CN105513809A - 铜钴锗硫纳米晶、铜钴锗硫对电极及其制备方法与应用 - Google Patents

铜钴锗硫纳米晶、铜钴锗硫对电极及其制备方法与应用 Download PDF

Info

Publication number
CN105513809A
CN105513809A CN201610015002.7A CN201610015002A CN105513809A CN 105513809 A CN105513809 A CN 105513809A CN 201610015002 A CN201610015002 A CN 201610015002A CN 105513809 A CN105513809 A CN 105513809A
Authority
CN
China
Prior art keywords
copper
sulphur
nanocrystalline
cobalt
germanium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201610015002.7A
Other languages
English (en)
Other versions
CN105513809B (zh
Inventor
黄守双
宰建陶
钱雪峰
何青泉
马对
李晓敏
李波
王敏
刘雪娇
刘园园
张洋
张敏敏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shanghai Jiaotong University
Original Assignee
Shanghai Jiaotong University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shanghai Jiaotong University filed Critical Shanghai Jiaotong University
Priority to CN201610015002.7A priority Critical patent/CN105513809B/zh
Publication of CN105513809A publication Critical patent/CN105513809A/zh
Application granted granted Critical
Publication of CN105513809B publication Critical patent/CN105513809B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/20Light-sensitive devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G13/00Apparatus specially adapted for manufacturing capacitors; Processes specially adapted for manufacturing capacitors not provided for in groups H01G4/00 - H01G11/00
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/004Details
    • H01G9/04Electrodes or formation of dielectric layers thereon
    • H01G9/042Electrodes or formation of dielectric layers thereon characterised by the material
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/542Dye sensitized solar cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

本发明涉及铜钴锗硫纳米晶、铜钴锗硫对电极及其制备方法与应用,属于太阳能电池领域。铜钴锗硫纳米晶其铜、钴、锗与硫的摩尔比为(2~2.2):(l~1.2):(1~1.2):(4~4.2),铜钴锗硫对电极的制备是通过在导电衬底上涂覆铜钴锗硫纳米墨水来实现。本发明中铜钴锗硫纳米晶是通过低温液相法合成,具有正交晶系,是纤锌矿衍生的超晶胞结构,具有尺寸均一、结晶度高、单分散性良好等优点。用于染料敏化太阳能电池对电极催化剂时,对I3 -离子的还原表现出良好的催化活性。与现有技术相比,本发明工艺简单,所制备的铜钴锗硫对电极不仅催化效果优异,而且价格低廉,大大降低了染料敏化太阳能电池的生产成本,适合工业化大规模生产。

