CN105510574B - 荧光纳米探针及其制备方法和用于食品中多种危害因子同步检测的方法 - Google Patents

荧光纳米探针及其制备方法和用于食品中多种危害因子同步检测的方法 Download PDF

Info

Publication number
CN105510574B
CN105510574B CN201510833301.7A CN201510833301A CN105510574B CN 105510574 B CN105510574 B CN 105510574B CN 201510833301 A CN201510833301 A CN 201510833301A CN 105510574 B CN105510574 B CN 105510574B
Authority
CN
China
Prior art keywords
fluorescent nano
hazard factor
hazard
teos
probe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201510833301.7A
Other languages
English (en)
Other versions
CN105510574A (zh
Inventor
张恒
易长青
林燕奎
刘慧玲
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Food Inspection & Quarantine Technology Center Of Shenzhen Entry-Exit Inspection & Quarantine Bureau
National Sun Yat Sen University
Original Assignee
Food Inspection & Quarantine Technology Center Of Shenzhen Entry-Exit Inspection & Quarantine Bureau
National Sun Yat Sen University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Food Inspection & Quarantine Technology Center Of Shenzhen Entry-Exit Inspection & Quarantine Bureau, National Sun Yat Sen University filed Critical Food Inspection & Quarantine Technology Center Of Shenzhen Entry-Exit Inspection & Quarantine Bureau
Priority to CN201510833301.7A priority Critical patent/CN105510574B/zh
Publication of CN105510574A publication Critical patent/CN105510574A/zh
Application granted granted Critical
Publication of CN105510574B publication Critical patent/CN105510574B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/543Immunoassay; Biospecific binding assay; Materials therefor with an insoluble carrier for immobilising immunochemicals
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/531Production of immunochemical test materials
    • G01N33/532Production of labelled immunochemicals
