶液的工艺来一层接一层(layer-by-layer)地形成层状自组装聚合物层。上述工艺可以反复进行多次。所述阳离子聚电解质可以选自由聚芳胺盐酸盐、聚乙烯亚胺、聚二甲基二烯丙基酰胺、聚赖氨酸及其组合构成的组,但不限于此。所述阴离子聚电解质可以选自由聚苯乙烯磺酸、聚丙烯酸、聚乙烯硫酸、肝素及其组合构成的组,但不限于此。
在使用如硅基板等带阴电荷的基板时,可以采取在基板上先涂布带与基板电荷相反的电荷的阳离子聚电解质溶液,然后涂布阳离子聚电解质溶液的方法。优选地,最后涂布的聚电解质溶液带与塑料粒子的电荷相反的电荷。通过上述过程,在基板上可以形成单层或多层的聚合物层。对在基板上涂布聚电解质溶液的方式没有特别限制,可以采用已知方式,也可以采取将基板负载于溶液中的方式。
在所述基板上形成的聚合物层起粘合剂作用,使得塑料粒子附着于基板上。并且,其使静电力作用于塑料粒子之间,以助于塑料粒子均匀隔开。参照图9,可以确定大小分别为100nm、150nm、200nm、350nm的塑料粒子在基板上隔离地布置的分布程度。在将聚合物层分别形成为1层、3层、5层、7层时,结果聚合物层的叠层次数越多,粒子的分布更加均匀。由此可知,聚合物层有助于塑料粒子的均匀分布。
塑料粒子优选为球形,而根据必要可以具有各种形状。所述塑料粒子可以在颗粒状态散布在形成有聚合物层的硅基板上,但也可以在将塑料粒子混合于特定溶液中后以旋涂等方法进行涂布。所述塑料粒子的排列可具有周期性,也可具有非周期性。由此,所述塑料粒子可以以均匀随机图案相互隔离地布置。
所述塑料可以选自由聚乙烯、聚丙烯、聚苯乙烯、聚对苯二甲酸乙二酯、聚对苯二甲酸丁二酯、聚碳酸酯、聚甲基丙烯酸甲酯、聚苯醚、聚缩醛组成的组,但不限于此。优选地,这些塑料粒子的直径为纳米级。
在塑料粒子分别分散于适当位置时,通过氧等离子体处理来除去聚合物层或溶液成分。接着,在所述塑料粒子之间形成催化剂层,此时可以采用附着有塑料粒子的硅基板上沉积催化剂层的方法。具体地,可以采用溅射、电子束沉积、真空沉积、化学气相沉积、物理气相沉积、原子层沉积(Atomic Layer Deposition;ALD)等方法。
通过所述沉积过程,不但在塑料粒子的露出表面而且在塑料粒子之间的空间形成催化剂层。接着,除去所述塑料粒子,则在塑料粒子停留的位置处于不形成有催化剂层的状态。
所述催化剂层可包括银(Ag)、金(Au)、铂(Pt)、铜(Cu)或其组合。
在本发明中,通过以金属催化剂实现的化学湿蚀刻而形成纳米线阵列。湿蚀刻是指使需要蚀刻的材料与蚀刻液接触,以通过化学反应进行蚀刻的方法。
蚀刻液的实例可包括酸(acid)和过氧化物。所述酸(acid)的代表性的例子可例举氢氟酸(HF),而所述过氧化物的代表性的例子可例举过氧化氢(H2O2)。如果适当调节包含于所述蚀刻液的酸(acid)和过氧化物的浓度,也就可以调节蚀刻所需的时间。
在与包括金属催化剂的催化剂层接触的硅基板的部位,过氧化氢通过金属催化剂还原,使得在硅内形成孔,而这些孔较多的区域露出于酸(acid)以溶解。
参照图2,具体反应机制如下。
(负极反应式)
H2O2+2H++2e-→2H2O
2H++2e-→H2
(正极反应式)
Si+2H2O→SiO2+4H++4e-
SiO2+6HF→H2SiF6+2H2O
Si+4HF→SiF4+4H++4e-
若反复进行如上反应,则催化剂层下部的硅被溶解以实现垂直蚀刻,而包含于催化剂层的金属向下方的硅下降。反复进行上述过程后,结束蚀刻,最后除去所述金属就可以得到所需的纳米线阵列。
并且,可以使用盐酸和硝酸的混合液即王水来除去包含于催化剂层的金属。
在本发明中,通过适当调节工艺条件来可以控制纳米线的结构变量。独立控制上述结构变量,即,直径、高度、密度、位置等的纳米线可以用于观察神经单位的界面。
