CN105525905A - 一种旋挖钻机功率自适应控制系统及其方法 - Google Patents

一种旋挖钻机功率自适应控制系统及其方法 Download PDF

Info

Publication number
CN105525905A
CN105525905A CN201410507798.9A CN201410507798A CN105525905A CN 105525905 A CN105525905 A CN 105525905A CN 201410507798 A CN201410507798 A CN 201410507798A CN 105525905 A CN105525905 A CN 105525905A
Authority
CN
China
Prior art keywords
rotating speed
target
current value
motor
pump
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201410507798.9A
Other languages
English (en)
Other versions
CN105525905B (zh
Inventor
徐楠
胡传正
左帅
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Construction Machinery Branch of XCMG
Original Assignee
Construction Machinery Branch of XCMG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Construction Machinery Branch of XCMG filed Critical Construction Machinery Branch of XCMG
Priority to CN201410507798.9A priority Critical patent/CN105525905B/zh
Publication of CN105525905A publication Critical patent/CN105525905A/zh
Application granted granted Critical
Publication of CN105525905B publication Critical patent/CN105525905B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

本发明公开了一种旋挖钻机功率自适应控制系统,该系统包括:压力传感器和控制器,其中压力传感器用于测量变量泵的出口压力,并将所述出口压力传送至控制器,控制器用于获取所述出口压力和发动机的目标转速,根据所述发动机的目标转速、所述出口压力以及泵控电流值的对应关系,查找所述泵控电流值并将泵控电流输出至所述变量泵,以调节变量泵的吸收功率。从而本发明实现了变量泵吸收功率对发动机输出功率的跟随,降低油耗。