    • G01N33/533Production of labelled immunochemicals with fluorescent label

Abstract

本发明公开了一种荧光纳米探针,包括内部载有Eu3+和/或Tb3+的稀土螯合物的TEOS纳米内核,所述的TEOS纳米内核表面修饰有多层表面键合有Eu3+和/或Tb3+稀土螯合物的TEOS壳层。本发明的目的在于提供一种光信号强、有助于高通量检测食品中危险因子的荧光纳米探针,同时,本发明还提供了该荧光纳米探针的制备方法,以及采用该荧光纳米探针来实现食品中多种危害因子同步检测的方法。

Description

荧光纳米探针及其制备方法和用于食品中多种危害因子同步 检测的方法
技术领域
本发明涉及食品检测领域,特别是一种荧光纳米探针,该荧光纳米探针的制备方法,以及用于食品中多种危害因子同步检测的方法。
背景技术
食品中危害因子检测一直是食品安全领域中的重要课题,但目前能够灵敏、稳定可靠、快速简便、低成本地监控乳品中常见的危害因子的方法,实现对乳品中高频危害因子实现一步“全检测”的技术仍然缺乏。
如乳品中常见的“高频危害因子”如三聚氰胺,黄曲霉毒素M1,Beta-内酰胺类抗生素等的检测技术主要有基于色谱-质谱等理化检测、基于抗原抗体反应原理的免疫分析检测和基于微生物相关技术原理的检测。对乳品中抗生素的检测最初发展起来的是基于抗生素与微生物间相互作用而建立的微生物生长抑制法、微生物受体法和酶促比色法。乳品中理化检测方法是利用抗生素分子中的基团具有的特殊反应或性质来测定其含量,如高效液相色谱法、气相色谱法、质谱法、联用技术等等,能进行定性、定量和药物鉴定,敏感性较高,但色谱法分析过程繁琐复杂,样品前处理步骤较为复杂,工作量大,仪器昂贵,要求有熟练地技术人员及较长的分析周期,这也一定程度上限制了色谱法的应用。目前,用于检测抗生素残留的免疫分析方法主要有两类:一类是以抗原抗体识别为核心反应,代表方法是酶联免疫吸附法(ELISA),另一类是以受体配体识别为核心反应。但影响因素较多,易出现假阳性结果且灵敏度低。不管哪种方法,其检测对象都是一种(类)物质,要实现一次性对高频危害因子实现同步高通量的测定,目前的检测方法还不能实现。
以稀土荧光化合物作为荧光标记物的时间分辨荧光生化分析技术已经取得了显著的进步,在医学临床诊断、食品安全领域以及生命科学等领域发挥着越来越重要的作用。现有技术中,基于稀土荧光生物标记物超长荧光寿命的时间分辨荧光生化分析技术可有效消除各种各样来自于样品及仪器的背景信号对荧光测定的干扰,使得测定灵敏度显著增加。
但是现有的稀土荧光探针具有光信号较弱、检测集成度低的问题,并且现有的稀土荧光探针及其配套的检测装置和平台无法实现多种危害因子同步检测的目的。
发明内容
本发明的主要目的是提供一种光信号强、有助于高通量检测食品中危险因子的荧光纳米探针,同时,本发明还提供了该荧光纳米探针的制备方法,以及采用该荧光纳米探针来实现食品中多种危害因子同步检测的方法,该方法能够实现多种危害因子同步检测的目的。
在阐述本发明的具体方案之前,对本发明中的各化合物简称予以说明:
TEOS(正硅酸乙酯)、BHHCT(三联苯衍生物螯合物)、BPTA(四氮-[2,6-双(3'-氨基甲基-1'-吡啶)-4-苯基吡啶])、APTMS(3-氨丙基三甲氧基硅烷)、NHS(N-羟基琥珀酰亚胺)、BBCAP(2,9-双[N,N-双(羧甲基)氨甲基]-1,10-(菲咯啉))、PTTA(联三吡啶多羧酸衍生物)、BCPDA(4,7-双氯磺酰基苯基-1,10-菲啰啉-2,9-二羧酸)EDC(1-(3-二甲氨基丙基)-3-乙基碳二亚胺盐酸盐)、TritonX-100(聚乙二醇辛基苯基醚)、Tris(三羟甲基氨基甲烷)、BSA(牛血清白蛋白)、PDMS(聚二甲基硅氧烷)。
本发明提供的技术方案为:一种荧光纳米探针,包括内部载有Eu3+和/或Tb3+的稀土螯合物的TEOS纳米内核,所述的TEOS纳米内核表面修饰有多层表面键合有Eu3+和/或Tb3+稀土螯合物的TEOS壳层。
优选地,荧光纳米探针的最外层还设有一层TEOS壳层,该TEOS壳层表面并不键合有Eu3+和/或Tb3+稀土螯合物,其主要用于键合抗体或者抗原模拟物。
在上述的荧光纳米探针中,所述的TEOS纳米内核的表面也键合有Eu3+和/或Tb3+稀土螯合物。