作为控制结构变量的一个方法,通过控制塑料粒子的大小来可以调节纳米线的直径。如图3所示,通过使塑料粒子的大小分别变为100nm、150nm、240nm来制备线,结果,由图3(a)可知制得直径100nm的线,由图3(b)可知制得直径150nm的线,由图3(c)可知制得直径240nm的线。
并且,通过控制用蚀刻液进行蚀刻的时间来可以调节纳米线的高度即纳米线的长度,蚀刻时间越长,线的高度或长度变长。如图4所示,在蚀刻时间为1分钟时(图4(a))纳米线的平均高度小于0.9μm,在蚀刻时间为2分钟时(图4(b))纳米线的平均高度为1.4μm,在蚀刻时间为3分钟时(图4(c))纳米线的平均高度为1.8μm。
并且,通过控制所述塑料粒子之间的间隔来可以调节纳米线阵列的密度。在制备工艺上,通过调节用去离子水对包含塑料粒子的溶液进行稀释的倍率来可以调节包含于溶液中的塑料粒子的密度,而通过涂布所述溶液来可以控制涂布的塑料粒子之间的间隔。
如图5所示,如果适当调节包含塑料粒子的溶液的去离子水稀释倍率,就可以制备密度被调节使得每100μm2断面积中纳米线个数分别350以下(图5(a)),700以下(图5(b)),1400以下(图5(c))的纳米线阵列基板。
本发明的纳米线阵列的结构可以通过形成一定图案来制备为具有周期性的结构。即通过结合金属催化剂化学蚀刻(MACE;metal assisted chemical etching)法和光刻(photolithography)法来可以实现。
参照图7,通过形成图案进行蚀刻的过程说明如下。
在硅基板上通过旋涂涂覆光刻胶,使用所需的图案掩模进行光刻工艺。在图案化的硅基板上通过层层自组装法形成聚合物层后,布置所需大小的塑料粒子。通过如上所述的方法沉积金属催化剂层,然后加入蚀刻液中进行化学反应,则可以仅在所需的图案化部分形成垂直型纳米线阵列结构。
并且,通过随意分散塑料粒子进行涂覆来可以制备具有非周期性的纳米结构。即,通过结合层层自组装(layer-by-layer self-assembly)法和纳米球刻蚀(nanospherelithography)法,来不是以六边形格子图案布置而是任意分散纳米球来进行涂覆,从而能够独立调节纳米线的几何学变量,制备排列呈非周期性的纳米线阵列。
通过TEM及EDX对所制得的硅纳米线的特性进行分析,结果如图6所示。
由TEM可确定所制得的硅纳米线的结晶性和表面结构。纳米线的表面以非晶形式存在,且具有通过蚀刻制备时呈现的特点即较多微孔。纳米线的内部具有结晶形式,呈硅晶片本来具有的结晶性。而且,通过EDX测定分析硅纳米线的成分,结果,可确定其包含硅和氧原子,因此,可以类推硅纳米线表面包括氧化硅层。
并且,以硅纳米线为模板,在外表面上涂覆由例如Si、Ge、Cu、Ni、Cr、Fe、Ag、Ti、Co、Zn、Mg、Pt、Pd、Os、Au、Pb、Ir、Mo、V、Al等金属和其合金,如SnO2、Cr2O3、Fe2O3、Fe3O4、FeO、NiO、AgO、TiO2、Co2O3、Co3O4、CoO、ZnO、PtO、PdO、VO2、MoO2及PbO等金属氧化物,如聚酰亚胺等聚合物,或者,例如Ti/TiO2等具有叠层结构的其组合构成的至少一个以上的材料层,从而,可以提供能够赋予预定的光学、电性、磁性、机器或化学功能的核-壳纳米线结构。涂覆于二氧化硅纳米线的所述材料可以通过化学气相沉积、原子层沉积、溅射等公知的薄膜沉积方法来形成。
在部分实施例中,在涂覆所述材料层之后,除去所述硅纳米线,从而可以提供具有仅存留所述至少一个以上的材料层的结构的纳米管阵列结构。如上所示,用作模板的所述硅纳米线根据元件制造方法可以存在于纳米管阵列结构内部,或可以通过利用等离子体的干蚀刻或利用HF的湿蚀刻而被除去。
形成核-壳纳米线结构的方法如下。需要置换使用上述的方法制得的硅纳米线模板的表面的过程。通过溶胶-凝胶法制备FeOx溶液后,将表面处理的硅纳米线模板加入所制得的溶液中。然后,进行氧化水处理,则如图8所示,根据硅纳米线的形状形成FeOx的核-壳结构。

