CN105549328A - 在蚀刻材料中制造三维结构的方法 - Google Patents

在蚀刻材料中制造三维结构的方法 Download PDF

Info

Publication number
CN105549328A
CN105549328A CN201510664550.8A CN201510664550A CN105549328A CN 105549328 A CN105549328 A CN 105549328A CN 201510664550 A CN201510664550 A CN 201510664550A CN 105549328 A CN105549328 A CN 105549328A
Authority
CN
China
Prior art keywords
etching material
energy input
overcoat wall
input method
dimensional structure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201510664550.8A
Other languages
English (en)
Other versions
CN105549328B (zh
Inventor
米夏埃尔·蒂尔
罗门·莱茵哈德·莱茵那
法比安·尼斯勒
晏·唐基
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nanuo three dimensional Technology Holding Co.,Ltd.
Original Assignee
Nanoscribe GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=53835320&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=CN105549328(A) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Nanoscribe GmbH filed Critical Nanoscribe GmbH
Publication of CN105549328A publication Critical patent/CN105549328A/zh
Application granted granted Critical
Publication of CN105549328B publication Critical patent/CN105549328B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/704162.5D lithography
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/10Processes of additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C33/00Moulds or cores; Details thereof or accessories therefor
    • B29C33/38Moulds or cores; Details thereof or accessories therefor characterised by the material or the manufacturing process
    • B29C33/3842Manufacturing moulds, e.g. shaping the mould surface by machining
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C35/00Heating, cooling or curing, e.g. crosslinking or vulcanising; Apparatus therefor
    • B29C35/02Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould
    • B29C35/08Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould by wave energy or particle radiation
    • B29C35/0805Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould by wave energy or particle radiation using electromagnetic radiation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/10Processes of additive manufacturing
    • B29C64/106Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material
    • B29C64/124Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material using layers of liquid which are selectively solidified
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/10Processes of additive manufacturing
    • B29C64/106Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material
    • B29C64/124Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material using layers of liquid which are selectively solidified
    • B29C64/129Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material using layers of liquid which are selectively solidified characterised by the energy source therefor, e.g. by global irradiation combined with a mask
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/10Processes of additive manufacturing
    • B29C64/106Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material
    • B29C64/124Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material using layers of liquid which are selectively solidified
    • B29C64/129Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material using layers of liquid which are selectively solidified characterised by the energy source therefor, e.g. by global irradiation combined with a mask
    • B29C64/135Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material using layers of liquid which are selectively solidified characterised by the energy source therefor, e.g. by global irradiation combined with a mask the energy source being concentrated, e.g. scanning lasers or focused light sources
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/10Processes of additive manufacturing
    • B29C64/141Processes of additive manufacturing using only solid materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/10Processes of additive manufacturing
    • B29C64/141Processes of additive manufacturing using only solid materials
    • B29C64/153Processes of additive manufacturing using only solid materials using layers of powder being selectively joined, e.g. by selective laser sintering or melting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/20Apparatus for additive manufacturing; Details thereof or accessories therefor
    • B29C64/264Arrangements for irradiation
    • B29C64/268Arrangements for irradiation using laser beams; using electron beams [EB]
    • B29C64/273Arrangements for irradiation using laser beams; using electron beams [EB] pulsed; frequency modulated
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/20Apparatus for additive manufacturing; Details thereof or accessories therefor
    • B29C64/264Arrangements for irradiation
    • B29C64/277Arrangements for irradiation using multiple radiation means, e.g. micromirrors or multiple light-emitting diodes [LED]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/20Apparatus for additive manufacturing; Details thereof or accessories therefor
    • B29C64/264Arrangements for irradiation
    • B29C64/277Arrangements for irradiation using multiple radiation means, e.g. micromirrors or multiple light-emitting diodes [LED]
    • B29C64/282Arrangements for irradiation using multiple radiation means, e.g. micromirrors or multiple light-emitting diodes [LED] of the same type, e.g. using different energy levels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/20Apparatus for additive manufacturing; Details thereof or accessories therefor
    • B29C64/295Heating elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/40Structures for supporting 3D objects during manufacture and intended to be sacrificed after completion thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y10/00Processes of additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y30/00Apparatus for additive manufacturing; Details thereof or accessories therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y80/00Products made by additive manufacturing
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/0037Production of three-dimensional images
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/20Exposure; Apparatus therefor
    • G03F7/2022Multi-step exposure, e.g. hybrid; backside exposure; blanket exposure, e.g. for image reversal; edge exposure, e.g. for edge bead removal; corrective exposure
    • G03F7/2024Multi-step exposure, e.g. hybrid; backside exposure; blanket exposure, e.g. for image reversal; edge exposure, e.g. for edge bead removal; corrective exposure of the already developed image
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/20Exposure; Apparatus therefor
    • G03F7/2051Exposure without an original mask, e.g. using a programmed deflection of a point source, by scanning, by drawing with a light beam, using an addressed light or corpuscular source
    • G03F7/2053Exposure without an original mask, e.g. using a programmed deflection of a point source, by scanning, by drawing with a light beam, using an addressed light or corpuscular source using a laser
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C35/00Heating, cooling or curing, e.g. crosslinking or vulcanising; Apparatus therefor
    • B29C35/02Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould
    • B29C35/08Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould by wave energy or particle radiation
    • B29C35/0805Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould by wave energy or particle radiation using electromagnetic radiation
    • B29C2035/0827Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould by wave energy or particle radiation using electromagnetic radiation using UV radiation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C35/00Heating, cooling or curing, e.g. crosslinking or vulcanising; Apparatus therefor
    • B29C35/02Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould
    • B29C35/08Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould by wave energy or particle radiation
    • B29C35/0805Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould by wave energy or particle radiation using electromagnetic radiation
    • B29C2035/0833Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould by wave energy or particle radiation using electromagnetic radiation using actinic light
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C35/00Heating, cooling or curing, e.g. crosslinking or vulcanising; Apparatus therefor
    • B29C35/02Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould
    • B29C35/08Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould by wave energy or particle radiation
    • B29C35/0805Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould by wave energy or particle radiation using electromagnetic radiation
    • B29C2035/0838Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould by wave energy or particle radiation using electromagnetic radiation using laser
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2105/00Condition, form or state of moulded material or of the material to be shaped
    • B29K2105/0058Liquid or visquous
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2009/00Layered products