Description

铜钴锗硫纳米晶、铜钴锗硫对电极及其制备方法与应用
技术领域
本发明涉及铜钴锗硫纳米晶、铜钴锗硫对电极及其制备方法与应用,属于太阳能电池领域。
背景技术
近年来,随着能源问题的日益严峻,作为第三代太阳能电池技术之一的染料敏化太阳能电池因具有组装简单、成本较低等优势以及较高的能量转换效率等优势,引起了科研工作者广泛的关注。典型的染料敏化太阳能电池具有“三明治”结构,即由光阳极,电解质和对电极组成。这类器件的工作原理与自然界的光合作用相似。当有机染料分子吸收太阳光后,电子从基态跃迁至激发态。这种处于激发态的电子不稳定,会以非常快的速率注入到较低能级的TiO2导带中。注入导带中的电子被导电基底收集后,流经外电路,对负载做功,并最终流回到对电极;在对电极/电解液界面处发生氧化还原反应,将氧化态电解质还原成基态;基态电解质从对电极表面脱附并扩散至光阳极,进一步将失去电子的氧化态染料分子还原成基态,以便再次吸收光子,至此整个电路得到再生并完成一个光电化学反应的循环。由此看出,对电极是染料敏化太阳能电池中的重要组成成分,它不仅是外电路电子流通的媒介,更重要的作用在于将氧化态的电解质还原成基态,保证染料分子的再生。理想的对电极材料应具备以下条件:(1)具有高的电子催化活性,利于催化I3 -离子还原成I-;(2)电子转移的阻力小;(3)在电解质的环境下,具有良好的电化学稳定性。当前广泛应用的对电极是表面镀有一层铂的导电玻璃,而由于铂金属的成本、丰度及长期稳定性等因素的影响,限制了大规模的工业化应用。因此,取代贵金属铂在染料敏化太阳能电池领域的应用成为一项重要的工作。
截止目前,研究人员制备了一系列的非铂对电极材料,如碳材料(Angew.Chem.Int.Ed.2013,52,3996;EnergyEnviron.Sci.2009,2,426),有机聚合物(J.Mater.Chem.2012,22,21624),氧化物(Chem.Commun.2013,49,5945;ChemSusChem2014,7,442),氮化物(ChemSusChem2013,6,261)及金属硫属化合物(J.Am.Chem.Soc.2012,134,10953;Angew.Chem.Int.Ed.2013,52,6694)等。
中国专利CN104835649A公布了一种染料敏化太阳能电池硫化银对电极的制备方法,包括:制备硫化银纳米晶;将硫化银纳米晶溶于溶剂中,经超声分散处理得到硫化银纳米晶墨水;将硫化银纳米晶墨水涂覆于基底上,对基底进行热处理,制得染料敏化太阳能电池硫化银对电极。然而,这些常见二元半导体数量有限,而且性质参数都是固定的,往往不能满足染料敏化太阳能电池理想对电极材料的要求。例如,Ag2S、CoS、NiS等半导体的带边位置是确定的,因而其导电性以及材料表面的物理化学性质也随着固定,因而难以进一步提升其对I3 -电对的电催化活性。通过对二元硫化物进行合理的离子替换,可得到一系列新型的多元硫化物,这些新型硫化物不仅性质与“父辈”的二元硫化物保持一定的继承关系,如电子结构、半导体特征等,而且提供了丰富可变的性质,如价带位置、导电性等,这为设计低成本、高活性硫属化合物对电极提供了新的契机。如Xin等(Angew.Chem.Int.Ed.2011,50,11739)采用热注入法合成了Cu2ZnSnS4(CZTS)纳米晶,旋涂沉积在FTO导电玻璃后再次在含Se气氛下煅烧,所制成的Cu2ZnSnSxSe4-x(CZTSSe)多元硫化物对I3 -/I-电对具有良好的催化活性,获得了近7.4%的光电转化效率(JSC=17.7mAcm-2,VOC=800mV,FF=0.52)。此外,河南大学武四新课题组发现纤锌矿CZTS比锌黄锡矿CZTS具有更高的载流子浓度和较低的电阻率,因而更加符合高效染料敏化太阳能电池的对电极要求(NanoscaleResearchLetters,2013,8,464)。
与一元二元硫化物相比,尽管多元硫化物存在较多的优点,但是随着元素的增多使得化学成分和结构自由度增多,其合成难度也随之增加。目前,高质量的多元硫化物的合成大都依赖高温、高真空技术,或者是制备过程中使用水合肼。在大规模产业化时,高温、真空设备的使用必然提高了最终产品的制造成本,而易挥发和爆炸的水合肼也会给环境和安全带来严重的负面影响。另外,这种方法也较难实现材料在形貌、尺寸等方面的有效控制,而基于“bottom-up”的湿化学合成方法能有效避免这种缺点。因此,发展低温液相法合成亚稳态多元硫化物纳米晶进而通过合适的技术成膜是一种理想的制备低成本、高性能对电极材料的途径。最近,研究结果表明具有纤锌矿的多元硫化物比黄锡矿多元硫化物具有更好的I3 -催化活性,这意味着纤锌矿衍生的多元硫化物更适合作为DSSCs对电极催化材料。但是,目前关于纤锌矿衍生多元硫化物纳米材料的研究还处于初始阶段。因此,探索低温溶液法合成纤锌矿衍生的多元硫化物及其在DSSCs中的应用研究具有重要的科学意义。