Description

一种旋挖钻机功率自适应控制系统及其方法
技术领域
本发明涉及工程机械领域,特别涉及一种旋挖钻机功率自适应控制系统及其方法。
背景技术
在旋挖钻机的实际工作中,工况条件比较恶劣,且负载多变化,常因地质载荷变化大,动力系统与作业工况不匹配,使得发动机偏离低油耗区工作,机器性能得不到发挥。
目前,尽管采用了例如恒功率泵控系统,但在实际使用中,还是常常出现发动机与液压系统匹配效果差,调节不及时的现象,导致发动机转速下降过多,而较大的掉速行为会使系统工作不稳定,发动机偏离最佳工作点,增加油耗。
由于现有的旋挖钻机控制技术,单一考虑发动机的速度特性,当发动机掉速超过设定值时,才进行调节,因此出现调节不及时的现象,并且现有的旋挖钻机变量泵和液压系统的匹配方法,没有对发动机、液压系统及负载三者进行有效的协调匹配,因此节能效果较差。
发动机与变量泵是否很好的匹配,关键在于变量泵的吸收功率是否实现对发动机输出功率的跟随,而现有技术中变量泵吸收功率对发动机输出功率跟随的效果较差。
发明内容
本发明要解决的一个技术问题是:现有技术中变量泵吸收功率对发动机输出功率跟随的效果较差,导致油耗较高。
根据本发明的第一方面,提供了一种旋挖钻机功率自适应控制系统,包括:
压力传感器,用于测量变量泵的出口压力,并将所述出口压力传送至控制器;
控制器,用于获取所述出口压力和发动机的目标转速,根据所述发动机的目标转速、所述出口压力以及泵控电流值的对应关系,查找所述泵控电流值并将泵控电流输出至所述变量泵。
进一步,还包括:计算机,用于采集发动机的目标转速、变量泵出口压力、动力头转速、负载扭矩、泵控电流值以及油耗值,根据动力头转速和负载扭矩计算油耗比,确定在设定的发动机的目标转速情况下的最小油耗比,并获取与所述最小油耗比对应的泵控电流值以及出口压力,建立所述发动机的目标转速、出口压力以及泵控电流值之间的映射关系。
进一步,所述计算机根据动力头转速和负载扭矩计算油耗比为
进一步,还包括:所述控制器用于获取所述发动机的实际转速,计算所述实际转速与所述目标转速的差值,并且判断所述差值是否超过设定的门限值;如果是,则获取调节电流值并将调节电流输出至所述变量泵。
进一步,所述调节电流值为
调节电流值=a×(发动机目标转速-发动机实际转速)
其中,a为计算调节电流值的系数。
进一步,包括:所述控制器从档位旋钮获取档位值,并根据已保存的档位值与发动机的目标转速的对应关系,获取发动机的目标转速。
进一步,还包括:
钻杆转速传感器,用于测量动力头转速,并将所述动力头转速传输至所述控制器;
试验台,用于提供负载扭矩,并将所述负载扭矩传输至所述控制器;以及
燃油流量计,用于测量油耗值,并将所述油耗值传输至所述控制器。
进一步,还包括:转速传感器,用于测量所述发动机的实际转速,并将所述实际转速传送至所述控制器。
根据本发明的第二方面,提供了一种旋挖钻机功率自适应控制方法,包括:
获取变量泵的出口压力和发动机的目标转速;
根据所述发动机的目标转速、所述出口压力以及泵控电流值的对应关系,查找所述泵控电流值并将泵控电流输出至所述变量泵。
进一步,还包括:
采集发动机的目标转速、变量泵出口压力、动力头转速、负载扭矩、泵控电流值以及油耗值;
根据动力头转速和负载扭矩计算油耗比;
确定在设定的发动机的目标转速情况下的最小油耗比,并获取与所述最小油耗比对应的泵控电流值以及出口压力,建立所述发动机的目标转速、出口压力以及泵控电流值之间的映射关系。
进一步,根据动力头转速和负载扭矩计算油耗比为
进一步,在获取变量泵的出口压力和发动机的目标转速时,还包括:获取所述发动机的实际转速;以及在根据所述发动机的目标转速、所述出口压力以及泵控电流值的对应关系,查找所述泵控电流值之后,还包括:计算所述实际转速与所述目标转速的差值;判断所述差值是否超过设定的门限值;如果是,则获取调节电流值并将调节电流输出至所述变量泵。
进一步,所述调节电流值为
调节电流值=a×(发动机目标转速-发动机实际转速)
其中,a为计算调节电流值的系数。
本发明中,控制器根据所述发动机的目标转速、所述出口压力以及泵控电流值的对应关系,查找与出口压力和发动机的目标转速对应的所述泵控电流值并将泵控电流输出至所述变量泵,由变量泵根据泵控电流调节吸收功率,实现对发动机输出功率的跟随,从而降低油耗。
通过以下参照附图对本发明的示例性实施例的详细描述,本发明的其它特征及其优点将会变得清楚。
附图说明
构成说明书的一部分的附图描述了本发明的实施例,并且连同说明书一起用于解释本发明的原理。
参照附图,根据下面的详细描述,可以更加清楚地理解本发明,其中:
图1是示出根据本发明实施例的旋挖钻机功率自适应控制系统的电气连接图。
图2是示出根据本发明另一些实施例的旋挖钻机功率自适应控制系统的电气连接图。
图3是示出根据本发明实施例的旋挖钻机功率自适应控制系统的结构示意图。
图4是示出根据本发明实施例的旋挖钻机功率自适应控制方法的流程图。
图5是示出根据本发明一些实施例的获得发动机目标转速、变量泵出口压力与泵控电流值对应关系的方法的流程图。
图6是示出根据本发明一些实施例的采集数据的方法的流程图。
图7是示出根据本发明另一些实施例的旋挖钻机功率自适应控制方法的流程图。
具体实施方式
现在将参照附图来详细描述本发明的各种示例性实施例。应注意到:除非另外具体说明,否则在这些实施例中阐述的部件和步骤的相对布置、数字表达式和数值不限制本发明的范围。