Abstract

本发明涉及一种在蚀刻材料中制造三维结构的方法,所述蚀刻材料可借助能量输入方法而聚合并由此而固化,其中,首先借助第一空间分辨型能量输入方法这样来聚合待制结构的外套壁,使得一定体积的未聚合蚀刻材料被围住,在中间显影步骤中移除已聚合于外套壁周围的蚀刻材料,而后借助第二能量输入方法来聚合被所述外套壁围住的所述体积。

Description

在蚀刻材料中制造三维结构的方法
技术领域
本发明涉及一种在蚀刻材料中制造三维结构的方法。
背景技术
此类蚀刻方法例如应用于原型制造或具有特殊形状要求的工件制造。这类方法尤其还用来制造微结构或纳米结构,例如为了实验目的以及在要求有较大设计自由度的领域。其用途例如是形成可模制的表面形貌,制造大规模复制所需要的模板或模具,制造适用于光导体的插头以及制造合适的医用假体。
已知有所谓的立体光刻法(例如公开于US4,575,330A1),其中在由液态蚀刻材料(特别是光聚合物)组成的浴中,通过用记录束进行选择性曝光来逐层形成期望结构。为此,记录束通过局部曝光分别使蚀刻材料浴表面的一层以期望图形聚合。而后,通过在蚀刻材料浴中逐步降低载体衬底来逐层形成所述结构。这方面进一步已知(例如公开于DE10507881B4),在逐层形成的结构上设置附加支撑结构,这些支撑结构同样产生于蚀刻材料中且一般在所述结构外部延伸,以便使所述结构抵靠在载体衬底上。这样的支撑结构能防止未完成的结构坍塌。
上述方法虽能以较大设计自由度和较高精度制造结构,但需要很长的处理时间,尤其是当需要制造大体积的相连结构时。这一问题尤其出现在期望结构既具有大体积区段、又具有结构尺寸较小的区域的情况下。如果由于结构化尺寸小而必须采用高空间分辨率,大体积区域的制造就会大幅延长处理时间。
发明内容
本发明的目的是实现以较高的设计自由度和可能的最短处理时间来制造结构,同时确保所产生的结构具有较高的精确度和形状精度。
本发明用以达成该目的的解决方案为一种在蚀刻材料中制造三维结构的方法。期望的三维结构产生于蚀刻材料中,该蚀刻材料可通过能量输入方法(例如辐照、加热)而受控聚合并由此而固化或硬化。所述蚀刻材料在未聚合状态下优选呈液态、粘滞状、凝胶状或固态。例如使用抗蚀剂,特别是负性抗蚀剂。根据所述方法,首先借助第一空间分辨型能量输入方法这样来定义(例如在蚀刻材料中以空间分辨方式聚合)待制结构的外套壁,使得该外套壁将一定体积的未聚合蚀刻材料围住。随后实施中间显影步骤,在该中间显影步骤中将已聚合外套壁周围的蚀刻材料至少部分移除。接下来通过第二能量输入方法来聚合(即固化或硬化)被外套壁围住的蚀刻材料体积。
即当蚀刻材料处于未聚合的初始状态时,首先用外套壁将一定体积的蚀刻材料与周围的蚀刻材料隔开。为此选择一种能以必要的空间分辨率产生该外套壁的能量输入方法。用外套壁在周围的蚀刻材料中定义期望结构。在中间显影步骤中将周围的蚀刻材料至少部分移除,优选完全移除。
因此,所述第一方法的高空间分辨率仅用来记录外套壁。而后可以通过不具有高空间分辨率的能量输入来聚合并固化被围蚀刻材料。这样能节省大量处理时间。尤其是不需要采用耗时的空间分辨型能量输入方法来记录大体积区段。所产生的结构特征(壁、支撑结构等等)的尺寸例如可以是纳米尺度(<10e-1μm)、微尺度(10e-1-10e+2μm)和中尺度(10e+2–10e+4μm)。所产生的体积虽然原则上不受限制,但在典型的应用领域可以处于<1立方厘米的范围。
本发明的方法借助空间分辨型第一能量输入方法产生包覆式外套壁,因而可在大幅缩短处理时间的同时确保较高的空间分辨率。这样就实现了处理时间更短的快速原型制造。
原则上可以设想的是,被围体积在第二能量输入过程之后具有不同于周围外套壁的聚合度和/或不同于周围外套壁的机械特性和/或不同于周围外套壁的光学特性。借此可以产生具有不同机械或光学特性的结构。此外也不必再设置外部支撑结构。这样的外部支撑结构在前述用于在蚀刻材料中逐层形成结构的方法中的主要功能是,将逐层形成的结构固定于蚀刻材料浴中并防止未完成结构的区段发生形成外套壁所不允许的偏移(Wegschwimmen)。
所述第二能量输入方法优选不同于所述第一能量输入方法。具体而言,第二能量输入方法可以被设计成非空间分辨型方法以及/或者可作用于被外套壁围住的全部未聚合蚀刻材料。因此,第一能量输入方法可具有数倍于第二能量输入方法的空间分辨率。举例而言,第二能量输入方法可以是加热方法、烘焙方法或其他的固化方法。例如,可以将包含已聚合外套壁的结构送入炉(例如对流炉或管式炉)内或者与加热装置(例如加热板)接触。也可以采用对微波辐照、红外线辐照、紫外线辐照加以利用的能量输入方法。