发明内容
本发明的目的就是为了克服上述现有技术存在的缺陷而提供铜钴锗硫纳米晶、铜钴锗硫对电极及其制备方法与应用。
本发明的目的可以通过以下技术方案来实现:
技术方案一:提供铜钴锗硫纳米晶:
所述的铜钴锗硫纳米晶,其铜、钴、锗与硫的摩尔比为(2~2.2):(l~1.2):(1~1.2):(4~4.2)。
技术方案二:提供上述铜钴锗硫纳米晶的制备方法:
所述的铜钴锗硫纳米晶的制备方法,具体包括以下步骤:
(1)将铜源、钴源、锗源、表面活性剂以及适量溶剂混合,抽真空除水除氧,磁力搅拌,控温加热到50-100℃并维持0.5-3小时使反应前驱物充分溶解,此后将整个反应体系通入保护气;
(2)将上述反应体系控温加热到100-150℃,注入硫源后加热到200-280℃并保持0.5-5小时;
(3)待反应结束,自然冷却至室温,在所得产物中加入1-100毫升无水乙醇并以3000-9000rpm的转速离心分离产物,去除上层离心液后即得到粒径为10-100纳米的铜钴锗硫纳米晶。
其中,铜源、钴源、锗源与硫源的摩尔比为:(2~2.2):(l~1.2):(1~1.2):(4~4.2);
所述的铜源选自硝酸铜、醋酸铜、乙酰丙酮铜、氯化铜、氯化亚铜或溴化铜中的一种或几种;
所述的钴源选自乙酰丙酮钴、二氯化钴、硝酸钴、醋酸钴或硫酸钴中的一种或几种;
所述的锗源选自四氯化锗、氧化锗或锗粉中的一种或几种;
所述的硫源选自升华硫、正十二硫醇、叔十二硫醇、硫代乙酰胺、二硫化碳或硫化钠中的一种或几种。
所述的溶剂选自正辛胺、十二胺、十六胺、油胺、十八胺、油酸或二苯醚中的一种或者几种;所使用的表面活性剂选自三辛基氧化膦、1,2-十二烷二醇、三辛基膦、正-十二硫醇或叔-十二硫醇中一种或者几种。铜源、表面活性剂、溶剂的加入量比例优选为1mol:4~20mol:5~25L。
铜钴锗硫纳米晶的制备方法中,优选的,可以采用配体对所述的铜钴锗硫纳米晶进行表面配体交换,获得水溶性铜钴锗硫纳米晶,所述的配体选自多硫化铵、乙二硫醇、正丁胺、吡啶或正己酸。
技术方案三:提供铜钴锗硫对电极:
所述的铜钴锗硫对电极,具体包括导电基体及涂覆在导电基底上的铜钴锗硫纳米晶。
技术方案四:提供铜钴锗硫对电极的制备方法:
所述的铜钴锗硫对电极的制备方法,包括以下步骤:
(a)将铜钴锗硫纳米晶溶于非极性溶剂中,经超声分散处理得到铜钴锗硫纳米晶墨水;
(b)将铜钴锗硫纳米晶墨水涂覆于导电基底上,并对其进行热处理,制备得到铜钴锗硫对电极。
步骤(a)所述的铜钴锗硫纳米晶采用技术方案二制得。步骤(a)所述的非极性溶剂选自三氯甲烷、四氯化碳、二氯甲烷、二氯乙烷、甲苯、苯、环己烷或己烷中的一种,步骤(a)所得铜钴锗硫纳米晶墨水的浓度为1-200毫克/毫升。
本发明所述的铜钴锗硫纳米晶墨水实际上是一种含有铜钴锗硫纳米晶的悬浮液,看上去像墨水一样,因此称之为铜钴锗硫纳米晶墨水。
步骤(b)所述的涂覆包括浸涂、旋涂、刮涂、喷墨打印或丝网印刷方式在基底上涂覆1-10次,所使用的导电基底包括FTO、ITO、不锈钢、柔性导电高分子或石墨。
步骤(b)所述的热处理是在氮气、氦气或氩气气氛及常压条件下,控制温度为100-500℃加热0.5-10小时。
上述制备方法得到的铜钴锗硫对电极厚度为0.01-10微米。
技术方案五:提供上述铜钴锗硫对电极的应用:
上述制备得到的铜钴锗硫对电极用于制备染料敏化太阳能电池。
本发明中铜钴锗硫纳米晶是通过低温液相法合成,具有正交晶系,是纤锌矿衍生的超晶胞结构,具有尺寸均一(约18纳米)、结晶度高、单分散性良好等优点。通过将铜钴锗硫纳米晶墨水涂覆于导电基底上得到铜钴锗硫对电极,本发明得到的铜钴锗硫对电极具有将I3-还原为I-的催化特性,且具有优异的使用性能,本发明得到的铜钴锗硫对电极可以取代传统贵金属铂电极,而作为染料敏化太阳能电池的催化电极。
与现有技术相比,本发明制备铜钴锗硫对电极的步骤简单,所制备的铜钴锗硫对电极不仅催化效果优异,而且价格低廉,大大降低了染料敏化太阳能电池的生产成本,制备的铜钴锗硫对电极的工艺和过程适用于大规模工业化生产;同时该方法为制备其他材料的染料敏化太阳能电池对电极提供了可以借鉴的思路。
附图说明
图1为实施例1制得产物的X射线衍射谱图;
图2为实施例1制得产物的透射电子显微镜照片一;
图3为实施例1制得产物的透射电子显微镜照片二;
图4为铜钴锗硫对电极与商业铂对电极在碘电解液中的循环伏安特性曲线;
图5为实施例1中所得染料敏化太阳能电池的电流密度-电压(J-V)曲线图。
具体实施方式
本发明实施例所使用原料均为市购分析纯产品,且并未进行进一步纯化。
本发明所制备材料的物相通过XRD-6000(Shimadzu)型X-射线衍射仪(Cu靶,镍滤波片滤波,λ=0.154纳米,管电压40千伏,管电流30毫安,扫描范围20度~60度)进行表征。