同时,应当明白,为了便于描述,附图中所示出的各个部分的尺寸并不是按照实际的比例关系绘制的。
以下对至少一个示例性实施例的描述实际上仅仅是说明性的,决不作为对本发明及其应用或使用的任何限制。
对于相关领域普通技术人员已知的技术、方法和设备可能不作详细讨论,但在适当情况下,所述技术、方法和设备应当被视为授权说明书的一部分。
在这里示出和讨论的所有示例中,任何具体值应被解释为仅仅是示例性的,而不是作为限制。因此,示例性实施例的其它示例可以具有不同的值。
应注意到:相似的标号和字母在下面的附图中表示类似项,因此,一旦某一项在一个附图中被定义,则在随后的附图中不需要对其进行进一步讨论。
图1是示出根据本发明实施例的旋挖钻机功率自适应控制系统的电气连接图。为了便于理解本发明,图1中还示出了与本发明实施例中的旋挖钻机功率自适应控制系统有关联的其他装置。如图1所示,旋挖钻机功率自适应控制系统100包括:压力传感器103和控制器105。其中:
压力传感器103与变量泵101连接,用于测量变量泵101的出口压力,并将所述出口压力传送至控制器105;
控制器105用于获取所述出口压力和发动机的目标转速,根据所述发动机的目标转速、所述出口压力以及泵控电流值的对应关系,查找所述泵控电流值并将泵控电流输出至变量泵101,以调节所述变量泵的吸收功率。例如使得变量泵101的吸收功率与发动机102的输出功率基本相等,即实现变量泵的吸收功率对发动机的输出功率的跟随。其中,控制器105与档位旋钮104连接。所述控制器105从档位旋钮104获取档位值,并根据已保存的档位值与发动机的目标转速的对应关系,获取发动机的目标转速。
如图1所示,控制器将泵控电流输出至变量泵101的比例减压阀1011,所述比例减压阀1011根据从控制器接收到的泵控电流来调整自身出口压力,以调节变量泵101的吸收功率。比例减压阀是变量泵的一部分,调节比例减压阀的电流可以控制比例减压阀自身出口压力的大小,该压力作用于变量泵自带的控制功率变化的机构,使变量泵的最大功率变化,从而使得变量泵的吸收功率变化。例如变量泵为反比例变量泵,即控制器向比例减压阀提供电流,若增大电流值,则降低变量泵的吸收功率;相反,若减小电流值,则增大变量泵的吸收功率。
本领域技术人员可以理解,发动机102通过传动机构(例如联轴器)110与变量泵101连接,带动变量泵101运行。旋挖钻机系统所需要的功率是由变量泵产生的压力和流量提供的,因此变量泵的吸收功率等于旋挖钻机系统所需压力与流量的乘积。而发动机输出功率是发动机提供的扭矩与实际转速的乘积,该输出功率传递到变量泵即为变量泵的输入功率,变量泵将发动机的输出功率转化成旋挖钻机系统所需的液压功率(压力与流量的乘积)即吸收功率。
在该实施例中,通过控制器根据发动机的目标转速、变量泵出口压力以及泵控电流值的对应关系,查找所述泵控电流值并将泵控电流输出至变量泵,以调节变量泵的吸收功率,实现变量泵吸收功率对发动机输出功率的跟随,使得变量泵既能满足带动负载的需要,又不远超过发动机输出功率,达到发动机—变量泵—负载三者的匹配,从而防止由于变量泵吸收功率大于发动机输出功率而导致发动机掉速冒黑烟憋机等现象的发生,降低油耗。
此外,由于控制器存储有发动机的目标转速、变量泵出口压力以及泵控电流值的对应关系,因此控制器在获得所述目标转速和所述出口压力时,能迅速查找到泵控电流值并将泵控电流输出至变量泵,以调整变量泵的吸收功率,故该控制系统具有响应速度快的特点。
在本发明的另一些实施例中,所述旋挖钻机功率自适应控制系统还包括:计算机。
计算机用于采集发动机的目标转速、变量泵出口压力、动力头转速、负载扭矩、泵控电流值以及油耗值,根据动力头转速和负载扭矩计算油耗比,确定在设定的发动机的目标转速情况下的最小油耗比,并获取与所述最小油耗比对应的泵控电流值以及出口压力,建立所述发动机的目标转速、出口压力以及泵控电流值之间的映射关系。
例如,控制器将获得的发动机的目标转速、变量泵出口压力、动力头转速、负载扭矩、泵控电流值以及油耗值传输至计算机,以由计算机分析获得所述发动机的目标转速、变量泵出口压力以及泵控电流值之间的映射关系。
又例如,由于实际中发动机目标转速经常达不到,发动机实际转速(由转速传感器获得,下面将详细描述)与发动机目标转速之间存在差值,当发动机实际转速与发动机目标转速之间的差值在差值允许范围内时,用发动机实际转速代替发动机目标转速进行测试和分析,以获得上述映射关系。
其中,计算机根据动力头转速和负载扭矩计算油耗比为
由于在比较油耗比时不需要计算出动力头所做具体的功,动力头做功=系数k×动力头转速×负载扭矩,系数k为计算动力头做功时的系数,因此可以省略所述系数k。
在本发明的另一些实施例中,所述旋挖钻机功率自适应控制系统还可以包括:钻杆转速传感器、试验台以及燃油流量计。其中:
钻杆转速传感器用于测量动力头转速,并将所述动力头转速传输至所述控制器。其中,钻杆转速传感器可以安装在动力头旁边的L型支架上。动力头转速是旋挖钻机在工作时工作部件(即钻杆带动的钻具)的速度,即钻土的转动速度,此速度大小反映工作效率。在获得发动机的目标转速、变量泵出口压力以及泵控电流值的对应关系时,需要综合考虑作业情况,需要在不影响工作效率的情况下,获得使油耗比最低的泵控电流值。
试验台用于提供负载扭矩,并将所述负载扭矩传输至所述控制器。负载扭矩在一定情况下反映负载工况,此处负载扭矩通过试验台可调节,以模拟不同的地质条件。