需要说明的是:在本方案中,“和/或”所指代的意思为可以选择之一或两种均可选择。比如,Eu3+和/或Tb3+的稀土螯合物是指该稀土螯合物中所螯合的稀土离子可以为Eu3+也可以为Tb3+,也可以为两者的混合物。
在本方案中,若选择螯合有Eu3+和Tb3+的离子时,其配比是根据实际需要来进行选择的,螯合物中所键合的Eu3+和Tb3+的摩尔比例可以为0:5、1:4、2:3、1:1、3:2、4:1、5:0。
Tb纳米、Eu纳米还是混合包裹的Eu/Tb纳米都具有一致的激发和发射光谱。调整Eu与Tb二者浓度的混合比例能够制备多色荧光纳米,其所制备出的多色荧光纳米探针的激发波长是保持一致的,如图5中A、B所示,BBCAP-Eu,BBCAP-Tb的激发波长为280nm。随着掺入Tb与Eu摩尔比例的不同,形成的多色荧光纳米探针在峰型上展示了一些变化,如图5中C所示。但这种混合包裹的荧光纳米探针,随着在外层的“layer-by-layer”(一层又一层)包裹,其特征光谱峰也没有发生变化,这对于后续的标记实验是重要的,这样可以保证不同类型的荧光纳米探针混合进行多种危害因子的同步检测,并有望实现可视化检测。
在上述的荧光纳米探针中,所述的稀土螯合物所用的螯合剂为BBCAP或BHHCT或PTTA。
在上述的荧光纳米探针中,所述的表面键合有Eu3+和/或Tb3+稀土螯合物的TEOS壳层为3-5层。
本发明还提供上述的荧光纳米探针的制备方法,具体来说,包括以下步骤:
步骤1:在反相微乳液中合成内部载有Eu3+和/或Tb3+稀土螯合物的TEOS纳米内核;
步骤2:在TEOS纳米内核的表面键合Eu3+和/或Tb3+稀土螯合物;
步骤3:在键合有Eu3+和/或Tb3+稀土螯合物的TEOS纳米内核表面修饰一层TEOS壳层;
步骤4:在步骤3得到的具有TEOS壳层的粒子表面键合Eu3+和/或Tb3+稀土螯合物;
步骤5:重复步骤3和步骤4,2~4次;
步骤6:在步骤5得到的粒子表面修饰一层TEOS壳层。
在上述的荧光纳米探针的制备方法中,所述的步骤2具体为:将步骤1所得到的TEOS纳米内核置于无水乙醇中并加入APTMS反应,得到表面键合有氨基的TEOS纳米内核,并将其置于无水乙醇中;
然后加入螯合剂,使螯合剂和氨基反应,将反应产物经过Tris.HCl溶液处理后置于无水乙醇中;
最后加入EuCl3和/或TbCl3,反应一段时间后得到表面键合Eu3+和/或Tb3+稀土螯合物的TEOS纳米内核;
其中,TEOS纳米内核、APTMS、螯合剂、EuCl3和/或TbCl3的重量比为10~100:1~5:0.5~5:0.5~5。
在上述的荧光纳米探针的制备方法中,所述的步骤2具体为:将步骤1所得到的TEOS纳米内核置于无水乙醇中并加入APTMS反应,得到表面键合有氨基的TEOS纳米内核,并将其置于无水乙醇中;
然后加入螯合剂,使螯合剂和氨基反应,将反应产物经过Tris.HCl溶液处理后置于无水乙醇中;
最后加入EuCl3和/或Tb Cl3,反应一段时间后得到表面键合Eu3+和/或Tb3+稀土螯合物的TEOS纳米内核;
其中,TEOS纳米内核、APTMS、螯合剂、EuCl3和/或TbCl3的重量比为10~100:1~5:0.5~5:0.5~5。
本发明还提供一种用于食品中多种危害因子同步检测的方法,具体来说,所述的方法通过具有多条检测通道的微流控芯片和多种如上述的荧光纳米探针实施;每一种危害因子均对应有相应的检测通道和相应的荧光纳米探针;
所述的方法具体为:将待检物溶液加入到多条检测通道后,用缓冲液冲洗后加入含多种荧光纳米探针的溶液,最后用缓冲液冲洗后检测检测通道内的荧光信号;
其中,对于采用夹心法检测的危害因子,该危害因子对应的检测通道内和用于检测该危害因子的荧光纳米探针的表面均固定有该危害因子的捕获抗体;
对于采用竞争法检测的危害因子,该危害因子对应的检测通道内固定有该危害因子的捕获抗体,且用于检测该危害因子的荧光纳米探针的表面偶联有该危害因子的模拟物。
另外,本发明还提供了另一种用于食品中多种危害因子同步检测的方法,所述的方法通过具有多条检测通道的微流控芯片和多种如上述的荧光纳米探针实施;每一种危害因子均对应有相应的检测通道和相应的荧光纳米探针;