本发明所制备材料的形貌通过JEOL公司JEM-2010型透射电子显微镜进行观察获得,所得对电极的表面形态俯视图和膜厚度通过Hitachi公司S-4800型扫描电子显微镜进行观察获得。
以下实施例中,用于染料敏化太阳能电池的铜钴锗硫对电极的制备方法,采用以下步骤:
(1)制备铜钴锗硫纳米晶,具体采用以下方法:
(1-1)将油胺、铜源、锗源、钴源以及表面活性剂(三辛基氧化膦)混合,其中铜源为硝酸铜、醋酸铜、乙酰丙酮铜、氯化铜、氯化亚铜或溴化铜;钴盐为乙酰丙酮钴、二氯化钴,硝酸钴,醋酸钴,硫酸钴;锗盐为四氯化锗、氧化锗、锗粉;所述的硫源为升华硫、正十二硫醇、叔十二硫醇、硫代乙酰胺、二硫化碳或硫化钠。经抽真空除水除氧后,磁力搅拌,控温加热到60摄氏度并维持0.5-1小时使反应物充分溶解,此后将整个反应体系通入保护气;
(1-2)将上述反应体系控温加热到140摄氏度,注入硫源,铜源、钴源、锗源、硫源的摩尔比为铜盐、钴盐、锗盐与硫源的摩尔比为:(2~2.2):(l~1.2):(1~1.2):(4~4.2),使用的硫源可以是升华硫、正十二硫醇、叔十二硫醇、硫代乙酰胺、二硫化碳、硫化钠,加热到200摄氏度并保持0.5-1小时;
(1-3)利用离心分离获得产物,并无水乙醇洗涤;在所得沉淀中加入三氯甲烷分散并以8000rpm的转速离心分离产物,将所得上层溶液取出挥发溶剂后即得到粒径为10-100纳米的铜钴锗硫纳米晶。
(2)将铜钴锗硫纳米晶溶于三氯甲烷、四氯化碳、二氯甲烷、二氯乙烷、甲苯、苯、环己烷或己烷中,经超声分散处理得到浓度为1-200毫克/毫升的铜钴锗硫纳米晶墨水;
(3)将铜钴锗硫纳米晶墨水涂覆于导电基底上,可以采用浸涂、旋涂、刮涂、喷墨打印或丝网印刷方式在基底上涂覆1-10次,再对其进行热处理,具体是在氮气、氦气或氩气气氛及常压条件下,控制温度为100-500摄氏度加热0.5-10小时得到厚度为0.01-10微米的铜钴锗硫对电极。
下面结合附图和具体实施例对本发明进行详细说明。
实施例1
铜钴锗硫纳米晶、铜钴锗硫对电极的制备方法,其步骤如下:
(1)将1毫摩尔乙酰丙酮铜,0.5毫摩尔乙酰丙酮钴,0.5毫摩尔四氯化锗,1.5毫摩尔三辛基氧化膦和10毫升油胺加入到三颈烧瓶中,抽真空除水除氧,磁力搅拌,控温加热到100摄氏度并维持0.5小时使反应前驱物充分溶解,此后将整个反应体系通入保护气直至反应结束;
(2)将上述反应体系控温加热到140摄氏度,用注射器注入0.37毫升正-十二硫醇和2.63毫升叔-十二硫醇,加热到280摄氏度并保持2小时;
(3)待反应结束后,通过离心分离获得产物,并无水乙醇洗涤;在所得沉淀中加入三氯甲烷分散并以8000rpm的转速离心分离产物,将所得上层溶液取出挥发溶剂后即得到铜钴锗硫纳米晶;
(4)将上述铜钴锗硫纳米晶溶于三氯甲烷中,经超声分散处理得到铜钴锗硫纳米晶墨水,铜钴锗硫纳米晶胶体的浓度控制为50毫克/毫升;
(5)将上述铜钴锗硫纳米晶墨水旋涂于FTO导电基底上,置于400摄氏度的管式炉中在氮气的保护下热处理0.5小时得到铜钴锗硫对电极。
图1是所得到铜钴锗硫纳米晶的X射线衍射谱图,其中下方的柱状图为纤锌矿衍生的铜钴锗硫(Cu2CdGeS4,JCPDSNo.74-0515)的标准卡片,结果显示所得产物为铜钴锗硫。图2、图3显示所得的铜钴锗硫纳米晶的尺寸大约为18纳米。
实施例2
使用循环伏安法(德国Zahner电化学工作站)测量实施例1所得铜钴锗硫对电极的催化性能并且与热解铂对电极作对比。测试使用传统三电极体系,以实施例1所得铜钴锗硫对电极或热解Pt对电极为工作电极,以Ag/AgCl为参比电极,以Pt片对电极,电解液为10mMLiI,1mMI2和0.1MLiClO4的乙腈溶液。测试结果如图4所示,表明本发明实施例1所得铜钴锗硫对电极在催化碘电对的转化时出现了明显的两对氧化还原峰,表明可以有效催化这些过程的发生。其中,电位较负的一对氧化还原峰对应于I-/I3 -的转化,而较正的一对氧化还原峰对应于I3 -/I2的转化。所制备的铜钴锗硫对电极循环伏安扫描起始电位低于铂对电极,峰电位差小于铂对电极,并且对电极电流密度值优于铂电极,这表明铜钴锗硫对电极对I3 -电对的催化性能优于铂对电极。本发明在保证催化性能的同时使用了简化的制备方法,大大降低了制备成本,体现了该方法的潜在价值。
实施例3
使用多圈循环伏安法来衡量本发明实施例所得铜钴锗硫对电极在碘电解液中的稳定性。测试使用传统三电极体系,以实施例1所得铜钴锗硫对电极为工作电极,以Ag/AgCl为参比电极,以Pt片对电极,电解液为10mMLiI,1mMI2和0.1MLiClO4的乙腈溶液,扫描速度为50mVs-1。随着扫面次数的增加,循环伏安曲线没有特别变化,催化性能基本不变,表明对电极活性没有明显衰减,说明了本发明对电极在电解液十分稳定。
实施例4