相比之下,第一空间分辨型能量输入方法是在辐射源的记录束的空间上较窄且尤其可移动的聚焦区内聚合蚀刻材料。也可以并行实施所述方法,其中使用数个辐射源的数个记录束的一或数个能形成空间分辨曝光图形的聚焦区。所述第一能量输入方法例如可以是激光蚀刻法或电子束蚀刻法,特别是3D激光蚀刻法。用记录束定义结构虽然比较耗时,但能得到高度精确的结构。由于仅定义外套壁,还能实现较短的结构化时间。
第一能量输入方法优选通过在记录束聚焦区内进行的双光子吸收或多光子吸收来聚合蚀刻材料。具体这样来设计蚀刻材料并且根据蚀刻材料这样来调整辐射源,使得只有借助双光子吸收或多光子吸收才能实现聚合。为此可选择如此之大的记录束波长(和如此之低的光子能量),使得只有通过同时吸收两个或数个光子才达到实现聚合所需要的能量输入。这个吸收过程的概率与强度有关并且与其余记录束相比在聚焦区内有大幅提高。基本考虑的结果是,吸收两个或数个光子的概率可能与辐射强度的二次幂或更高次幂有关。而吸收一个光子的概率则具有不同的强度相关性。记录束进入蚀刻材料时原则上还会发生衰减。这就可以在强度减小与蚀刻材料透入深度的关系上例如适用比尔定律。这导致了,利用单光子吸收在蚀刻材料表面下方深处的聚焦区内实现空间分辨型聚合是有问题的,因为由于在表面下方聚焦时所发生的衰减,聚焦区内不见得存在最高强度。因此,前述的立体光刻法总是仅通过在蚀刻材料浴表面曝光蚀刻材料来逐层形成结构。利用双光子吸收或多光子吸收时不必采用这种在蚀刻材料浴中逐层降低结构的做法,因为即使在透入深度更大的情况下,也能通过其他定律来将聚合限制在记录束的聚焦区上。
根据优选技术方案,借助所述第一空间分辨型能量输入方法并优选联合所述外套壁共同定义(即聚合)位于所述外套壁内部的支撑结构。因此,该支撑结构具体位于被外套壁围住的体积内部并且也可以视情况将该体积划分成若干分体积。定义支撑结构时,与外套壁小幅重叠也可能是有益的,因此支撑结构的元件与外套壁小幅重叠且因此而与外套壁固定连接。具体而言,所述支撑结构具有在外套壁的区段之间延伸以及/或者在外套壁的区段与衬底之间延伸的支撑元件。通过支撑结构可以确保由外套壁规定的形状的形状精度。尤其可以防止由外套壁定义的结构在实施中间显影步骤、第二能量输入方法或固化步骤期间发生变形或坍塌。整体上可以确保被围体积固化后所获得的形状与外套壁所规定的形状相一致。
与设置外部支撑结构的已知结构化方法不同的是,制成期望结构后不必移除内部支撑结构。这样就能省去内体积固化后对结构进行后处理(精整)所需要的处理时间。此外,外部支撑结构被移除后通常会形成废料,这在使用昂贵的蚀刻材料的情况下会导致非期望的成本上升,而采用内部支撑结构能避免这种情况。
通过支撑结构的设计还能调节和影响期望结构的机械特性。举例而言,通过合适的支撑结构可在外套壁内产生弹性芯部。可以对期望结构的弹性施加影响。所述支撑结构例如可被构造成桁架式样、3D蜂窝格栅式样、立方格栅和/或在外套壁的区段之间延伸的支杆阵列或壁阵列。
所述外套壁优选是完全包围一定体积的外套壁。但也可以设想,所述蚀刻材料被安置在衬底上并且该衬底的表面的区段连同外套壁一起围住未聚合的蚀刻材料体积。所述衬底原则上可为任意一种衬底,例如玻璃晶片或半导体晶片、陶瓷件或模制体。因此,衬底表面作为被围体积的一部分边界。如此一来,外套壁不必完全围住该体积,也不必形成于第一能量输入步骤。这样能进一步节省时间,因为被围体积部分由衬底封闭。
优选这样来设计所述中间显影步骤,使得被外套壁围住的未聚合蚀刻材料体积基本保持不受影响,具体保持未固化和/或未溶解。所述中间显影步骤例如可以是湿式化学显影步骤且具体被设计用来引起外套壁周围的蚀刻材料的脱落。例如可以采用由显影剂组成的浴。
优选使用既可光聚合又可热聚合的蚀刻材料。光聚合材料在此例如是指可借助第一能量输入方法例如用由光、激光、紫外线或类似之物形成的记录束来聚合的光固化塑料。热聚合蚀刻材料例如是在阈温度以上被加热时转变到聚合状态的材料。因此,第二能量输入方法优选是加热。但也可以使用仅可光聚合的材料,其中第一能量输入方法是空间分辨辐照并且第二能量输入方法包括大体积辐照,例如紫外线固化。