燃油流量计用于测量油耗值,并将所述油耗值传输至所述控制器。例如,燃油流量计可以将三分钟油耗值传输至控制器。
图2是示出根据本发明另一些实施例的旋挖钻机功率自适应控制系统的电气连接图。在该实施例中,旋挖钻机功率自适应控制系统包括:压力传感器203、控制器205以及转速传感器206。为便于说明,图2中还示出了变量泵201、发动机202、压力传感器203、档位旋钮204、传动机构210以及比例减压阀2011,分别与图1中的变量泵101、发动机102、压力传感器103、档位旋钮104、传动机构110以及比例减压阀1011类似,这里不再赘述。其中:
转速传感器206用于测量发动机202的实际转速,并将所述实际转速传送至控制器205。该转速传感器例如为发动机ECU(ElectronicControlUnit,电子控制单元)。
控制器205用于获取发动机的实际转速,计算发动机实际转速与发动机目标转速的差值,并且判断所述差值是否超过设定的门限值;如果是,则获取调节电流值并将调节电流输出至变量泵201,即,所述变量泵201根据泵控电流和调节电流(例如二者电流值之和)调节自身的吸收功率。这里根据泵控电流进行粗调,在粗调的基础上,根据调节电流进行微调。如果所述差值没有超过设定的门限值,则不输出调节电流值,即,所述变量泵201根据已经查找获得的泵控电流调节自身的吸收功率。
发动机的实际转速与目标转速的差值即为当前工作环境下的失速率,可以确定当前失速率区间,其中失速率区间即为发动机掉速范围,在大量的实验数据分析的基础上,依据工作环境的检测值,可以规定不同工况下的掉速范围。当失速率超过当前设定的失速率区间的门限值时,启动转速感应微调控制,获得基于转速感应控制的调节电流值,调节输出至比例减压阀的电流大小,从而避免发动机过载,稳定发动机的转速,以实现变量泵吸收功率对发动机输出功率能够更好的跟随。
在实施例中,控制器根据发动机的目标转速和实际转速来计算获得所述调节电流值并将调节电流输出至变量泵。即,
调节电流值=a×(发动机目标转速-发动机实际转速)
其中,a为计算调节电流值的系数。例如,在某一目标转速下,a值为0.5(发动机转速单位为r/min,调节电流单位为mA)。控制器根据发动机的目标转速以及a值之间的映射关系,查找所述a值,控制器根据发动机的目标转速和实际转速来计算获得所述调节电流值并将调节电流输出至变量泵。
a值的获取步骤:
在不同的目标转速下,控制器采集发动机目标转速和实际转速,当失速率(即发动机目标转速与实际转速的差值)超过当前设定的失速率区间的门限值时,在泵控电流值的基础上逐渐增加控制器输出的电流(即调节电流),例如可以在控制器中设置自动以1mA递增来实现,或者人为改变控制器的输出电流,此时变量泵的吸收功率逐渐减小,导致发动机的实际转速逐渐增加(这是由于调节输出至变量泵的电流,例如反比例变量泵,电流增大时,变量泵的吸收功率减小,变量泵的吸收功率来自发动机,因此发动机的负荷减小,由于发动机的掉速(发动机的实际转速没有达到目标转速)是由于发动机的负荷导致的,因此在变量泵吸收功率减小的情况下,发动机会因为负荷减小而实际转速增加)。例如可以将控制器采集到的发动机目标转速、实际转速传输至计算机,并且将控制器输出至变量泵的电流值的数据也传输至计算机,计算机分析在逐渐增加的电流值的情况下,使得发动机目标转速与实际转速的差值例如等于失速率区间的门限值时的电流值。此时的a=调节电流/失速率区间,即a=调节电流/(发动机目标转速-发动机实际转速),即在调节电流、发动机目标转速以及实际转速确定的情况下获得a值,并且建立所述发动机的不同目标转速以及a值之间的映射关系。
在该实施例中,在发动机实际转速与目标转速的差值超过设定的门限值的情况下,变量泵根据泵控电流和调节电流,调节自身的吸收功率,从而随负载工况和发动机的实际性能,自适应调整吸收功率,使得对变量泵吸收功率的调节更加精确,达到发动机—变量泵—负载三者协调匹配。该控制系统响应速度快,避免发动机过载,稳定了发动机的转速,有效的降低了燃油消耗,具有良好的节能效果。
图3是示出根据本发明实施例的旋挖钻机功率自适应控制系统的结构示意图。其中发动机302、压力传感器303、控制器305和转速传感器306分别与图2中的中发动机202、压力传感器203、控制器205和转速传感器206类似,这里不再赘述。变量泵301包括比例减压阀3011、主泵3012、辅泵3013等。如图3所示,变量泵内部的实线代表主液压油路,虚线代表先导油路,点划线代表阀块(例如比例减压阀)的实体边界。
如图3所示,控制器305与转速传感器(例如发动机ECU)306相连,用于检测发动机实际转速。
压力传感器303分别与控制器305和变量泵301的M2口相连,用于检测变量泵出口压力,即液压系统压力。发动机302通过传动机构310与主泵3012连接。
控制器305检测发动机目标转速与变量泵出口压力,通过目标转速和变量泵出口压力,获得用于调整变量泵吸收功率的泵控电流值,且将泵控电流输出至比例减压阀3011,以调整变量泵吸收功率。控制器305还可以获取发动机实际转速,计算实际转速与目标转速的差值,并且判断差值是否超过设定的门限值;如果是,则获取调节电流值并将调节电流输出至比例减压阀,其中,所述比例减压阀根据所述泵控电流和所述调节电流调节变量泵的吸收功率。
由先导控制口X3实现功率越权控制,调节泵的吸收功率,实现变量泵的功率自适应负载工况变化而与发动机功率匹配。