将本发明实施例的新型对电极组装成染料敏化太阳电池并测试其光电转化效率。电池的光伏性能测试是通过在二氧化钛薄膜电极和对电极分别引出导线,连接到电池的光伏测试系统中。电池的受光面积为0.16cm2。用太阳光模拟器(Oriel94023A)输出模拟太阳光,将光强度调节至100mWcm2,测得该电池的电流密度一电压曲线如图5所示。根据曲线可计算出器件的光伏参数:开路电压(Voc)为722mV,短路电流密度(Jsc)为16.74mAcm-2,填充因子(FF)为64.6%,所得太阳电池转化效率(η)为7.84%,优于热解铂电极组装的器件效率(Voc=725mV,Jsc=16.32mAcm-2,FF=63.8%,η=7.54%)。
实施例5
铜钴锗硫纳米晶的制备方法,具体包括以下步骤:
(1)将铜源(乙酰丙酮铜)、钴源(硝酸钴)、锗源(四氯化锗)、表面活性剂(正-十二硫醇)以及适量溶剂(正辛胺)混合,抽真空除水除氧,磁力搅拌,控温加热到50℃并维持3小时使反应前驱物充分溶解,此后将整个反应体系通入保护气;
(2)将上述反应体系控温加热到100℃,注入硫源(升华硫)后加热到200℃并保持5小时,其中,铜源、钴源、锗源与硫源的摩尔比为:2:1:1:4,铜源、表面活性剂、溶剂的加入量比例为1mol:20mol:25L;
(3)待反应结束,自然冷却至室温,在所得产物中加入1-100毫升无水乙醇并以3000rpm的转速离心分离产物,去除上层离心液后即得到粒径为10-100纳米的铜钴锗硫纳米晶。
本实施例,铜钴锗硫纳米晶的制备方法中,采用配体多硫化铵对铜钴锗硫纳米晶进行表面配体交换,获得水溶性铜钴锗硫纳米晶。
铜钴锗硫对电极的制备方法,包括以下步骤:
(a)将铜钴锗硫纳米晶溶于非极性溶剂(三氯甲烷)中,经超声分散处理得到浓度为1毫克/毫升的铜钴锗硫纳米晶墨水;
(b)将铜钴锗硫纳米晶墨水涂覆(浸涂方式在基底上涂覆10次)于导电基底(FTO)上,在氮气气氛及常压条件下,控制温度为100℃加热10小时,制备得到厚度为0.01-10微米的铜钴锗硫对电极。
上述制备得到的铜钴锗硫对电极可用于制备染料敏化太阳能电池。
实施例6
铜钴锗硫纳米晶的制备方法,具体包括以下步骤:
(1)将铜源(氯化亚铜)、钴源(二氯化钴)、锗源(氧化锗)、表面活性剂(1,2-十二烷二醇)以及适量溶剂(油酸)混合,抽真空除水除氧,磁力搅拌,控温加热到80℃并维持1.5小时使反应前驱物充分溶解,此后将整个反应体系通入保护气;
(2)将上述反应体系控温加热到130℃,注入硫源(正十二硫醇)后加热到250℃并保持3小时,其中,铜源、钴源、锗源与硫源的摩尔比为:2.1:1.1:1.1:4.1,铜源、表面活性剂、溶剂的加入量比例为1mol:4mol:5L;
(3)待反应结束,自然冷却至室温,在所得产物中加入1-100毫升无水乙醇并以6000rpm的转速离心分离产物,去除上层离心液后即得到粒径为10-100纳米的铜钴锗硫纳米晶。
本实施例铜钴锗硫纳米晶的制备方法中,可以采用配体吡啶或正己酸对铜钴锗硫纳米晶进行表面配体交换,获得水溶性铜钴锗硫纳米晶。
铜钴锗硫对电极的制备方法,包括以下步骤:
(a)将铜钴锗硫纳米晶溶于非极性溶剂(四氯化碳)中,经超声分散处理得到浓度为50毫克/毫升的铜钴锗硫纳米晶墨水;
(b)将铜钴锗硫纳米晶墨水涂覆(刮涂方式在基底上涂覆5次)于导电基底(不锈钢)上,在氦气气氛及常压条件下,控制温度为300℃加热5小时,制备得到厚度为0.01-10微米的铜钴锗硫对电极。
实施例7
铜钴锗硫纳米晶的制备方法,具体包括以下步骤:
(1)将铜源(醋酸铜)、钴源(乙酰丙酮钴)、锗源(锗粉)、表面活性剂(叔-十二硫醇)以及适量溶剂(二苯醚)混合,抽真空除水除氧,磁力搅拌,控温加热到100℃并维持0.5小时使反应前驱物充分溶解,此后将整个反应体系通入保护气;
(2)将上述反应体系控温加热到150℃,注入硫源(硫代乙酰胺)后加热到280℃并保持0.5小时,其中,铜源、钴源、锗源与硫源的摩尔比为:2:1.2:1.2:4.2,铜源、表面活性剂、溶剂的加入量比例为1mol:10mol:10L;
(3)待反应结束,自然冷却至室温,在所得产物中加入1-100毫升无水乙醇并以9000rpm的转速离心分离产物,去除上层离心液后即得到粒径为10-100纳米的铜钴锗硫纳米晶。
铜钴锗硫对电极的制备方法,包括以下步骤:
(a)将铜钴锗硫纳米晶溶于非极性溶剂(环己烷)中,经超声分散处理得到浓度为200毫克/毫升的铜钴锗硫纳米晶墨水;
(b)将铜钴锗硫纳米晶墨水涂覆(丝网印刷方式在基底上涂覆1次)于导电基底(石墨)上,在氩气气氛及常压条件下,控制温度为500℃加热0.5小时,制备得到厚度为0.01-10微米的铜钴锗硫对电极。
上述的对实施例的描述是为便于该技术领域的普通技术人员能理解和使用发明。熟悉本领域技术的人员显然可以容易地对这些实施例做出各种修改,并把在此说明的一般原理应用到其他实施例中而不必经过创造性的劳动。因此,本发明不限于上述实施例,本领域技术人员根据本发明的揭示,不脱离本发明范畴所做出的改进和修改都应该在本发明的保护范围之内。