所述的方法具体为:首先将含多种荧光纳米探针的溶液与待检物溶液混合后,将混合溶液加入到多条检测通道中,然后用缓冲液冲洗后检测检测通道内的荧光信号;
其中,对于采用夹心法检测的危害因子,该危害因子对应的检测通道内和用于检测该危害因子的荧光纳米探针的表面均固定有该危害因子的捕获抗体;
对于采用竞争法检测的危害因子,该危害因子对应的检测通道内固定有该危害因子的模拟物,且用于检测该危害因子的荧光纳米探针的表面固定有该危害因子的捕获抗体。
所述的模拟物为危害因子与BSA或卵清蛋白反应得到,如BSA-三聚氰胺、BSA-氯霉素等。
在此需要说明的是,采用夹心法进行测试的危害因子一般为大分子危害因子如细菌、病毒等微生物,该大分子危害因子具有多个结合位点,也称为完全抗原;对于采用竞争法进行测试的危害因子一般为小分子危害因子如三聚氰胺、抗生素、激素等,其仅具有一个结合位点,也称为半抗原。
在上述的用于食品中多种危害因子同步检测的方法中,所述的微流控芯片上还设有控制通道,所述的控制通道内未修饰任何生物分子。
在上述的用于食品中多种危害因子同步检测的方法中,所述的微流控芯片包括PDMS本体,所述的PDMS本体的中央设有进样口,所述的检测通道和控制通道分别与进样口相连,所述的进样通道的末端和控制通道的末端均设有出口,所述的进样通道和控制通道内均设有多个柱状的凸起;所述的微流控芯片设置在一可旋转的转盘上,通过旋转转盘使待测样品、缓冲溶液、荧光纳米探针进入检测通道中。
在上述的用于食品中多种危害因子同步检测的方法中,所述的凸起的横截面为正六边形,所述的PDMS本体为圆盘形。
本发明的有益效果如下:
1、本发明的荧光纳米探针采用核壳结构,其中核层和壳层均为TEOS骨架,核层为TEOS纳米内核,其不同于传统的通过物理包埋或共价交联包裹的荧光纳米探针,而是通过一种由“核”到“壳”全合成的荧光纳米探针,核壳结构的优点在于:所制备的这种层层包裹的荧光纳米探针具有更强的荧光信号,相比较以前文献报道的稀土类荧光纳米对信号有着明显增强,其光谱特性与以前文献报道一致,二氧化硅包裹的荧光纳米不会改变其荧光特性。
2、本发明的荧光纳米探针在TEOS纳米内核表面设置多层表面键合有Eu3+和/或Tb3 +稀土螯合物的TEOS壳层并结合TEOS纳米内核内载有的Eu3+和/或Tb3+稀土螯合物,能够提供更为灵敏、稳定的荧光响应和更强的荧光信号。其原因在于,由于硅壳层有一定的厚度,使得层与层之间有一定的距离,从而保证TEOS纳米内的Eu3+和/或Tb3+离子不会产生荧光自猝灭效应,保证了荧光强度会随着层数的增多而增强。这样带来最直接的好处就在于危害因子检出限相比于传统技术得到了显著的提高,检测灵敏度增加,检测结果更加准确和具有针对性。
3、本发明的用于食品中多种危害因子同步检测的方法采用荧光纳米探针和微流控芯片结合,具有高通量优点,可以同时检测多种危险因子,具体来说,这里的危害因子不仅包括微生物等大分子,还包括激素、抗生素等小分子物质,响应速度快、荧光强度大,可以作为食品中多种危害因子检测的有效方法。
附图说明
图1是本发明的实施例1的荧光纳米探针制备示意图;
图2是本发明的实施例1的修饰有氨基的荧光纳米探针的放大的示意图;
图3是本发明的实施例3和4的微流控芯片的结构示意图;
图4是本发明的实施例3和4的微流控芯片的A-A剖视图。
图5是本发明的实施例5的荧光检测光谱。
各标号具体为:1、TEOS纳米内核,2、修饰有氨基的TEOS纳米内核,3、修饰有稀土螯合物的TEOS纳米内核,4、修饰有氨基的荧光纳米探针,5、稀土螯合物,6、TEOS壳层,8、PDMS本体,81、进样口,82、进样通道,83、控制通道,84、出口,85、凸起。
具体实施方式
下面结合具体实施方式,对本发明的技术方案作进一步的详细说明,但不构成对本发明的任何限制。
实施例1
本实施例给出了荧光纳米探针的制备方法。
具体为:1.螯合物前驱体的制备
溶液A:2.0mg BBCAP或BHHCT或PTTA溶解于20μL 0.05M的碳酸盐缓冲液(pH 9.5)中。溶液B:6.4mg EDC和2.0mg NHS溶解于80μL无水乙醇。A,B混合搅拌20min,加入1.5μLAPTMS,避光搅拌反应2h。然后,加入200μL 0.01M的EuCl3和TbCl3的混合物,避光搅拌反应2h,获得有大量氨基且螯合不同比例Eu3+和Tb3+的螯合物,作为合成具有不同发射波长荧光探针的前驱体。