如图3所示,变量泵301存在先导控制口X3,其中先导控制口用于连接先导压力通道,将先导压力信号引到需要控制的液压元件的油口。具体地,先导控制口X3通过先导油路连接至比例减压阀3011的出口。比例减压阀3011的进口与辅泵3013的出口相连。主泵3012通过齿轮变换传动后驱动的辅泵3013。辅泵用于提供控制主泵功率的先导液压油,该先导液压油的压力大小由比例减压阀调定。当比例减压阀3011的调整电流增大时,比例减压阀出口的压力增大,通过先导油路连接先导控制口X3,实现变量泵的功率越权控制,则变量泵的最大吸收功率减小。在该实施例中,通过功率越权控制,防止变量泵的吸收功率过大,从而保护元件。
图4是示出根据本发明实施例的旋挖钻机功率自适应控制方法的流程图。
在步骤S401,获取变量泵的出口压力和发动机的目标转速。
例如,控制器从档位旋钮获取档位值,并根据已保存的档位值与发动机的目标转速的对应关系,获取发动机的目标转速。例如,控制器通过与变量泵连接的压力传感器获得变量泵的出口压力。
在步骤S402,根据发动机的目标转速、变量泵出口压力以及泵控电流值的对应关系,查找所述泵控电流值并将泵控电流输出至变量泵。
其中,控制器将泵控电流输出至变量泵的比例减压阀,所述比例减压阀根据从控制器接收到的泵控电流来调整自身出口压力,以调节变量泵的吸收功率。例如变量泵为反比例变量泵,即控制器向比例减压阀提供电流,若增大电流值,则降低变量泵的吸收功率;相反,若减小电流值,则增大变量泵的吸收功率。
在该实施例中,根据发动机的目标转速、变量泵出口压力以及泵控电流值的对应关系,查找所述泵控电流值并将泵控电流输出至变量泵,以调节变量泵的吸收功率,实现变量泵吸收功率对发动机输出功率的跟随,使得变量泵既能满足带动负载的需要,又不远超过发动机输出功率,达到发动机—变量泵—负载三者的匹配,从而防止由于变量泵吸收功率大于发动机输出功率而导致发动机掉速冒黑烟憋机等现象的发生,降低油耗。
此外,由于控制器存储有发动机的目标转速、变量泵出口压力以及泵控电流值的对应关系,因此控制器在获得所述目标转速和所述出口压力时,能迅速查找到泵控电流值并输出至变量泵,以调整变量泵的吸收功率,故该控制系统具有响应速度快的特点。
图5是示出根据本发明一些实施例的获得发动机目标转速、变量泵出口压力与泵控电流值对应关系的方法的流程图。
在步骤S501,采集发动机的目标转速、变量泵出口压力、动力头转速、负载扭矩、泵控电流值以及油耗值。
例如,可以将控制器分别与档位旋钮、压力传感器、钻杆转速传感器、试验台以及燃油流量计连接,以分别获得发动机目标转速、变量泵出口压力(即系统压力)、动力头转速、负载扭矩以及油耗值;泵控电流值可以由控制器自身读取,控制器与计算机连接,将上述各数据传输至所述计算机。以使得计算机分析获得发动机目标转速、变量泵出口压力以及泵控电流值之间的映射关系。
在步骤S502,根据动力头转速和负载扭矩计算油耗比。
其中,根据动力头转速和负载扭矩计算油耗比为
由于在比较油耗比时不需要计算出动力头所做具体的功,其中,动力头做功=系数k×动力头转速×负载扭矩,系数k为计算动力头做功时的系数,因此可以省略所述系数k。
在步骤S503,确定在设定的发动机的目标转速情况下的最小油耗比,并获取与最小油耗比对应的泵控电流值以及变量泵出口压力,建立发动机的目标转速、变量泵出口压力以及泵控电流值之间的映射关系。
由于实际中发动机目标转速经常达不到,发动机实际转速与发动机目标转速之间存在差值,当发动机实际转速与发动机目标转速之间的差值在差值允许范围内时,用发动机实际转速代替发动机目标转速进行测试和分析,以获得上述映射关系。
在该实施例中,利用试验台提供的可调模拟负载的条件,采集发动机的目标转速、变量泵出口压力、动力头转速、负载扭矩、泵控电流值以及油耗值,通过对所采集的数据进行分析处理,分析不同目标转速下变量泵出口压力、泵控电流与发动机油耗比的关系,并综合考虑作业效率,在不影响作业效率的情况下,找到使油耗比最低的泵控电流值,以便调整变量泵的吸收功率。
图6是示出根据本发明一些实施例的采集数据的方法的流程图。
在步骤S601,设定发动机目标转速和负载扭矩,逐渐改变泵控电流,获得不同泵控电流时的测试数据,其中所述测试数据包括负载扭矩、动力头转速、变量泵出口压力以及油耗值。在另一实施例中,所述测试数据还包括发动机实际转速。
例如,根据档位旋钮将发动机转速分为多个转速档位;根据旋挖钻机额定扭矩,将负载扭矩分为多个值(例如每档间隔30kNm);将泵控电流设置为一定范围(例如0-700mA),分为多个测试值(例如每个测试值之间间隔30mA),例如可以在控制器中设置自动以30mA递增来实现,或者人为改变控制器的泵控电流。调节档位旋钮,将发动机目标转速设定在档位旋钮的第一个档位上,在此目标转速下,调节试验台负载扭矩(例如使其为30kNm),在调节某一泵控电流(例如使所述泵控电流值为30mA)下,控制器采集、处理此时的负载扭矩、动力头转速、变量泵出口压力(即系统压力)和油耗值(例如三分钟时间的油耗值)。当然,上述各数据还可以通过人机界面来显示。逐渐改变泵控电流(例如按照每档30mA,递增泵控电流),从而获得不同泵控电流时的所述测试数据,直到覆盖所有变量泵的电流值范围。
在步骤S602,对于步骤S601中设定的发动机目标转速不变,将负载扭矩设定为下一个负载扭矩,重复步骤S601过程,直至将多个负载扭矩情况下的测试数据测试完毕。例如,调节试验台,选择不同负载工况进行测试,例如,按照每档30kNm递增负载扭矩,重复步骤S601过程(即在每一次改变负载扭矩时,获得在该负载扭矩下不同泵控电流的测试数据),直到将负载扭矩范围内所有工况测量完毕。