所述材料壁可设置分别具有不同壁厚的壁段。借此可调节材料壁的机械特性。此外还可设想的是,仅那些由于结构形状原因而须高度稳定的壁段具有较大壁厚,例如以免外套壁在中间显影步骤中坍塌。
根据所述方法进一步的技术方案,可以在中间显影步骤之后对外套壁进行后固化,以及/或者在用第二能量输入方法完成聚合后对所得结构进行后固化。所述后固化例如可以包括固化步骤和/或在固化剂浴中进行的化学处理。
原则上可以设置前置的基于软件技术的数据处理过程,其中首先提供表示待制结构的数据(例如CAD数据),而后通过软件技术获得对应于至少一个外套壁的数据集,从而使得外套壁和被围体积共同形成期望结构。在此情况下,可用所述数据集来相应控制用于实施第一能量输入方法的装置(例如3D激光蚀刻机)。
在所述结构包含大体积区段的情况下,也可用分壁依序组成所述外套壁。为此,以依序产生数个分壁的方式来定义外套壁,其中通过依序移动并定位用于实施空间分辨型能量输入方法的装置的记录区来记录所述分壁,并且每次在记录区内定义(即聚合)一个分壁。
为此,首先可以在数据处理步骤中通过软件技术将表示所述结构的数据拆分成对应于所述分壁的分区,例如采用所谓的分裂技术。而后可对用于实施空间分辨型能量输入方法的装置(例如3D激光蚀刻机)进行相应控制。
所述记录区基本由能量输入装置或曝光装置的技术实况所规定,且具体包括能够以必要的空间分辨率将记录束导入的区域。尤其当用于实施空间分辨型能量输入方法的装置的记录区小于待制结构的大小时,由分壁组合形成外套壁的做法是有益的。
下面参照附图详细阐述本发明。
附图说明
图1为用于阐述所述制造方法的待制结构略图。
图2至图4为用于说明图1所示结构的制造步骤的略图。
图5为用于阐述具有其他设计特征的结构的制造方法的略图。
图6为用于阐述图5所示结构的中间制造步骤的略图。
图7为用于阐述更复杂结构的制造方法的略图。
具体实施方式
在附图和接下来的说明中,相同或相对应的特征分别用相同的附图标记标示。
首先结合图1至图4对第一示例性三维结构的形成进行示意性说明。
为此,首先通过软件技术提供表示待制结构10的数据(例如CAD数据)。此处示例性选择锥形结构10,需要用三维原型法在衬底14的表面12制造该结构10。为此,通过软件技术将表示结构10的数据拆分成结构10的外套壁16和位于外套壁16内部的体积段18。在图示示例中,体积段18一方面由外套壁16向外界定,另一方面被衬底14的表面12封闭。但也可以选择在所有方向上均由外套壁16界定以及/或者不布置在衬底上的结构10。
此外还通过软件技术将结构10拆分成分区20、20’,这些分区直接相抵接并且完全且例如无重叠地覆盖结构10。但根据所用仪器的用途和/或精度,小幅重叠也可能是有益的。每个分区20、20’中均如此这般包含有外套壁16的分壁22、22’,使得在拼合分区20、20’时,分壁22、22’(尤其是无重叠地)互为补充而形成完整的外套壁16。
下面联系图2至图4说明如何来实际制造所述数据以图1所示的方式进行表示的结构10。为此将衬底14例如置入由蚀刻材料24组成的浴中,该蚀刻材料因此而占据衬底14的表面12上方的空间(参见图2)。蚀刻材料24例如是既可光聚合又可热聚合的液态或粘性塑料抗蚀剂。这样就可以通过能量输入方法使蚀刻材料24受控聚合并由此而固化。例如采用第一空间分辨型能量输入方法来实现光聚合,该方法可在记录束的聚焦区内以空间分辨方式引发光聚合。借助第二能量输入方法还可例如实现热聚合,详见下文。
为了制造结构10,首先借助空间分辨型第一能量输入方法(例如在可空间移动的记录束聚焦区内进行光聚合)在蚀刻材料24中仅聚合并固化外套壁16。
用于产生空间分辨型能量输入的装置的记录区往往因精度要求而受到限制,因而依次在分区20、20’内记录结构细节。具体这样来选择分区20、20’,使得其分别位于用于产生第一空间分辨型能量输入的装置(例如激光蚀刻机)的记录区26内部。
因此如图2所示,首先将用于第一分辨型能量输入方法的记录区26定位在结构10的第一分区20上并记录第一分区20的分壁22。在接下来的步骤中将记录区26定位在结构10的另一分区20’上并记录(即聚合并固化)分壁22’。分壁22、22’完整组成外套壁16。由此,外套壁16和图示示例中的衬底14的表面12将一定体积28的未聚合蚀刻材料围住。其原因在于,所选择的用于产生外套壁16的第一能量输入方法具有较高的空间分辨率且受控仅聚合外套壁16。被围住的体积28对应于结构10的体积段18。