2.荧光纳米探针的制备
A)荧光纳米探针的TEOS纳米内核的合成:取100μL上述前驱体和300μL超纯水加入到10mL由非离子表面活性剂TritonX-100形成的反相胶束体系中进行凝胶化反应。反相胶束体系按照TritonX-100,正己醇,环己烷三者体积比1:1:3混合,快速搅拌均匀制备反相胶束。在上述体系中加入100μL TEOS,加快搅拌速度,促使TEOS进入反相胶束中的“纳米水池”,然后加入60μL NH4OH引发水解反应。室温反应24h,使水解和缩合反应进行充分,将收集的产物分散在等体积的丙酮中,在冰水浴中超声震荡5min,高速离心沉淀,将沉淀分散在乙醇相中进行充分洗涤,保存在无水乙醇中备用。其如图1中的标号1。
B)荧光纳米探针TEOS壳层的制备:①如图1中的标号2所示,取l mL浓度约为30mg/mL悬浮于无水乙醇中的荧光纳米探针TEOS纳米内核,加入3μL APTMS,室温搅拌2小时,随后加热到69℃,并持续加热保持5min,最后用无水乙醇洗涤3遍,并悬浮于l mL无水乙醇中;②如图1中的标号3所示,取上述表面修饰有氨基的TEOS纳米内核l mL,浓度约为30mg/mL,加入0.8mg BHHCT,室温搅拌2h,无水乙醇洗涤2遍后,以lmL Tris.HCl(0.05mol/L,pH 7.8)悬浮,最后以无水乙醇洗涤3遍,并悬浮于l mL无水乙醇中,然后加入0.8mg EuCl3,避光搅拌反应2h,获得螯合新一层Eu3+的纳米探针;③TEOS壳层的制备:取上述键合有稀土螯合物的荧光纳米l mL,浓度约为30mg/mL,加入20μLTEOS,室温,避光搅拌2h,随后加热到69℃,并持续加热保持5min,最后用无水乙醇洗涤l遍,并悬浮于l mL无水乙醇中。重复步骤①-③2-4次。最后重复①步骤在其表面修饰氨基,备用,其如图1中的标号4所示。图2为修饰有氨基的荧光纳米探针的示意图,其中5为稀土螯合物,6为最外层的TEOS壳层,其中在图2中最外层的TEOS壳层6和TEOS纳米内核之间仅画出了稀土螯合物5,图中未示出的是,在最外层的TEOS壳层6和TEOS纳米内核之间具有多层TEOS壳层,通过稀土螯合物5可以看出稀土螯合物5为多层分布的,在多层的稀土螯合物5之间即为TEOS壳层。
3.荧光纳米探针与抗体偶联
取抗体500μL,对0.01mol/L pH 5.2醋酸钠缓冲液,4℃透析6h;然后加入NaIO4,终浓度为0.01mol/L,对抗体进行氧化,20分钟后,再次对0.01mol/L pH5.2醋酸钠缓冲液透析,然后加入表面带有氨基的荧光纳米探针500μL,混匀,4℃过夜;加入NaBH3CN,终浓度为0.005mol/L,4℃反应2h;再加入等体积的封闭液(0.05mol/L Tris.HCl,pH=7.8,含2wt%BSA、4wt%蔗糖),4℃封闭12小时或过夜;最后用0.05mol/LTris-HCl,pH=7.8)洗涤标记好的荧光纳米探针3遍,然后用500μL 0.05mol/L Tris.HCl(pH=7.8,含0.9wt%NaCl、0.2wt%BSA、0.1wt%NaN3)悬浮,得到荧光纳米探针,备用。
在本实施例中以及实施例2和3中均未明确指出Eu3+和Tb3+的摩尔比例,其在实施例5中的图5的解释中已经明确说明了Eu3+和Tb3+比例对特征峰的影响,本领域技术人员可以根据图5的图谱自行设计Eu3+和Tb3+的比例。在本实施例中单位M代表mol/L,wt%代表质量百分数。
实施例2
本实施例给出了荧光纳米探针的制备方法。
具体为:1.螯合物前驱体的制备
溶液A:10mg BBCAP或BHHCT或PTTA溶解于20μL 0.05M的碳酸盐缓冲液(pH 9.5)中。溶液B:6.4mg EDC和2.0mg NHS溶解于80μL无水乙醇。A,B混合搅拌20min,加入1.5μLAPTMS,避光搅拌反应2h。然后,加入200μL 0.01M的EuCl3和TbCl3的混合物,避光搅拌反应2h,获得有大量氨基且螯合不同比例Eu3+和Tb3+的螯合物,作为合成具有不同发射波长荧光探针的前驱体。
2.荧光纳米探针的制备