Claims (9)

1.一种硅纳米线阵列的制备方法,其特征在于,包括以下步骤:
使塑料粒子以均匀随机图案相互隔离地布置于形成有层状自组装聚合物层的硅基板上;
通过对形成于所述硅基板上的所述层状自组装聚合物层进行氧等离子体处理,除去所述塑料粒子之间的所述层状自组装聚合物层;
在所述塑料粒子之间形成催化剂层;
除去所述塑料粒子;
通过湿蚀刻工艺,垂直蚀刻与所述催化剂层接触的硅基板部位;及
除去所述催化剂层,
其中,所述硅纳米线阵列的密度通过控制所述塑料粒子之间的间隔来调节,
其中,所述层状自组装聚合物层通过交替进行在所述硅基板上涂布阳离子聚电解质溶液的工艺和涂布阴离子聚电解质溶液的工艺而成。
2.根据权利要求1所述的硅纳米线阵列的制备方法,其特征在于,所述阳离子聚电解质选自由聚芳胺盐酸盐、聚乙烯亚胺、聚二甲基二烯丙基酰胺、聚赖氨酸及其组合构成的组。
3.根据权利要求1所述的硅纳米线阵列的制备方法,其特征在于,所述阴离子聚电解质选自由聚苯乙烯磺酸、聚丙烯酸、聚乙烯硫酸、肝素及其组合构成的组。
4.根据权利要求1所述的硅纳米线阵列的制备方法,其特征在于,所述塑料选自由聚乙烯、聚丙烯、聚苯乙烯、聚对苯二甲酸乙二酯、聚对苯二甲酸丁二酯、聚碳酸酯、聚甲基丙烯酸甲酯、聚苯醚、聚缩醛组成的组。
5.根据权利要求1所述的硅纳米线阵列的制备方法,其特征在于,所述催化剂层包括银(Ag)、金(Au)、铂(Pt)、铜(Cu)或其组合。
6.根据权利要求1所述的硅纳米线阵列的制备方法,其特征在于,所述形成催化剂层的步骤采用沉积法。
7.根据权利要求4所述的硅纳米线阵列的制备方法,其特征在于,通过使用含有酸(acid)或过氧化物的溶液来进行所述湿蚀刻工艺。
8.根据权利要求1所述的硅纳米线阵列的制备方法,其特征在于,通过控制所述塑料粒子的大小来调节硅纳米线的直径。
9.根据权利要求1所述的硅纳米线阵列的制备方法,其特征在于,通过控制所述蚀刻步骤的蚀刻时间来调节硅纳米线的高度。
CN201480052091.1A 2013-07-22 2014-07-14 硅纳米线阵列的制备方法 Expired - Fee Related CN105555705B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
KR20130086180 2013-07-22
KR10-2013-0086180 2013-07-22
PCT/KR2014/006294 WO2015012516A1 (ko) 2013-07-22 2014-07-14 실리콘 나노 와이어 어레이의 제조방법