在步骤S603,将发动机目标转速设定为下一个发动机目标转速,重复步骤S601和步骤S602的过程,直至将多个发动机目标转速情况下的测试数据测试完毕,以获得不同的发动机目标转速、负载扭矩和泵控电流时所述测试数据。例如,将档位旋钮设置为下一个档位,进行下一目标转速下的测试,按照步骤S601和S602进行测试,依次循环,直至覆盖发动机目标转速的范围。
因为不同压力对应不同的负载,不同的负载对应不同的工况。所以,根据上面的步骤,获得所需要的工作数据,然后进行数据分析,在多级划分后的不同的发动机目标转速下,分析各个压力区间(例如在十几至几十MP的压力范围内,可以以1MP为一压力区间)的油耗值、动力头转速及负载扭矩大小,计算油耗比(等效单位功油耗),确定合适泵控电流,建立发动机目标转速、变量泵出口压力与泵控电流值的映射关系。
图7是示出根据本发明另一些实施例的旋挖钻机功率自适应控制方法的流程图。
在步骤S701,获取变量泵的出口压力、发动机的目标转速以及实际转速。
在步骤S702,根据发动机的目标转速、变量泵出口压力以及泵控电流值的对应关系,查找所述泵控电流值。
在步骤S703,计算发动机实际转速与目标转速的差值。
在步骤S704,判断差值是否超过设定的门限值。如果是,则过程进入步骤S705,否则过程进入步骤S706。
在步骤S705,获取调节电流值,并输出泵控电流和调节电流至变量泵。例如,输出至变量泵的比减压阀。
根据发动机的目标转速和实际转速来计算获得所述调节电流值并将调节电流输出至变量泵。即,
调节电流值=a×(发动机目标转速-发动机实际转速)
其中,a为计算调节电流值的系数。例如,在某一目标转速下,a值为0.5(发动机转速单位为r/min,调节电流单位为mA)。控制器根据发动机的目标转速以及a值之间的映射关系,查找所述a值,控制器根据发动机的目标转速和实际转速来计算获得所述调节电流值并将调节电流输出至变量泵。
a值的获取步骤:
在不同的目标转速下,控制器采集发动机目标转速和实际转速,当失速率(即发动机目标转速与实际转速的差值)超过当前设定的失速率区间的门限值时,在泵控电流值的基础上逐渐增加控制器输出的电流(即调节电流),例如可以在控制器中设置自动以1mA递增来实现,或者人为改变控制器的输出电流,此时变量泵的吸收功率逐渐减小,导致发动机的实际转速逐渐增加(这是由于调节输出至变量泵的电流,例如反比例变量泵,电流增大时,变量泵的吸收功率减小,变量泵的吸收功率来自发动机,因此发动机的负荷减小,由于发动机的掉速(发动机的实际转速没有达到目标转速)是由于发动机的负荷导致的,因此在变量泵吸收功率减小的情况下,发动机会因为负荷减小而实际转速增加)。例如可以将控制器采集到的发动机目标转速、实际转速传输至计算机,并且将控制器输出至变量泵的电流值的数据也传输至计算机,计算机分析在逐渐增加的电流值的情况下,使得发动机目标转速与实际转速的差值例如等于失速率区间的门限值时的电流值。此时的a=调节电流/失速率区间,即a=调节电流/(发动机目标转速-发动机实际转速),即在调节电流、发动机目标转速以及实际转速确定的情况下获得a值,并且建立所述发动机的不同目标转速以及a值之间的映射关系。
在实施例中,获得基于转速感应的调节电流,调节输出至比例减压阀的电流大小,从而避免发动机过载,稳定发动机的转速,以实现变量泵吸收功率对发动机输出功率能够更好的跟随。
在步骤S706,输出泵控电流至变量泵。例如,输出至变量泵的比例减压阀。
在步骤S707,变量泵根据从控制器接收到的电流调节自身的吸收功率。例如,如果变量泵的比例减压阀接收到的是泵控电流和调节电流,则根据这两者电流调节变量泵的吸收功率;如果接收到的是泵控电流,则根据泵控电流调节变量泵的吸收功率。
在该实施例中,在检测发动机实际转速时,也检测变量泵出口压力,得到控制变量泵吸收功率的电流(泵控电流、调节电流两部分);由于泵控电流值可以预先在控制器里存储不同转速、载荷(通过变量泵出口压力反映)情况下,用于调整变量泵吸收功率大小的电流值,调节负载与变量泵的匹配,具有响应速度快的特点;调节电流值可以通过转速感应得到,用于调节变量泵与发动机的匹配,将检测得到的发动机实际转速与目标转速相比较,可以很好的避免发动机过载,稳定发动机的转速。
至此,已经详细描述了本发明。为了避免遮蔽本发明的构思,没有描述本领域所公知的一些细节。本领域技术人员根据上面的描述,完全可以明白如何实施这里公开的技术方案。
可能以许多方式来实现本发明的方法和系统。例如,可通过软件、硬件、固件或者软件、硬件、固件的任何组合来实现本发明的方法和系统。用于所述方法的步骤的上述顺序仅是为了进行说明,本发明的方法的步骤不限于以上具体描述的顺序,除非以其它方式特别说明。此外,在一些实施例中,还可将本发明实施为记录在记录介质中的程序,这些程序包括用于实现根据本发明的方法的机器可读指令。因而,本发明还覆盖存储用于执行根据本发明的方法的程序的记录介质。
虽然已经通过示例对本发明的一些特定实施例进行了详细说明,但是本领域的技术人员应该理解,以上示例仅是为了进行说明,而不是为了限制本发明的范围。本领域的技术人员应该理解,可在不脱离本发明的范围和精神的情况下,对以上实施例进行修改。本发明的范围由所附权利要求来限定。