Claims (10)

1.一种铜钴锗硫纳米晶,其特征在于,其铜、钴、锗与硫的摩尔比为(2~2.2):(l~1.2):(1~1.2):(4~4.2)。
2.一种如权利要求1所述的铜钴锗硫纳米晶的制备方法,其特征在于,包括以下步骤:
(1)将铜源、钴源、锗源、表面活性剂以及适量溶剂混合,抽真空除水除氧,磁力搅拌,控温加热到50-100℃并维持0.5-3小时使反应前驱物充分溶解,此后将整个反应体系通入保护气;
(2)将上述反应体系控温加热到100-150℃,注入硫源后加热到200-280℃并保持0.5-5小时;
(3)待反应结束,自然冷却至室温,在所得产物中加入无水乙醇并以3000-9000rpm的转速离心分离产物,去除上层离心液后即得到粒径为10-100纳米的铜钴锗硫纳米晶。
3.根据权利要求2所述的铜钴锗硫纳米晶的制备方法,其特征在于,铜源、钴源、锗源与硫源的摩尔比为:(2~2.2):(l~1.2):(1~1.2):(4~4.2);
所述的铜源选自硝酸铜、醋酸铜、乙酰丙酮铜、氯化铜、氯化亚铜或溴化铜中的一种或几种;
所述的钴源选自乙酰丙酮钴、二氯化钴、硝酸钴、醋酸钴或硫酸钴中的一种或几种;
所述的锗源选自四氯化锗、氧化锗或锗粉中的一种或几种;
所述的硫源选自升华硫、正十二硫醇、叔十二硫醇、硫代乙酰胺、二硫化碳或硫化钠中的一种或几种。
4.根据权利要求2所述的铜钴锗硫纳米晶的制备方法,其特征在于,所述的溶剂选自正辛胺、十二胺、十六胺、油胺、十八胺、油酸或二苯醚中的一种或者几种;所使用的表面活性剂选自三辛基氧化膦、1,2-十二烷二醇、三辛基膦、正-十二硫醇或叔-十二硫醇中一种或者几种。
5.根据权利要求2所述的铜钴锗硫纳米晶的制备方法,其特征在于,采用配体对所述的铜钴锗硫纳米晶进行表面配体交换,获得水溶性铜钴锗硫纳米晶,所述的配体选自多硫化铵、乙二硫醇、正丁胺、吡啶或正己酸。
6.一种铜钴锗硫对电极,其特征在于,包括导电基体及涂覆在导电基底上的铜钴锗硫纳米晶。
7.一种如权利要求6所述的铜钴锗硫对电极的制备方法,其特征在于,包括以下步骤:
(a)将铜钴锗硫纳米晶溶于非极性溶剂中,经超声分散处理得到铜钴锗硫纳米晶墨水;
(b)将铜钴锗硫纳米晶墨水涂覆于导电基底上,并对其进行热处理,制备得到铜钴锗硫对电极。
8.根据权利要求7所述的铜钴锗硫对电极的制备方法,其特征在于,步骤(b)所述的涂覆包括浸涂、旋涂、刮涂、喷墨打印或丝网印刷方式在基底上涂覆1-10次,所使用的导电基底包括FTO、ITO、不锈钢、柔性导电高分子或石墨。
9.根据权利要求7所述的铜钴锗硫对电极的制备方法,其特征在于,步骤(b)所述的热处理是在氮气、氦气或氩气气氛及常压条件下,控制温度为100-500℃加热0.5-10小时。
10.一种如权利要求6所述的铜钴锗硫对电极的应用,其特征在于,所述的对电极用于制备染料敏化太阳能电池。
CN201610015002.7A 2016-01-11 2016-01-11 铜钴锗硫纳米晶、铜钴锗硫对电极及其制备方法与应用 Expired - Fee Related CN105513809B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610015002.7A CN105513809B (zh) 2016-01-11 2016-01-11 铜钴锗硫纳米晶、铜钴锗硫对电极及其制备方法与应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610015002.7A CN105513809B (zh) 2016-01-11 2016-01-11 铜钴锗硫纳米晶、铜钴锗硫对电极及其制备方法与应用