为了固化被围住的体积28以永久性地形成结构10,可在中间显影步骤中移除外套壁16周围的蚀刻材料,例如在由显影剂组成的浴中。
而后可将通过以上方式而外露的、由外套壁16和被围住的未聚合的蚀刻材料的体积28组成的结构送入用于产生第二能量输入方法的装置。第二能量输入方法不必再具有较高的空间分辨率。确切而言,第二能量输入方法可全面作用于被外套壁16围住的结构。例如,可将衬底14连同外套壁16和被围住的体积28一起送入加热炉。而后通过第二能量输入方法的能量输入来聚合并固化被围住的体积28。
如图4所示,通过第二能量输入方法的设计可以影响体积28的固化特性,从而在外套壁16内部产生体积段18,其中体积段18的例如物理特性有别于外套壁16。但也可以这样来设计第二能量输入方法,使得在体积28固化后形成均匀结构10,该结构由外套壁16及其所围住的体积段18组成,其中外套壁16和体积段18具有相同的结构特性和/或物理特性。
下面结合图5和图6阐述所述制造方法的进一步设计。图5所示内容仍有关于表示期望结构10的数据的准备。结构10仍被拆分成外套壁16和被围住的体积段18。此外还定义一个位于外套壁16内部的支撑结构30,其具有数个支撑元件32。在图示示例中,支撑元件32在外套壁16的区段与衬底14的表面12之间延伸。作为补充或替代方案,也可设置仅在外套壁的区段之间延伸的支撑元件。尤其在体积段仅被外套壁16围住并且体积段18不由衬底14的表面12界定的情况下考虑采用这一方案。
考虑到用于第一能量输入方法的记录区大小有限,可将结构10仍拆分成数个分区20、20’,这些分区仍分别包含组成外套壁16的分壁22、22’。在此情况下,分区20、20’中也包含有支撑结构30的分区段34、34’,因此通过拼合分区20、20’能形成完整的支撑结构30。
下面联系图6阐述结构10的实际形成,为此例如将衬底14送入由蚀刻材料24组成的浴中。在第一步骤中将记录区26定位在结构10的第一分区20上并借助空间分辨型第一能量输入方法来聚合外套壁16的分壁22和支撑结构30的分区段34。在接下来的步骤中将记录区26定位在结构10的另一分区20’上并记录其余分壁和支撑结构的分区段。借此将一定体积28的未聚合蚀刻材料24围在外套壁16内部及视情况围在衬底14的表面12内部。在此情况下,未聚合体积28被支撑结构30的已固化支撑元件32贯穿。由于支撑元件32在图示示例中是在外套壁16的区段与衬底表面12之间延伸,支撑元件32能够例如在接下来的中间显影步骤中防止外套壁16坍塌。在替代性技术方案中,在外套壁16的区段之间延伸的支撑元件32可以防止外套壁16的区域发生变形或偏移。
在接下来的方法步骤中,仍借助不必具有精确空间分辨率的第二能量输入方法来聚合被围住的体积28。可以根据需要而事先在中间显影步骤中移除材料。通过调节第二能量输入方法的参数,例如体积28也可以在聚合后具有不同于支撑结构30的物理特性和/或机械特性。这样就能调节结构10的机械特性。但也可以这样来选择第二能量输入方法,使得外套壁内部形成完全均匀的结构。
下面参照图7以更复杂的结构10为例,对表示该结构的数据的准备以实施所述制造方法进行说明。结构10仍被拆分成外套壁16及其所围住的体积段18。此外还拆分成数个分区20a、20b、20c、20d、20e、20f、20g。这些分区20a至20g仍分别包含有分壁22a、22b、…,为清楚起见,其中仅部分分壁标注了单独的附图标记。分区20a至20g可进一步包含具有在外套壁16的区段之间延伸的支撑元件和/或在外套壁16的区段与衬底表面12之间延伸的支撑元件的支撑结构(未示出)。
为了制造结构10,仍依序逐个记录分区20a至20g并且记录这些分区中所包含的分壁22以及可能存在的支撑结构的支撑元件或区段。其中,具体可按这样的顺序来处理所述分区,使得已记录的区段不会在记录下一分区期间发生变形或位置变化。在图示示例中,优选按附图标记所给出的顺序记录分区20a、20b、20c、20d、20e、20f、20g。举例而言,这样就能防止先前已记录的分区20g和在该分区内固化的分壁22g尚未得到其他分壁的支撑便在蚀刻材料浴中下沉。此外,外套壁16在不同分区20a至20g内还可具有壁厚不同的壁段。例如,可以将必须从结构10接收更大载荷的分区内的分壁(例如分区20d和20c内的分壁22d和22c)实施得更厚。