A)荧光纳米探针的TEOS纳米内核的合成:取100μL上述前驱体和300μL超纯水加入到10mL由非离子表面活性剂TritonX-100形成的反相胶束体系中进行凝胶化反应。反相胶束体系按照TritonX-100,正己醇,环己烷三者体积比1:1:3混合,快速搅拌均匀制备反相胶束。在上述体系中加入100μL TEOS,加快搅拌速度,促使TEOS进入反相胶束中的“纳米水池”,然后加入100μL NH4OH引发水解反应。室温反应24h,使水解和缩合反应进行充分,将收集的产物分散在等体积的丙酮中,在冰水浴中超声震荡5min,高速离心沉淀,将沉淀分散在乙醇相中进行充分洗涤,保存在无水乙醇中备用。其示意图如图1中的标号1。
B)荧光纳米探针TEOS壳层的制备:①如图1中的标号2所示,取l mL浓度约为100mg/mL悬浮于无水乙醇中的荧光纳米探针TEOS纳米内核,加入5μL APTMS,室温搅拌2小时,随后加热到69℃,并持续加热保持5min,最后用无水乙醇洗涤3遍,并悬浮于l mL无水乙醇中;②如图1中的标号3所示,取上述表面修饰有氨基的TEOS纳米内核l mL,浓度约为100mg/mL,加入5.0mg BHHCT,室温搅拌2h,无水乙醇洗涤2遍后,以lmL Tris.HCl(0.05mol/L,pH 7.8)悬浮,最后以无水乙醇洗涤3遍,并悬浮于l mL无水乙醇中,然后加入5.0mgEuCl3,避光搅拌反应2h,获得螯合新一层Eu3+的纳米探针;③TEOS壳层的制备:取上述键合有稀土螯合物的荧光纳米l mL,浓度约为100mg/mL,加入100μLTEOS,室温,避光搅拌2h,随后加热到69℃,并持续加热保持5min,最后用无水乙醇洗涤l遍,并悬浮于l mL无水乙醇中。重复步骤①-③2-4次。最后重复①步骤在其表面修饰氨基,备用,其如图1中的标号4所示。图2为修饰有氨基的荧光纳米探针的放大的示意图。
3.荧光纳米探针与抗体偶联
取抗体500μL,对0.01mol/L pH 5.2醋酸钠缓冲液,4℃透析6h;然后加入NaIO4,终浓度为0.01mol/L,对抗体进行氧化,20分钟后,再次对0.01mol/L pH5.2醋酸钠缓冲液透析,然后加入表面带有氨基的荧光纳米探针500μL,混匀,4℃过夜;加入NaBH3CN,终浓度为0.005mol/L,4℃反应2h;再加入等体积的封闭液(0.05mol/L Tris.HCl,pH=7.8,含2wt%BSA、4wt%蔗糖),4℃封闭12小时或过夜;最后用0.05mol/LTris-HCl,pH=7.8)洗涤标记好的荧光纳米探针3遍,然后用500μL 0.05mol/L Tris.HCl(pH=7.8,含0.9wt%NaCl、0.2wt%BSA、0.1wt%NaN3)悬浮,得到荧光纳米探针,备用。
实施例3
A)荧光纳米探针的TEOS纳米内核的合成:取100μL上述实施例1或实施例2所述的前驱体和300μL超纯水加入到10mL由非离子表面活性剂TritonX-100形成的反相胶束体系中进行凝胶化反应。反相胶束体系按照TritonX-100,正己醇,环己烷三者体积比1:1:3混合,快速搅拌均匀制备反相胶束。在上述体系中加入100μL TEOS,加快搅拌速度,促使TEOS进入反相胶束中的“纳米水池”,然后加入50μL NH4OH引发水解反应。室温反应24h,使水解和缩合反应进行充分,将收集的产物分散在等体积的丙酮中,在冰水浴中超声震荡5min,高速离心沉淀,将沉淀分散在乙醇相中进行充分洗涤,保存在无水乙醇中备用。其示意图如图1中的标号1。
B)荧光纳米探针TEOS壳层的制备:①如图1中的标号2所示,取l mL浓度约为10mg/mL悬浮于无水乙醇中的荧光纳米探针TEOS纳米内核,加入1μL APTMS,室温搅拌2小时,随后加热到69℃,并持续加热保持5min,最后用无水乙醇洗涤3遍,并悬浮于l mL无水乙醇中;②如图1中的标号3所示,取上述表面修饰有氨基的TEOS纳米内核l mL,浓度约为10mg/mL,加入0.5mg BHHCT,室温搅拌2h,无水乙醇洗涤2遍后,以lmL Tris.HCl(0.05mol/L,pH 7.8)悬浮,最后以无水乙醇洗涤3遍,并悬浮于l mL无水乙醇中,然后加入0.5mg EuCl3,避光搅拌反应2h,获得螯合新一层Eu3+的纳米探针;③TEOS壳层的制备:取上述键合有稀土螯合物的荧光纳米l mL,浓度约为10mg/mL,加入100μLTEOS,室温,避光搅拌2h,随后加热到69℃,并持续加热保持5min,最后用无水乙醇洗涤l遍,并悬浮于l mL无水乙醇中。重复步骤①-③2-4次。最后重复①步骤在其表面修饰氨基,备用,其如图1中的标号4所示。图2为修饰有氨基的荧光纳米探针的放大的示意图。