Publications (2)

Publication Number Publication Date
CN105513809A true CN105513809A (zh) 2016-04-20
CN105513809B CN105513809B (zh) 2018-09-11

Family

ID=55721712

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610015002.7A Expired - Fee Related CN105513809B (zh) 2016-01-11 2016-01-11 铜钴锗硫纳米晶、铜钴锗硫对电极及其制备方法与应用

Country Status (1)

Country Link
CN (1) CN105513809B (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106783233A (zh) * 2017-01-04 2017-05-31 安阳师范学院 CuCo2S4纳米粒子的制备方法
CN108328647A (zh) * 2018-02-28 2018-07-27 武汉理工大学 一种纤锌矿结构CuInS2纳米晶的制备方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101620939A (zh) * 2008-07-02 2010-01-06 比亚迪股份有限公司 一种半导体电极及制法和含有该半导体电极的太阳能电池
CN101635203A (zh) * 2008-07-27 2010-01-27 比亚迪股份有限公司 一种半导体电极及制法和含有该半导体电极的太阳能电池
CN102237200A (zh) * 2011-03-04 2011-11-09 中国科学院物理研究所 用于敏化太阳能电池的金属硫化物对电极及其制备方法
CN203377110U (zh) * 2013-07-18 2014-01-01 西安建筑科技大学 一种染料敏化太阳能电池复合结构对电极
CN103560013A (zh) * 2013-11-07 2014-02-05 武汉大学 一种硫化物对电极的染料敏化太阳能电池及其制备方法
CN103811186A (zh) * 2014-01-26 2014-05-21 中国科学院物理研究所 量子点敏化太阳电池金属硫化物对电极的制备方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101620939A (zh) * 2008-07-02 2010-01-06 比亚迪股份有限公司 一种半导体电极及制法和含有该半导体电极的太阳能电池
CN101635203A (zh) * 2008-07-27 2010-01-27 比亚迪股份有限公司 一种半导体电极及制法和含有该半导体电极的太阳能电池
CN102237200A (zh) * 2011-03-04 2011-11-09 中国科学院物理研究所 用于敏化太阳能电池的金属硫化物对电极及其制备方法
CN203377110U (zh) * 2013-07-18 2014-01-01 西安建筑科技大学 一种染料敏化太阳能电池复合结构对电极
CN103560013A (zh) * 2013-11-07 2014-02-05 武汉大学 一种硫化物对电极的染料敏化太阳能电池及其制备方法
CN103811186A (zh) * 2014-01-26 2014-05-21 中国科学院物理研究所 量子点敏化太阳电池金属硫化物对电极的制备方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
L.D. GULAY 等: "Crystal structures of the compounds Cu2CoSi(Ge,Sn)S4 and Cu2CoGe(Sn)Se4", 《JOURNAL OF ALLOYS AND COMPOUNDS》 *
SHOUSHANG HUANG等: "The role of Mott–Schottky heterojunctions inPtCo–Cu2ZnGeS4 as counter electrodes in dye-sensitized solar cells", 《CHEM. COMMUN.》 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106783233A (zh) * 2017-01-04 2017-05-31 安阳师范学院 CuCo2S4纳米粒子的制备方法
CN106783233B (zh) * 2017-01-04 2018-08-07 安阳师范学院 CuCo2S4纳米粒子的制备方法
CN108328647A (zh) * 2018-02-28 2018-07-27 武汉理工大学 一种纤锌矿结构CuInS2纳米晶的制备方法
CN108328647B (zh) * 2018-02-28 2020-04-10 武汉理工大学 一种纤锌矿结构CuInS2纳米晶的制备方法