Claims (10)

1.一种在蚀刻材料(24)中制造三维结构(10)的方法,所述蚀刻材料可借助能量输入方法而聚合并由此而固化,其特征在于,
首先借助第一空间分辨型能量输入方法这样来聚合待制结构(10)的外套壁(16),使得一定体积(28)的未聚合蚀刻材料被围住;
在中间显影步骤中移除已聚合于外套壁(16)周围的蚀刻材料(24);
而后借助第二能量输入方法来聚合被所述外套壁(16)围住的所述体积(28)。
2.如权利要求1所述的在蚀刻材料(24)中制造三维结构(10)的方法,其特征在于,所述第二能量输入方法不同于所述第一能量输入方法,所述第二能量输入方法为非空间分辨型以及/或者作用于被所述外套壁(16)围住的全部未聚合蚀刻材料。
3.如权利要求1或2所述的在蚀刻材料(24)中制造三维结构(10)的方法,其特征在于,所述第一空间分辨型能量输入方法是在辐射源的记录束的可空间移动的聚焦区内聚合所述蚀刻材料。
4.如权利要求3所述的在蚀刻材料(24)中制造三维结构(10)的方法,其特征在于,通过在所述记录束的聚焦区内进行的双光子吸收或多光子吸收来聚合所述蚀刻材料。
5.如权利要求1或2所述的在蚀刻材料(24)中制造三维结构(10)的方法,其特征在于,此外还借助所述第一空间分辨型能量输入方法定义位于所述外套壁(16)内部的支撑结构(30),所述支撑结构具有在所述外套壁(16)的区段之间延伸的支撑元件。
6.如权利要求1或2所述的在蚀刻材料(24)中制造三维结构(10)的方法,其特征在于,所述蚀刻材料被安置在衬底(14)上,并且所述衬底(14)的表面(12)的区段连同所述外套壁(16)一起围住未聚合的蚀刻材料的体积(28)。
7.如权利要求1或2所述的在蚀刻材料(24)中制造三维结构(10)的方法,其特征在于,所述中间显影步骤使得被所述外套壁(16)围住的未聚合的蚀刻材料的体积(28)不受影响。
8.如权利要求1或2所述的在蚀刻材料(24)中制造三维结构(10)的方法,其特征在于,使用可光聚合和/或可热聚合的蚀刻材料(24)。
9.如权利要求1或2所述的在蚀刻材料(24)中制造三维结构(10)的方法,其特征在于,所述外套壁(16)具有数个壁厚不同的壁段(22a-22g)。
10.如权利要求1或2所述的在蚀刻材料(24)中制造三维结构(10)的方法,其特征在于,以依序产生数个分壁(22,22’;22a-22g)的方式来定义所述待制结构(10)的外套壁(16),其中通过依序移动并定位记录区(26)来定义所述分壁(22,22’;22a-22g),并且每次在所述记录区(26)内定义一个分壁(22,22’;22a-22g)。
CN201510664550.8A 2014-10-22 2015-10-14 在蚀刻材料中制造三维结构的方法 Active CN105549328B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102014221480.7A DE102014221480B4 (de) 2014-10-22 2014-10-22 Verfahren zum Herstellen einer dreidimensionalen Struktur
DE102014221480.7 2014-10-22