Publications (2)

Publication Number Publication Date
CN105555705A CN105555705A (zh) 2016-05-04
CN105555705B true CN105555705B (zh) 2018-10-16

Family

ID=52393505

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201480052091.1A Expired - Fee Related CN105555705B (zh) 2013-07-22 2014-07-14 硅纳米线阵列的制备方法

Country Status (4)

Country Link
US (1) US9780167B2 (zh)
KR (1) KR101827656B1 (zh)
CN (1) CN105555705B (zh)
WO (1) WO2015012516A1 (zh)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104157675A (zh) * 2014-08-05 2014-11-19 京东方科技集团股份有限公司 一种oled显示器件及其制作方法、显示装置
CN106587068A (zh) * 2016-12-12 2017-04-26 陕西科技大学 一种利用二氧化锡制备单根Si纳米线的方法
CN106637127A (zh) * 2016-12-12 2017-05-10 陕西科技大学 一种利用二氧化锡制备Si纳米线多线阵列的方法
CN106684175B (zh) * 2017-02-15 2019-02-19 中国科学院合肥物质科学研究院 具有色彩调变的太阳能电池及其制备方法
CN111803231A (zh) * 2020-06-28 2020-10-23 深圳大学 一种仿生微/纳米抗菌结构及其制造方法与应用
CN113264498A (zh) * 2021-04-08 2021-08-17 哈尔滨工业大学(深圳) 金属氧化物界面装置及其制备方法与应用
CN115321474B (zh) * 2022-09-06 2024-07-09 杭州电子科技大学 一种基于soi硅片的硅纳米线陀螺仪的制备方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100550452B1 (ko) * 2004-10-19 2006-02-08 한국과학기술원 정배열된 금속 나노점을 이용한 다중비트 비휘발성 메모리소자 및 그 제조 방법
KR100987331B1 (ko) * 2008-04-30 2010-10-13 성균관대학교산학협력단 액상 증착 기술을 이용한 나노구조체의 제조방법 및 그에의해 제조된 나노구조체
KR20110123578A (ko) * 2010-05-07 2011-11-15 국립대학법인 울산과학기술대학교 산학협력단 실리콘 나노 와이어의 제조방법 및 이를 이용한 리튬 이차 전지의 제조방법
KR20120018499A (ko) * 2010-08-23 2012-03-05 한국표준과학연구원 다공성 다층 금속박막을 이용한 실리콘 나노선 어레이 제조방법
CN102891015A (zh) * 2011-07-18 2013-01-23 光州科学技术院 纳米结构体阵列基板及其制备方法和染料敏化太阳能电池
CN103038671A (zh) * 2010-07-30 2013-04-10 光州科学技术院 微纳米组合结构物及其制备方法及光学器件的制备方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102714137B (zh) * 2009-10-16 2015-09-30 康奈尔大学 包括纳米线结构的方法和装置
KR101203136B1 (ko) * 2010-03-22 2012-11-20 국립대학법인 울산과학기술대학교 산학협력단 나노 와이어 제조 방법
KR101364019B1 (ko) * 2010-11-26 2014-02-18 성균관대학교산학협력단 유무기-하이브리드 계층적 구조체 및 이를 이용한 초소수성 또는 초친수성 표면의 제조방법
US20120214066A1 (en) * 2011-02-17 2012-08-23 Board Of Regents, The University Of Texas System High Aspect Ratio Patterning of Silicon

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100550452B1 (ko) * 2004-10-19 2006-02-08 한국과학기술원 정배열된 금속 나노점을 이용한 다중비트 비휘발성 메모리소자 및 그 제조 방법
KR100987331B1 (ko) * 2008-04-30 2010-10-13 성균관대학교산학협력단 액상 증착 기술을 이용한 나노구조체의 제조방법 및 그에의해 제조된 나노구조체
KR20110123578A (ko) * 2010-05-07 2011-11-15 국립대학법인 울산과학기술대학교 산학협력단 실리콘 나노 와이어의 제조방법 및 이를 이용한 리튬 이차 전지의 제조방법
CN103038671A (zh) * 2010-07-30 2013-04-10 光州科学技术院 微纳米组合结构物及其制备方法及光学器件的制备方法
KR20120018499A (ko) * 2010-08-23 2012-03-05 한국표준과학연구원 다공성 다층 금속박막을 이용한 실리콘 나노선 어레이 제조방법
CN102891015A (zh) * 2011-07-18 2013-01-23 光州科学技术院 纳米结构体阵列基板及其制备方法和染料敏化太阳能电池