Also Published As

Publication number Publication date
CN105513809B (zh) 2018-09-11

Similar Documents

Publication Publication Date Title
Li et al. High-performance and low platinum loading Pt/Carbon black counter electrode for dye-sensitized solar cells
Wu et al. Flake-like NiO/WO3 pn heterojunction photocathode for photoelectrochemical water splitting
Aboagye et al. Electrospun carbon nanofibers with surface-attached platinum nanoparticles as cost-effective and efficient counter electrode for dye-sensitized solar cells
Theerthagiri et al. Synthesis and characterization of (Ni1− xCox) Se2 based ternary selenides as electrocatalyst for triiodide reduction in dye-sensitized solar cells
Gopi et al. Facile fabrication of highly efficient carbon nanotube thin film replacing CuS counter electrode with enhanced photovoltaic performance in quantum dot-sensitized solar cells
Yue et al. Low cost poly (3, 4-ethylenedioxythiophene): polystyrenesulfonate/carbon black counter electrode for dye-sensitized solar cells
CN104465102B (zh) 染料敏化太阳能电池光阳极、其制备方法及应用
Chen et al. In-situ and green method to prepare Pt-free Cu2ZnSnS4 (CZTS) counter electrodes for efficient and low cost dye-sensitized solar cells
Zatirostami Electro-deposited SnSe on ITO: A low-cost and high-performance counter electrode for DSSCs
Huang et al. Solution-processed relatively pure MoS2 nanoparticles in-situ grown on graphite paper as an efficient FTO-free counter electrode for dye-sensitized solar cells
Wang et al. Hollow NiCo2Se4 microspheres composed of nanoparticles as multifunctional electrocatalysts for unassisted artificial photosynthesis
Kim et al. Nickel doped cobalt sulfide as a high performance counter electrode for dye-sensitized solar cells
Hou et al. The dye-sensitized solar cells based on the interconnected ternary cobalt diindium sulfide nanosheet array counter electrode
Jin et al. Cobalt selenide hollow nanorods array with exceptionally high electrocatalytic activity for high-efficiency quasi-solid-state dye-sensitized solar cells
CN103560014B (zh) 染料敏化电池用对电极、其制备方法及染料敏化电池
Xia et al. Bifacial quasi-solid-state dye-sensitized solar cell with metal selenide M0. 85Se (M= Co, Ni) as counter electrode
Oh et al. Cost-effective CoPd alloy/reduced graphene oxide counter electrodes as a new avenue for high-efficiency liquid junction photovoltaic devices
CN105448526A (zh) 一种石墨烯/铁镍硫代尖晶石复合催化剂及其制备方法和制备染料敏化太阳能电池的方法
Li et al. In-situ growth NiMoS3 nanoparticles onto electrospinning synthesis carbon nanofibers as a low cost platinum-free counter electrode for dye-sensitized solar cells
Che et al. Hydrothermal electrochemical deposition synthesis NiSe2 as efficient counter electrode materials for dye-sensitized solar cells
Xia et al. High efficiency bifacial quasi-solid-state dye-sensitized solar cell based on CoSe2 nanorod counter electrode
Li et al. In situ synthesis of ZnFe2O4 rough nanospheres on carbon nanofibers as an efficient titanium mesh substrate counter electrode for triiodide reduction in dye-sensitized solar cells
Sun et al. Solution processed NixSy films: composition, morphology and crystallinity tuning via Ni/S-ratio-control and application in dye-sensitized solar cells
Zatirostami SnO2-based DSSC with SnSe counter electrode prepared by sputtering and selenization of Sn: Effect of selenization temperature
Xiao et al. Low temperature fabrication of high performance and transparent Pt counter electrodes for use in flexible dye-sensitized solar cells

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20180911

Termination date: 20210111

CF01 Termination of patent right due to non-payment of annual fee