Publications (2)

Publication Number Publication Date
CN105549328A true CN105549328A (zh) 2016-05-04
CN105549328B CN105549328B (zh) 2018-04-13

Family

ID=53835320

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201510664550.8A Active CN105549328B (zh) 2014-10-22 2015-10-14 在蚀刻材料中制造三维结构的方法

Country Status (5)

Country Link
US (1) US9937664B2 (zh)
EP (1) EP3012688B2 (zh)
JP (1) JP6560953B2 (zh)
CN (1) CN105549328B (zh)
DE (1) DE102014221480B4 (zh)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6637081B2 (ja) 2015-06-30 2020-01-29 ザ ジレット カンパニー リミテッド ライアビリティ カンパニーThe Gillette Company Llc ポリマー刃先構造及びその製造方法
DE102015121748A1 (de) * 2015-12-14 2017-06-14 Cl Schutzrechtsverwaltungs Gmbh Vorrichtung zur generativen Herstellung eines dreidimensionalen Objekts
US10780599B2 (en) 2016-06-28 2020-09-22 The Gillette Company Llc Polymeric cutting edge structures and method of manufacturing polymeric cutting edge structures
US10562200B2 (en) * 2016-06-28 2020-02-18 The Gillette Company Llc Polymeric cutting edge structures and method of manufacturing polymeric cutting edge structures
DE102016014229A1 (de) 2016-11-30 2018-05-30 Giesecke+Devrient Currency Technology Gmbh Herstellverfahren für Druckplatten für den Stichtiefdruck sowie Druckplatte für den Stichtiefdruck
US10413167B2 (en) 2017-05-30 2019-09-17 Synaptive Medical (Barbados) Inc. Micro-optical surgical probes and micro-optical probe tips and methods of manufacture therefor
EP3702132B1 (de) 2019-02-26 2023-01-11 UpNano GmbH Verfahren zur lithographiebasierten generativen fertigung eines dreidimensionalen bauteils
US20220347917A1 (en) * 2019-06-24 2022-11-03 Essior International Method and Machine for the Production of an Optical Element by Additive Manufacturing
US11661468B2 (en) * 2020-08-27 2023-05-30 Align Technology, Inc. Additive manufacturing using variable temperature-controlled resins
DE102021130981A1 (de) * 2021-11-25 2023-05-25 Bayerische Motoren Werke Aktiengesellschaft Verfahren zur additiven Herstellung eines dreidimensionalen Objekts

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5456798A (en) * 1993-04-16 1995-10-10 Nippondenso Co., Ltd. Methods and apparatus for processing curved surface
DE3588184T2 (de) * 1984-08-08 1998-09-17 3D Systems Inc Stereolithographische Vorrichtung und Verfahren zur Herstellung von dreidimensionalen Gegenständen
US6730256B1 (en) * 2000-08-04 2004-05-04 Massachusetts Institute Of Technology Stereolithographic patterning with interlayer surface modifications
CN1822935A (zh) * 2003-07-11 2006-08-23 皇家飞利浦电子股份有限公司 一种制造用于产生光学表面的模型的方法、一种生产隐形眼镜的方法和一种供这些方法使用的设备