Claims (13)

1.一种旋挖钻机功率自适应控制系统,其特征在于,包括:
压力传感器,用于测量变量泵的出口压力,并将所述出口压力传送至控制器;
控制器,用于获取所述出口压力和发动机的目标转速,根据所述发动机的目标转速、所述出口压力以及泵控电流值的对应关系,查找所述泵控电流值并将泵控电流输出至所述变量泵。
2.根据权利要求1所述旋挖钻机功率自适应控制系统,其特征在于,还包括:
计算机,用于采集发动机的目标转速、变量泵出口压力、动力头转速、负载扭矩、泵控电流值以及油耗值,根据动力头转速和负载扭矩计算油耗比,确定在设定的发动机的目标转速情况下的最小油耗比,并获取与所述最小油耗比对应的泵控电流值以及出口压力,建立所述发动机的目标转速、出口压力以及泵控电流值之间的映射关系。
3.根据权利要求2所述旋挖钻机功率自适应控制系统,其特征在于,所述计算机根据动力头转速和负载扭矩计算油耗比为
4.根据权利要求2所述旋挖钻机功率自适应控制系统,其特征在于,还包括:
所述控制器用于获取所述发动机的实际转速,计算所述实际转速与所述目标转速的差值,并且判断所述差值是否超过设定的门限值;如果是,则获取调节电流值并将调节电流输出至所述变量泵。
5.根据权利要求4所述旋挖钻机功率自适应控制系统,其特征在于,所述调节电流值为
调节电流值=a×(发动机目标转速-发动机实际转速)
其中,a为计算调节电流值的系数。
6.根据权利要求1所述旋挖钻机功率自适应控制系统,其特征在于,包括:
所述控制器从档位旋钮获取档位值,并根据已保存的档位值与发动机的目标转速的对应关系,获取发动机的目标转速。
7.根据权利要求2所述旋挖钻机功率自适应控制系统,其特征在于,还包括:
钻杆转速传感器,用于测量动力头转速,并将所述动力头转速传输至所述控制器;
试验台,用于提供负载扭矩,并将所述负载扭矩传输至所述控制器;以及
燃油流量计,用于测量油耗值,并将所述油耗值传输至所述控制器。
8.根据权利要求4所述旋挖钻机功率自适应控制系统,其特征在于,还包括:
转速传感器,用于测量所述发动机的实际转速,并将所述实际转速传送至所述控制器。
9.一种旋挖钻机功率自适应控制方法,其特征在于,包括:
获取变量泵的出口压力和发动机的目标转速;
根据所述发动机的目标转速、所述出口压力以及泵控电流值的对应关系,查找所述泵控电流值并将泵控电流输出至所述变量泵。
10.根据权利要求9所述旋挖钻机功率自适应控制方法,其特征在于,还包括:
采集发动机的目标转速、变量泵出口压力、动力头转速、负载扭矩、泵控电流值以及油耗值;
根据动力头转速和负载扭矩计算油耗比;
确定在设定的发动机的目标转速情况下的最小油耗比,并获取与所述最小油耗比对应的泵控电流值以及出口压力,建立所述发动机的目标转速、出口压力以及泵控电流值之间的映射关系。
11.根据权利要求10所述旋挖钻机功率自适应控制方法,其特征在于,根据动力头转速和负载扭矩计算油耗比为
12.根据权利要求10所述旋挖钻机功率自适应控制方法,其特征在于,
在获取变量泵的出口压力和发动机的目标转速时,还包括:获取所述发动机的实际转速;以及
在根据所述发动机的目标转速、所述出口压力以及泵控电流值的对应关系,查找所述泵控电流值之后,还包括:计算所述实际转速与所述目标转速的差值;判断所述差值是否超过设定的门限值;如果是,则获取调节电流值并将调节电流输出至所述变量泵。
13.根据权利要求12所述旋挖钻机功率自适应控制方法,其特征在于,所述调节电流值为
调节电流值=a×(发动机目标转速-发动机实际转速)
其中,a为计算调节电流值的系数。
CN201410507798.9A 2014-09-28 2014-09-28 一种旋挖钻机功率自适应控制系统及其方法 Active CN105525905B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201410507798.9A CN105525905B (zh) 2014-09-28 2014-09-28 一种旋挖钻机功率自适应控制系统及其方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201410507798.9A CN105525905B (zh) 2014-09-28 2014-09-28 一种旋挖钻机功率自适应控制系统及其方法