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Electrostatic Absorption of Polystyrene Nanospheres onto the Surface of an Ultrathin Polymer Prepared by Using an Alternate Absorption Technique.;Takeshi Serizawa, Hiroko Takeshita, and Mitsuru Akashi.;《Langmuir》;19980625;第14卷;第4088页左栏第1段-第4090页左栏第1段,图1、9 *
Fabriction of Silicon Nanowire Arrays with Controllaed Diameter, Length, and Density.;Zhipeng Huang, Hui Fang, and Jing Zhu.;《Adv. Mater.》;20070207;第19卷;第744页右栏第1段-第745页右栏第2段,图1-4 *

Also Published As

Publication number Publication date
US9780167B2 (en) 2017-10-03
WO2015012516A1 (ko) 2015-01-29
US20160308001A1 (en) 2016-10-20
KR20160041935A (ko) 2016-04-18
CN105555705A (zh) 2016-05-04
KR101827656B1 (ko) 2018-02-08

Similar Documents

Publication Publication Date Title
CN105555705B (zh) 硅纳米线阵列的制备方法
Ossai et al. Nanostructure and nanomaterial characterization, growth mechanisms, and applications
Li et al. Design of core–shell heterostructure nanofibers with different work function and their sensing properties to trimethylamine
Choi et al. Hollow ZnO nanofibers fabricated using electrospun polymer templates and their electronic transport properties
Zhang et al. Brush-like hierarchical ZnO nanostructures: synthesis, photoluminescence and gas sensor properties
Tak et al. Controlled growth of well-aligned ZnO nanorod array using a novel solution method
Wang et al. Hierarchical SnO2 nanostructures: recent advances in design, synthesis, and applications
Chen et al. Nanowires assembled SnO2 nanopolyhedrons with enhanced gas sensing properties
US20130143407A1 (en) Method for producing a thin single crystal silicon having large surface area
KR101269871B1 (ko) 3차원 다공성 구조체 및 이의 제조 방법
Cheng et al. High-quality ZnO nanowire arrays directly fabricated from photoresists
CN103781723B (zh) 3d纳米微粒集合结构体及使用它的气体传感器
US20120097917A1 (en) Aligned, Coated Nanowire Arrays for Gas Sensing
CN103945966A (zh) 用于在基底上形成金纳米线的方法及由该方法形成的金纳米线
KR101203136B1 (ko) 나노 와이어 제조 방법
KR20120121511A (ko) 나노 구조를 갖는 금속산화물반도체 가스센서 및 그 제조방법
Comini et al. One-and two-dimensional metal oxide nanostructures for chemical sensing
Nekita et al. Face-selective crystal growth of hydrothermal tungsten oxide nanowires for sensing volatile molecules
Chen et al. Silicon carbide nano-via arrays fabricated by double-sided metal-assisted photochemical etching
CN113125406A (zh) 一种具有微观有序纳米结构sers基底及制备方法
Boppella et al. Advances in synthesis of nanostructured metal oxides for chemical sensors
KR20160013749A (ko) 금 나노구조체의 제조방법, 이에 의해 제조된 금 나노구조체를 포함하는 3차원 골드 전극, 및 센서
KR101129873B1 (ko) 나노입자 선 제조방법 및 나노입자 네트워크 제조방법과 이를 이용한 나노구조물 제조방법
KR100969478B1 (ko) Pdms를 이용한 나노 소자의 제조방법
Wu et al. A new route to fabricate large-area, compact Ag metal mesh films with ordered pores

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20181016

CF01 Termination of patent right due to non-payment of annual fee