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5198159A (en) 1990-10-09 1993-03-30 Matsushita Electric Works, Ltd. Process of fabricating three-dimensional objects from a light curable resin liquid
BE1008128A3 (nl) 1994-03-10 1996-01-23 Materialise Nv Werkwijze voor het ondersteunen van een voorwerp vervaardigd door stereolithografie of een andere snelle prototypevervaardigingswerkwijze en voor het vervaardigen van de daarbij gebruikte steunkonstruktie.
US6364986B1 (en) * 1999-10-04 2002-04-02 The United States Of America As Represented By The Secretary Of The Navy High-strength parts formed using stereolithography

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3588184T2 (de) * 1984-08-08 1998-09-17 3D Systems Inc Stereolithographische Vorrichtung und Verfahren zur Herstellung von dreidimensionalen Gegenständen
US5456798A (en) * 1993-04-16 1995-10-10 Nippondenso Co., Ltd. Methods and apparatus for processing curved surface
US6730256B1 (en) * 2000-08-04 2004-05-04 Massachusetts Institute Of Technology Stereolithographic patterning with interlayer surface modifications
CN1822935A (zh) * 2003-07-11 2006-08-23 皇家飞利浦电子股份有限公司 一种制造用于产生光学表面的模型的方法、一种生产隐形眼镜的方法和一种供这些方法使用的设备

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
MANGIRDAS MALINAUSKAS等: "《Femtosecond laser fabrication of hybrid microoptical》", 《SPIE》 *

Also Published As

Publication number Publication date
DE102014221480A1 (de) 2016-04-28
EP3012688A1 (de) 2016-04-27
EP3012688B2 (de) 2023-02-08
US20160114530A1 (en) 2016-04-28
CN105549328B (zh) 2018-04-13
US9937664B2 (en) 2018-04-10
JP2016083933A (ja) 2016-05-19
JP6560953B2 (ja) 2019-08-14
EP3012688B1 (de) 2019-10-02
DE102014221480B4 (de) 2017-10-05

Similar Documents

Publication Publication Date Title
CN105549328A (zh) 在蚀刻材料中制造三维结构的方法
US8315499B1 (en) Functionally-graded three-dimensional ordered open-cellular microstructure and method of making same
JP4599553B2 (ja) レーザ加工方法および装置
KR102326904B1 (ko) 레이저 리소그래피에 의한 3d 구조를 제조하기 위한 방법, 및 해당 컴퓨터 프로그램 제품
JP6808349B2 (ja) 三次元の構造を製作する方法
JPH02111528A (ja) 三次元形状の形成方法
CN103852972B (zh) 一种双焦点微透镜阵列的微米压印与激光诱导成形方法
KR101954438B1 (ko) 3 차원 인쇄 장치
O'Neill et al. Mitigation and control of the overcuring effect in mask projection micro-stereolithography
JP2002127260A (ja) 三次元物体を形成する方法
Yu et al. Multiphoton polymerization using femtosecond Bessel beam for layerless three-dimensional printing
WO2020089421A1 (en) Improvements in and relating to polymer membranes
WO2023184565A1 (zh) 一种注塑模具及其制备方法
CN110244509A (zh) 利用超快激光双光子聚合制作衍射光学器件的方法
Tian et al. Fabrication and characterization of photonic crystals in photopolymer SZ2080 by two-photon polymerization using a femtosecond laser
KR102096608B1 (ko) 이형성을 높인 롤투롤 임프린트 유연 금형 및 이를 이용한 광도파로 제조 방법
Schmidt Laser-based micro-and nano-fabrication of photonic structures
JP2004130529A (ja) 光造形方法、光造形プログラム及び光造形装置
JP6796572B2 (ja) 三次元オブジェクト形成装置およびその方法
JPH03193433A (ja) 三次元形状の形成方法
JP2019107874A (ja) 積層造形法
Stender et al. Industrial-Scale Fabrication of Optical Components Using High-Precision 3D Printing: Aspects-Applications-Perspectives
KR101965261B1 (ko) 이광자 스테레오리소그라피에 의한 3차원 메쉬형 미세구조체 제조방법
CN103135338B (zh) 纳米级软性模具制作方法与装置
JP4079544B2 (ja) 光造形法及びその装置

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CP03 Change of name, title or address
CP03 Change of name, title or address

Address after: 6 Hermann von Helmholtz Plaza, Baden Wurttemberg, Germany 76344

Patentee after: Nanuo three dimensional Technology Holding Co.,Ltd.

Address before: Fort Baden, Germany

Patentee before: Nanons Cypress Co.,Ltd.