Publications (2)

Publication Number Publication Date
CN105525905A true CN105525905A (zh) 2016-04-27
CN105525905B CN105525905B (zh) 2019-02-26

Family

ID=55768389

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201410507798.9A Active CN105525905B (zh) 2014-09-28 2014-09-28 一种旋挖钻机功率自适应控制系统及其方法

Country Status (1)

Country Link
CN (1) CN105525905B (zh)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107630871A (zh) * 2017-11-13 2018-01-26 柳工常州机械有限公司 液压系统
CN107657133A (zh) * 2017-10-20 2018-02-02 上海华兴数字科技有限公司 一种基于发动机动态特性的转速预测方法与装置
CN110905672A (zh) * 2019-11-28 2020-03-24 徐州徐工基础工程机械有限公司 一种适应发动机不同转速的液压系统功率实时匹配方法
CN113187380A (zh) * 2021-04-30 2021-07-30 北京三一智造科技有限公司 旋挖钻机动力头控制方法、系统及旋挖钻机
CN113338384A (zh) * 2021-05-27 2021-09-03 三一重机有限公司 电驱动正流量液压控制系统、方法和作业机械
CN116122279A (zh) * 2023-04-14 2023-05-16 山东临工工程机械有限公司 打桩机控制方法及打桩机

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0922813A2 (en) * 1997-12-04 1999-06-16 Hitachi Construction Machinery Co., Ltd. hydraulic drive system for hydraulic work vehicle
CN1475380A (zh) * 2002-07-30 2004-02-18 米亚马株式会社 车辆运转状况评估系统
CN102505996A (zh) * 2011-11-28 2012-06-20 上海中联重科桩工机械有限公司 一种电控发动机和变量液压泵的功率匹配系统及方法
CN102913332A (zh) * 2012-11-09 2013-02-06 中联重科股份有限公司渭南分公司 液压系统及其功率分配方法和功率分配装置
CN103670750A (zh) * 2013-12-12 2014-03-26 中联重科股份有限公司 极限功率匹配控制系统、方法、装置及工程机械
CN104003305A (zh) * 2014-05-26 2014-08-27 徐工集团工程机械股份有限公司 一种起重机泵控系统极限功率的匹配方法及装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0922813A2 (en) * 1997-12-04 1999-06-16 Hitachi Construction Machinery Co., Ltd. hydraulic drive system for hydraulic work vehicle
CN1475380A (zh) * 2002-07-30 2004-02-18 米亚马株式会社 车辆运转状况评估系统
CN102505996A (zh) * 2011-11-28 2012-06-20 上海中联重科桩工机械有限公司 一种电控发动机和变量液压泵的功率匹配系统及方法
CN102913332A (zh) * 2012-11-09 2013-02-06 中联重科股份有限公司渭南分公司 液压系统及其功率分配方法和功率分配装置
CN103670750A (zh) * 2013-12-12 2014-03-26 中联重科股份有限公司 极限功率匹配控制系统、方法、装置及工程机械
CN104003305A (zh) * 2014-05-26 2014-08-27 徐工集团工程机械股份有限公司 一种起重机泵控系统极限功率的匹配方法及装置

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107657133A (zh) * 2017-10-20 2018-02-02 上海华兴数字科技有限公司 一种基于发动机动态特性的转速预测方法与装置
CN107657133B (zh) * 2017-10-20 2020-10-13 上海华兴数字科技有限公司 一种基于发动机动态特性的转速预测方法与装置
CN107630871A (zh) * 2017-11-13 2018-01-26 柳工常州机械有限公司 液压系统
CN110905672A (zh) * 2019-11-28 2020-03-24 徐州徐工基础工程机械有限公司 一种适应发动机不同转速的液压系统功率实时匹配方法
CN110905672B (zh) * 2019-11-28 2022-04-01 徐州徐工基础工程机械有限公司 一种适应发动机不同转速的液压系统功率实时匹配方法
CN113187380A (zh) * 2021-04-30 2021-07-30 北京三一智造科技有限公司 旋挖钻机动力头控制方法、系统及旋挖钻机
CN113338384A (zh) * 2021-05-27 2021-09-03 三一重机有限公司 电驱动正流量液压控制系统、方法和作业机械
CN116122279A (zh) * 2023-04-14 2023-05-16 山东临工工程机械有限公司 打桩机控制方法及打桩机
CN116122279B (zh) * 2023-04-14 2023-07-07 山东临工工程机械有限公司 打桩机控制方法及打桩机

Also Published As

Publication number Publication date
CN105525905B (zh) 2019-02-26

Similar Documents

Publication Publication Date Title
CN105525905A (zh) 一种旋挖钻机功率自适应控制系统及其方法
CN109778937B (zh) 一种基于破碎工况的自寻优控制装置及方法
CN100422451C (zh) 挖掘机全功率控制方法
CN202486573U (zh) 静压导轨油膜厚度动态监测控制系统
CN102808796B (zh) 控制风扇转速的方法及系统
CN102828845B (zh) 一种转速调节方法、装置和系统
CN103670750B (zh) 极限功率匹配控制系统、方法、装置及工程机械
CN101109332A (zh) 一种液压动力系统的功率控制装置与方法
CN104199283A (zh) 一种电液伺服在线自调整模糊pid控制的测试系统及控制方法
CN103335682B (zh) 一种天然气的气体流量计量方法
CN103899291B (zh) 旋挖钻机节能控制方法、装置和系统
CN103034127A (zh) 一种轴向磁轴承控制系统
CN105317789A (zh) 液压独立散热控制方法、装置和系统
CN109372832B (zh) 一种工况变化下的双变量液压系统能耗优化方法
CN104697659A (zh) 一种采用ntc热敏电阻的温度测量装置与方法
CN102155405A (zh) 一种潜油螺杆泵转速智能控制系统及控制方法
CN101566059B (zh) 广适应的新型自动送钻装置
CN103742937A (zh) 双进双出磨煤机入炉煤量控制方法与系统
CN104790948A (zh) 一种采煤机滚筒自动调高的控制方法
CN106092358A (zh) 一种电阻式传感器信号的处理方法和装置
Wu et al. A comparative study on Taguchi’s SN ratio, minimising MSD and variance for nominal-the-best characteristic experiment
CN103174692B (zh) 一种用于大功率、宽调速范围负载的液压马达拖动系统
CN205445812U (zh) 一种装载机用电控柴油机外特性标定系统
CN202023738U (zh) 一种潜油螺杆泵转速智能控制系统
CN105221278A (zh) 基于全局功率匹配的旋挖钻机控制系统

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant