CN105523763B - 一种碳化硅-硼化铬复合陶瓷材料及其制备方法 - Google Patents

一种碳化硅-硼化铬复合陶瓷材料及其制备方法 Download PDF

Info

Publication number
CN105523763B
CN105523763B CN201610124273.6A CN201610124273A CN105523763B CN 105523763 B CN105523763 B CN 105523763B CN 201610124273 A CN201610124273 A CN 201610124273A CN 105523763 B CN105523763 B CN 105523763B
Authority
CN
China
Prior art keywords
powder
parts
silicon carbide
carbonization
chromium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201610124273.6A
Other languages
English (en)
Other versions
CN105523763A (zh
Inventor
刘佩佩
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jiangsu Sanrui Abrasive Technology Co.,Ltd.
Original Assignee
Jiangsu Three Sharp Grinding Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jiangsu Three Sharp Grinding Technology Co Ltd filed Critical Jiangsu Three Sharp Grinding Technology Co Ltd
Priority to CN201610124273.6A priority Critical patent/CN105523763B/zh
Publication of CN105523763A publication Critical patent/CN105523763A/zh
Application granted granted Critical
Publication of CN105523763B publication Critical patent/CN105523763B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/56Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • C04B35/645Pressure sintering
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3817Carbides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3817Carbides
    • C04B2235/3821Boron carbides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/42Non metallic elements added as constituents or additives, e.g. sulfur, phosphor, selenium or tellurium
    • C04B2235/428Silicon
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/46Gases other than oxygen used as reactant, e.g. nitrogen used to make a nitride phase
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/77Density
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Ceramic Products (AREA)

Abstract

本发明公开了一种碳化硅‑硼化铬复合陶瓷材料及其制备方法,所述碳化硅‑硼化铬复合陶瓷材料,由以下按照物质的量份数的原料组成:碳化铬粉38‑45份、碳化硼粉27‑32份、硅粉105‑115份、碳化锝粉末2‑5份、羟乙基纤维素12‑15份。本发明制备的碳化硅‑硼化铬复合陶瓷材料,致密性及抗弯强度均表现良好,且烧结温度较低,因此在较低的温度下就能制备致密性良好的碳化硅陶瓷,降低了碳化硅陶瓷的制作成本,另外本发明制备的碳化硅‑硼化铬复合陶瓷材料具有良好的导电性,有利于拓展碳化硅陶瓷的应用范围。

Description

一种碳化硅-硼化铬复合陶瓷材料及其制备方法
技术领域
本发明涉及陶瓷复合材料技术领域,具体是一种碳化硅-硼化铬复合陶瓷材料及其制备方法。
背景技术
陶瓷的发展史是中华文明史的一个重要的组成部分,中国作为四大文明古国之一,为人类社会的进步和发展做出了卓越的贡献,其中陶瓷的发明和发展更具有独特的意义,中国历史上各朝各代有着不同艺术风格和不同技术特点。随着近代科学技术的发展,近百年来又出现了许多新的陶瓷品种。它们不再使用或很少使用粘土、长石、石英等传统陶瓷原料,而是使用其他特殊原料,甚至扩大到非硅酸盐,非氧化物的范围,并且出现了许多新的工艺。美国和欧洲一些国家的文献已将“Ceramic”一词理解为各种无机非金属固体材料的通称。因此陶瓷的含义实际上已远远超越过去狭窄的传统观念了。
碳化硅陶瓷是一种较早为人们所研究并获得广泛应用的难熔非氧化物陶瓷。由于性能良好,在原子能、燃汽轮机、航天航空、机械、化工和电子技术等许多领域都有广泛的应用前景。但纯的碳化硅陶瓷难以致密,需要在2500℃及50Mpa的高温高压下才能接近理论密度,生产成本高,限制了其应用,另外碳化硅的导电性不佳,这也限制了其应用。硼化物陶瓷具有高电导性和高热稳定性,但耐磨性能却不如碳化硅陶瓷。
发明内容
本发明的目的在于提供一种碳化硅-硼化铬复合陶瓷材料及其制备方法,以解决上述背景技术中提出的问题。
为实现上述目的,本发明提供如下技术方案:
一种碳化硅-硼化铬复合陶瓷材料,由以下按照物质的量份数的原料组成:碳化铬粉38-45份、碳化硼粉27-32份、硅粉105-115份、碳化锝粉末2-5份、羟乙基纤维素12-15份。
作为本发明进一步的方案:由以下按照物质的量份数的原料组成:碳化铬粉39-43份、碳化硼粉28-31份、硅粉106-113份、碳化锝粉末3-4份、羟乙基纤维素13-14份。
作为本发明再进一步的方案:由以下按照物质的量份数的原料组成:碳化铬粉41份、碳化硼粉30份、硅粉110份、碳化锝粉末4份、羟乙基纤维素13份。
所述碳化硅-硼化铬复合陶瓷材料的制备方法,步骤如下:
1)称取碳化铬粉、碳化硼粉和硅粉,投入干法球磨机中,球磨10-13h,获得混合粉料;
2)将混合粉料投入热压烧结炉中,在惰性气体的氛围下进行预烧结处理,压力为30-50MPa,预烧结温度为1380-1420℃,获得预烧结料,预烧结方法为:首先以20℃/min升温至预烧结温度前50℃,保温30-50min,然后以5℃/min升温至预烧结温度,保温60-80min即可;
3)将预烧结料粉碎,获得预烧结粉末,称取碳化锝粉末和羟乙基纤维素,将预烧结粉末、碳化锝粉末和羟乙基纤维素合并,并投入至干法球磨机中,球磨24-30h,获得坯料;
4)将坯料在100-150Mpa的压力下等静压成型,获得素坯;
5)将素坯放入热压烧结炉中,在惰性气体的氛围下进行烧结处理,压力为45-50MPa,烧结温度为1880-1920℃,获得碳化硅-硼化铬复合陶瓷材料,烧结方法为:首先以18℃/min升温至烧结温度前50℃,保温50-60min,然后以3℃/min升温至烧结温度,保温100-120min即可。
与现有技术相比,本发明的有益效果是:本发明制备的碳化硅-硼化铬复合陶瓷材料,密度为7.4-8.2g·cm-3,抗弯强度为886.7-928.6Mpa,致密性及抗弯强度均表现良好,且烧结温度仅为1880-1920℃,因此在较低的温度下就能制备致密性良好的碳化硅陶瓷,降低了碳化硅陶瓷的制作成本。本发明制备的碳化硅-硼化铬复合陶瓷材料的电导率为6.8×105-8.3×105Ω-1·m-1,具有良好的导电性,有利于拓展碳化硅陶瓷的应用范围。
具体实施方式
下面结合具体实施方式对本发明的技术方案作进一步详细地说明。
实施例1
一种碳化硅-硼化铬复合陶瓷材料,由以下按照物质的量份数的原料组成:碳化铬粉38份、碳化硼粉27份、硅粉105份、碳化锝粉末2份、羟乙基纤维素12份。
本实施例中所述碳化硅-硼化铬复合陶瓷材料的制备方法,步骤如下:
1)称取碳化铬粉、碳化硼粉和硅粉,投入干法球磨机中,球磨10h,获得混合粉料;
2)将混合粉料投入热压烧结炉中,在惰性气体的氛围下进行预烧结处理,压力为30MPa,预烧结温度为1380℃,获得预烧结料,预烧结方法为:首先以20℃/min升温至1330℃,保温30min,然后以5℃/min升温至预烧结温度,保温60min即可;
3)将预烧结料粉碎,获得预烧结粉末,称取碳化锝粉末和羟乙基纤维素,将预烧结粉末、碳化锝粉末和羟乙基纤维素合并,并投入至干法球磨机中,球磨24h,获得坯料;
4)将坯料在100Mpa的压力下等静压成型,获得素坯;
5)将素坯放入热压烧结炉中,在惰性气体的氛围下进行烧结处理,压力为45MPa,烧结温度为1880℃,获得碳化硅-硼化铬复合陶瓷材料,烧结方法为:首先以18℃/min升温至1830℃,保温50min,然后以3℃/min升温至烧结温度,保温100min即可。
实施例2
一种碳化硅-硼化铬复合陶瓷材料,由以下按照物质的量份数的原料组成:碳化铬粉45份、碳化硼粉32份、硅粉115份、碳化锝粉末5份、羟乙基纤维素15份。
本实施例中所述碳化硅-硼化铬复合陶瓷材料的制备方法,步骤如下:
1)称取碳化铬粉、碳化硼粉和硅粉,投入干法球磨机中,球磨13h,获得混合粉料;
2)将混合粉料投入热压烧结炉中,在惰性气体的氛围下进行预烧结处理,压力为50MPa,预烧结温度为1420℃,获得预烧结料,预烧结方法为:首先以20℃/min升温至1370℃,保温50min,然后以5℃/min升温至预烧结温度,保温80min即可;
3)将预烧结料粉碎,获得预烧结粉末,称取碳化锝粉末和羟乙基纤维素,将预烧结粉末、碳化锝粉末和羟乙基纤维素合并,并投入至干法球磨机中,球磨30h,获得坯料;
4)将坯料在150Mpa的压力下等静压成型,获得素坯;
5)将素坯放入热压烧结炉中,在惰性气体的氛围下进行烧结处理,压力为50MPa,烧结温度为1920℃,获得碳化硅-硼化铬复合陶瓷材料,烧结方法为:首先以18℃/min升温至1870℃,保温60min,然后以3℃/min升温至烧结温度,保温120min即可。
实施例3
一种碳化硅-硼化铬复合陶瓷材料,由以下按照物质的量份数的原料组成:碳化铬粉41份、碳化硼粉30份、硅粉110份、碳化锝粉末4份、羟乙基纤维素13份。
本实施例中所述碳化硅-硼化铬复合陶瓷材料的制备方法,步骤如下:
1)称取碳化铬粉、碳化硼粉和硅粉,投入干法球磨机中,球磨12h,获得混合粉料;
2)将混合粉料投入热压烧结炉中,在惰性气体的氛围下进行预烧结处理,压力为40MPa,预烧结温度为1400℃,获得预烧结料,预烧结方法为:首先以20℃/min升温至1350℃,保温40min,然后以5℃/min升温至预烧结温度,保温80min即可;
3)将预烧结料粉碎,获得预烧结粉末,称取碳化锝粉末和羟乙基纤维素,将预烧结粉末、碳化锝粉末和羟乙基纤维素合并,并投入至干法球磨机中,球磨28h,获得坯料;
4)将坯料在140Mpa的压力下等静压成型,获得素坯;
5)将素坯放入热压烧结炉中,在惰性气体的氛围下进行烧结处理,压力为50MPa,烧结温度为1900℃,获得碳化硅-硼化铬复合陶瓷材料,烧结方法为:首先以18℃/min升温至1850℃,保温60min,然后以3℃/min升温至烧结温度,保温120min即可。
实施例4
一种碳化硅-硼化铬复合陶瓷材料,由以下按照物质的量份数的原料组成:碳化铬粉42份、碳化硼粉30份、硅粉115份、碳化锝粉末4份、羟乙基纤维素15份。
本实施例中所述碳化硅-硼化铬复合陶瓷材料的制备方法,步骤如下:
1)称取碳化铬粉、碳化硼粉和硅粉,投入干法球磨机中,球磨12h,获得混合粉料;
2)将混合粉料投入热压烧结炉中,在惰性气体的氛围下进行预烧结处理,压力为30MPa,预烧结温度为1400℃,获得预烧结料,预烧结方法为:首先以20℃/min升温至1350℃,保温50min,然后以5℃/min升温至预烧结温度,保温60min即可;
3)将预烧结料粉碎,获得预烧结粉末,称取碳化锝粉末和羟乙基纤维素,将预烧结粉末、碳化锝粉末和羟乙基纤维素合并,并投入至干法球磨机中,球磨30h,获得坯料;
4)将坯料在120Mpa的压力下等静压成型,获得素坯;
5)将素坯放入热压烧结炉中,在惰性气体的氛围下进行烧结处理,压力为46MPa,烧结温度为1880℃,获得碳化硅-硼化铬复合陶瓷材料,烧结方法为:首先以18℃/min升温至1830℃,保温55min,然后以3℃/min升温至烧结温度,保温120min即可。
实施例5
一种碳化硅-硼化铬复合陶瓷材料,由以下按照物质的量份数的原料组成:碳化铬粉40份、碳化硼粉32份、硅粉110份、碳化锝粉末4份、羟乙基纤维素13份。
本实施例中所述碳化硅-硼化铬复合陶瓷材料的制备方法,步骤如下:
1)称取碳化铬粉、碳化硼粉和硅粉,投入干法球磨机中,球磨13h,获得混合粉料;
2)将混合粉料投入热压烧结炉中,在惰性气体的氛围下进行预烧结处理,压力为30MPa,预烧结温度为1410℃,获得预烧结料,预烧结方法为:首先以20℃/min升温至1360℃,保温35min,然后以5℃/min升温至预烧结温度,保温80min即可;
3)将预烧结料粉碎,获得预烧结粉末,称取碳化锝粉末和羟乙基纤维素,将预烧结粉末、碳化锝粉末和羟乙基纤维素合并,并投入至干法球磨机中,球磨24h,获得坯料;
4)将坯料在140Mpa的压力下等静压成型,获得素坯;
5)将素坯放入热压烧结炉中,在惰性气体的氛围下进行烧结处理,压力为50MPa,烧结温度为1890℃,获得碳化硅-硼化铬复合陶瓷材料,烧结方法为:首先以18℃/min升温至1840℃,保温60min,然后以3℃/min升温至烧结温度,保温110min即可。
对比例
与实施例3相比,不含碳化锝粉末,其他与实施例3相同。
性能试验
对实施例1-5及对比例进行性能测试,测试结果如表1所示。
表1性能试验结果
目录 密度(g·cm<sup>-3</sup>) 抗弯强度(Mpa) 电导率(×10<sup>5</sup>Ω<sup>-1</sup>·m<sup>-1</sup>)
实施例1 7.4 890.4 6.8
实施例2 7.6 910.5 7.6
实施例3 8.2 928.6 8.2
实施例4 8.0 923.0 8.3
实施例5 7.5 886.7 6.9
对比例 6.3 759.4 7.8
从上表中可以看出,本发明制备的碳化硅-硼化铬复合陶瓷材料,密度为7.4-8.2g·cm-3,抗弯强度为886.7-928.6Mpa,致密性及抗弯强度均表现良好,且烧结温度仅为1880-1920℃,因此在较低的温度下就能制备致密性良好的碳化硅陶瓷,降低了碳化硅陶瓷的制作成本。本发明制备的碳化硅-硼化铬复合陶瓷材料的电导率为6.8×105-8.3×105Ω-1·m-1,具有良好的导电性,有利于拓展碳化硅陶瓷的应用范围。
另外,从对比例与实施例3的数据对比中可以看出,对比例的电导率与实施例3相近,但实施例3的抗弯强度及密度均大于对比例,由于对比例与与实施例3相比,不含碳化锝粉末,其他与实施例3相同,因此可以判断,通过添加碳化锝粉末,能够提高碳化硅-硼化铬复合陶瓷材料的抗弯强度以及致密性。
上面对本发明的较佳实施方式作了详细说明,但是本发明并不限于上述实施方式,在本领域的普通技术人员所具备的知识范围内,还可以在不脱离本发明宗旨的前提下作出各种变化。

Claims (3)

1.一种碳化硅-硼化铬复合陶瓷材料,其特征在于,由以下按照物质的量份数的原料制成:碳化铬粉38-45份、碳化硼粉27-32份、硅粉105-115份、碳化锝粉末2-5份、羟乙基纤维素12-15份;
所述的碳化硅-硼化铬复合陶瓷材料的制备方法,步骤如下:
1)称取碳化铬粉、碳化硼粉和硅粉,投入干法球磨机中,球磨10-13h,获得混合粉料;
2)将混合粉料投入热压烧结炉中,在惰性气体的氛围下进行预烧结处理,压力为30-50MPa,预烧结温度为1380-1420℃,获得预烧结料,预烧结方法为:首先以20℃/min升温至预烧结温度前50℃,保温30-50min,然后以5℃/min升温至预烧结温度,保温60-80min即可;
3)将预烧结料粉碎,获得预烧结粉末,称取碳化锝粉末和羟乙基纤维素,将预烧结粉末、碳化锝粉末和羟乙基纤维素合并,并投入至干法球磨机中,球磨24-30h,获得坯料;
4)将坯料在100-150 MPa的压力下等静压成型,获得素坯;
5)将素坯放入热压烧结炉中,在惰性气体的氛围下进行烧结处理,压力为45-50MPa,烧结温度为1880-1920℃,获得碳化硅-硼化铬复合陶瓷材料,烧结方法为:首先以18℃/min升温至烧结温度前50℃,保温50-60min,然后以3℃/min升温至烧结温度,保温100-120min即可。
2.根据权利要求1所述的碳化硅-硼化铬复合陶瓷材料,其特征在于,由以下按照物质的量份数的原料制成:碳化铬粉39-43份、碳化硼粉28-31份、硅粉106-113份、碳化锝粉末3-4份、羟乙基纤维素13-14份。
3.根据权利要求2所述的碳化硅-硼化铬复合陶瓷材料,其特征在于,由以下按照物质的量份数的原料制成:碳化铬粉41份、碳化硼粉30份、硅粉110份、碳化锝粉末4份、羟乙基纤维素13份。
CN201610124273.6A 2016-03-03 2016-03-03 一种碳化硅-硼化铬复合陶瓷材料及其制备方法 Active CN105523763B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610124273.6A CN105523763B (zh) 2016-03-03 2016-03-03 一种碳化硅-硼化铬复合陶瓷材料及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610124273.6A CN105523763B (zh) 2016-03-03 2016-03-03 一种碳化硅-硼化铬复合陶瓷材料及其制备方法

Publications (2)

Publication Number Publication Date
CN105523763A CN105523763A (zh) 2016-04-27
CN105523763B true CN105523763B (zh) 2019-06-18

Family

ID=55766342

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610124273.6A Active CN105523763B (zh) 2016-03-03 2016-03-03 一种碳化硅-硼化铬复合陶瓷材料及其制备方法

Country Status (1)

Country Link
CN (1) CN105523763B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106242575A (zh) * 2016-07-30 2016-12-21 余姚市巧迪电器厂 一种硼化铬基复合陶瓷模具材料及其制备方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0497952A (ja) * 1990-08-09 1992-03-30 Eagle Ind Co Ltd 炭化珪素系複合体
JPH09221367A (ja) * 1996-02-15 1997-08-26 Chichibu Onoda Cement Corp 導電性炭化珪素質複合材料及びその製造方法
CN102633504A (zh) * 2012-04-26 2012-08-15 天津大学 一种二硼化锆/碳化硅复合材料及利用电弧熔化原位反应制备方法
CN102826851A (zh) * 2012-08-31 2012-12-19 中国地质大学(北京) 一种硼化锆-碳化硅复相耐高温粉体材料的制备方法
CN103771859B (zh) * 2014-03-03 2015-05-27 中国科学院金属研究所 一种碳化硅/硼化钨复合材料及其制备方法

Also Published As

Publication number Publication date
CN105523763A (zh) 2016-04-27

Similar Documents

Publication Publication Date Title
CN103803984B (zh) 采用复合粉末粒型制备氮化铝陶瓷基片的方法
CN102145993B (zh) 一种低温快速烧成高强氧化铝陶瓷及其制备方法
CN110698205A (zh) 一种石墨烯增韧碳化硅陶瓷的制备方法
CN106187259A (zh) 一种石墨烯纳米片增韧的复合陶瓷刀具及其微波制备工艺
CN104150940A (zh) 氮化硅与碳化硅复相多孔陶瓷及其制备方法
CN103613388B (zh) 一种低温合成TiB2-TiC陶瓷复合材料的方法
CN105541307A (zh) 一种高强度且抗热震性能好的氧化铝陶瓷及其制备方法
CN104987081A (zh) 采用复合粉末粒型制备氮化铝陶瓷基片的方法
CN105174967A (zh) 一种超高温CNTs/TiB2-SiC陶瓷复合材料及其制备方法
CN104131208A (zh) 一种氧化铝-碳化钛微米复合陶瓷刀具材料及其微波烧结方法
CN105441767B (zh) 一种抗高温氧化损伤ZrB2‑SiC‑ZrC‑W复相陶瓷的制备方法
CN104817327A (zh) 一种氮化硅复合陶瓷模具材料及其制备方法与应用
CN105523763B (zh) 一种碳化硅-硼化铬复合陶瓷材料及其制备方法
CN101734920A (zh) 一种氮化钛多孔陶瓷及其制备方法
CN104162661A (zh) 一种Al2O3-TiC-TiN微米复合陶瓷刀具材料及其微波烧结方法
CN105734386B (zh) 一种二硼化锆复合陶瓷材料及其制备方法
CN109467442B (zh) 一种氮化硅陶瓷及其制备方法
CN105819860B (zh) 一种碳化钛-碳化硅-硅化钛复合陶瓷材料及其制备方法
CN107473736A (zh) 一种用于MnZn铁氧体烧制的氧化锆陶瓷承烧板低温冷烧结制备方法
CN104108694B (zh) 一种负热膨胀材料HfMnMo2PO12及其制备方法
CN105523764A (zh) 一种碳化硼复合材料制备方法
Mingsheng et al. Fabrication of transparent polycrystalline yttria ceramics by combination of SPS and HIP
CN109734452A (zh) 一种无压烧结制备高致密Ti2AlN陶瓷的方法
CN110183229A (zh) 一种具有低温裂纹自愈合能力的Ti2Al(1-x)SnxC陶瓷修复相粉体的制备方法
CN114318038A (zh) 一种硼化物改性Mo2FeB2基金属陶瓷及其制备方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
TA01 Transfer of patent application right
TA01 Transfer of patent application right

Effective date of registration: 20190516

Address after: 225500 East Industrial Concentration Zone of Qintong Town, Jiangyan District, Taizhou City, Jiangsu Province (No. 81 Jiangqindong Road, Qintong Town)

Applicant after: JIANGSU SANRUI GRINDING TECHNOLOGY Co.,Ltd.

Address before: 236600 Li Miao village, Li Miao village, three Town, Taihe County, Fuyang, Anhui 24

Applicant before: Liu Peipei

GR01 Patent grant
GR01 Patent grant
TR01 Transfer of patent right
TR01 Transfer of patent right

Effective date of registration: 20230915

Address after: No. 688 Chenzhuang West Road, Sanshui Street, Jiangyan District, Taizhou City, Jiangsu Province, 225599

Patentee after: Jiangsu Sanrui Abrasive Technology Co.,Ltd.

Address before: 225500 East Industrial Concentration Zone of Qintong Town, Jiangyan District, Taizhou City, Jiangsu Province (No. 81 Jiangqindong Road, Qintong Town)

Patentee before: JIANGSU SANRUI GRINDING TECHNOLOGY Co.,Ltd.