3.荧光纳米探针与抗体偶联
取抗体500μL,对0.01mol/L pH 5.2醋酸钠缓冲液,4℃透析6h;然后加入NaIO4,终浓度为0.01mol/L,对抗体进行氧化,20分钟后,再次对0.01mol/L pH5.2醋酸钠缓冲液透析,然后加入表面带有氨基的荧光纳米探针500μL,混匀,4℃过夜;加入NaBH3CN,终浓度为0.005mol/L,4℃反应2h;再加入等体积的封闭液(0.05mol/L Tris.HCl,pH=7.8,含2wt%BSA、4wt%蔗糖),4℃封闭12小时或过夜;最后用0.05mol/LTris-HCl,pH=7.8)洗涤标记好的荧光纳米探针3遍,然后用500μL 0.05mol/L Tris.HCl(pH=7.8,含0.9wt%NaCl、0.2wt%BSA、0.1wt%NaN3)悬浮,得到荧光纳米探针,备用。
实施例4
微流控芯片的制备:本微流控芯片的结构为包括PDMS本体8,所述的PDMS本体8的中央设有进样口81,所述的PDMS本体8内设有6条与进样口81连接的进样通道82和1条与进样口81连接的控制通道83,所述的进样通道82的末端和控制通道83的末端均设有出口84,所述的进样通道82和控制通道83内均设有多个柱状的凸起85。
凸起85的剖面形状为正六边形,当然在实际应用过程中,凸起85的剖面形状还可以为椭圆形或者其他形状。
凸起85的顶部与进样通道82或控制通道83的顶部连接。
芯片主体采用PDMS-PDMS结构,以模塑法制作,具体步骤如下:
a)硅模具制作:模具的制作包括绘制版图、制作掩模和光刻三个标准步骤。
b)PDMS基片的制作:将Sylgard 184硅橡胶弹性体和Sylgard 184固化剂以质量比10:1的比例混合,搅拌均匀,在真空干燥箱中脱气,倾倒在硅模具表面,在真空干燥箱中以80℃烘烤15分钟,取出,冷却,剥离。得到具有7条微通道的PDMS基片。
c)键合封装:将含有微通道的PDMS打孔,确定微流控进口和出口;然后将此PDMS基片和另一片平整的PDMS切成芯片单元。以氧气等离子体方法键合。芯片制作完毕。
d)表面修饰及功能化:表面等离子体处理后,把两块PDMS键合,然后立刻开始表面处理程序。从进样通道82和控制通道83的出口84加样,中间的进样口81施加真空将试剂抽过去。
抗体的固定程序如下:氧等离子处理PDMS进样通道82、控制通道83和平整的PDMS膜5-10分钟(18秒,50瓦,0.2毫巴,标况下250mL/min),然后键合成整芯片;以4.0mL/min的速度从进样口81通入5.0wt%的3-氨基丙基三乙氧基硅烷溶液(95wt%乙醇—5wt%双蒸水混合溶液)10分钟。停止流动,孕育15分钟,依次用乙醇冲洗15分钟和通空气吹洗,然后在80℃烘30分钟。随后,注入戊二醛溶液(1.0wt%的水溶液,Ph=9.2)10分钟后静止,在碱性条件下培育15分钟,使表面氨基与交联剂戊二醛反应。用0.1M碳酸钠缓冲液(pH=9.2)冲洗通道,然后注入抗体溶液(0.2mg/mL抗体分散于pH 9.2的0.1M碳酸钠缓冲液,含0.05%Tween-20)10分钟。孕育20min后,使用0.5M Tris缓冲液(pH 9.0)-0.05wt%Tween混合液封闭未反应的戊二醛。为了减少非特异性蛋白质的吸附,通入1.0wt%的牛血清白蛋白溶液(10mMPBS,pH 7.4),培育20分钟,然后用10mM PBS冲洗干净。
实施例5
牛奶中危害因子的检测
以牛奶中肠出血性大肠杆菌O157:H7、沙门氏菌、单增李斯特菌三种致病菌的同步检测为例。
具体步骤如下:步骤1:从实施例4所制备的微流控芯片的进样口81加入待测样品,使样品进入微流控芯片的检测通道52中;在微流控芯片中设有6条检测通道52和一条控制通道83。检测通道52和控制通道83结构相同,均设有多个截面为六边形的凸起。控制通道83不做任何修饰,即不固定任何抗体,在本实施例中为设置的阴性对照,因为按照设计在控制通道83中没有任何抗体存在,则无法捕获待测物,也无法形成夹心结构而产生荧光信号;这一阴性对照设置的目的是排除通道表面的非特异性吸附造成的干扰;
其中的两条检测通道52设置为肠出血性大肠杆菌O157:H7的检测通道,通道内固定肠出血性大肠杆菌O157:H7的单克隆抗体;
另外的两条检测通道52设置为沙门氏菌的检测通道,通道内固定沙门氏菌的单克隆抗体;
剩余的两条检测通道52设置为单增李斯特菌的检测通道,通道内固定单增李斯特菌的单克隆抗体;
步骤2:将缓冲液从进样口81加入检测通道52中,冲洗数次;
步骤3:从进样口中加入荧光纳米探针溶液,荧光纳米探针如实施例1中公开,使荧光纳米探针进入检测通道中;荧光纳米探针溶液中含有三种特定的荧光纳米探针,其中一种荧光纳米探针的表面所修饰的肠出血性大肠杆菌O157:H7的单克隆抗体;另外一种荧光纳米探针的表面所修饰沙门氏菌的单克隆抗体;剩余的一种荧光纳米探针的表面所修饰单增李斯特菌的单克隆抗体。
步骤4:将缓冲液从进样口81加入检测通道中,冲洗数次;
步骤5:用荧光显微镜或时间分辨荧光仪检测检测通道52中的荧光信号。
其具体的检测原理为:若牛奶中有肠出血性大肠杆菌O157:H7,则在肠出血性大肠杆菌O157:H7的检测通道内的抗体会与牛奶中的肠出血性大肠杆菌O157:H7特异性结合,固定住抗原肠出血性大肠杆菌O157:H7,然后荧光纳米探针溶液中修饰有肠出血性大肠杆菌O157:H7的单克隆抗体的荧光纳米探针与抗原肠出血性大肠杆菌O157:H7特异性结合,这样经过荧光显微镜或时间分辨荧光仪检测得到该检测通道52内的荧光强度,即可得知样品中是否存在肠出血性大肠杆菌O157:H7以及肠出血性大肠杆菌O157:H7的浓度是多少。该检测原理也可以形象的称为“三明治”或“夹心法”检测法。荧光强度越大则说明肠出血性大肠杆菌O157:H7的浓度越大。
沙门氏菌的检测通道和单增李斯特菌的检测通道的检测原理同上,在此不做过多重复。
在本实施例中,如有必要,还可以预先设计不同种类的荧光纳米探针的Eu3+和Tb3+的摩尔比例,不同比例的Eu3+和Tb3+的混合在特征峰并未发生变化,仅在于峰型上展示一些变化,这得益于外层的“layer-by-layer”包裹。
具体如图5所示,在本实施例的荧光纳米探针中,无论是Tb纳米、Eu纳米还是混合包裹的Eu/Tb纳米都具有一致的激发和发射光谱。调整Eu与Tb二者浓度的混合比例能够制备多色荧光纳米,其所制备出的多色荧光纳米探针的激发波长是保持一致的,如图谱A、B所示,BBCAP-Eu,BBCAP-Tb的激发波长为280nm。随着掺入Tb与Eu摩尔比例的不同,形成的多色荧光纳米探针在峰型上展示了一些变化,如图C所示。具体来说,图5中,横坐标为波长,纵坐标为强度。图谱A中,左侧虚线是BBCAP–Tb的激发光谱,右侧虚线是BBCAP–Tb的发射光谱,左侧实线是掺杂Tb的二氧化硅荧光纳米探针的激发光谱,右侧实线是掺杂Tb的二氧化硅荧光纳米探针的发射光谱;图谱B中,左侧虚线是BBCAP–Eu的激发光谱,右侧虚线是BBCAP–Eu的发射光谱,左侧实线是掺杂Eu的二氧化硅荧光纳米探针的激发光谱,右侧实线是掺杂Eu的二氧化硅荧光纳米探针的发射光谱;图谱C中a、b、c为掺杂不同摩尔比例Eu和Tb的二氧化硅荧光纳米探针的发射光谱,其中a为(Eu:Tb=1:3),b(Eu:Tb=1:1),c(Eu:Tb=3:1),但这种混合包裹的荧光纳米探针,随着在外层的“layer-by-layer”包裹,其特征光谱峰也没有发生变化,并且由于硅壳层有一定的厚度,使得层与层之间有一定的距离,从而保证TEOS纳米内的Eu3+和/或Tb3+离子不会产生荧光自猝灭效应,保证了荧光强度会随着层数的增多而增强。这样带来最直接的好处就在于危害因子检出限相比于传统技术得到了显著的提高,检测灵敏度增加,检测结果更加准确和具有针对性,这对于后续的标记实验是重要的,这样可以保证不同类型的荧光纳米探针混合进行多种危害因子的同步检测,并有望实现可视化检测。
在实际应用过程中,牛奶中还可能存在其他的危害因子,这类危害因子分子量较小,如三聚氰胺、黄曲霉毒素、Beta-内酰胺类抗生素等,其仅具有一个位点,也称为半抗原,由于这类危害因子的结构和特性的限制,不能采用“夹心法”法进行检测,而必须采用“竞争法”进行检测。
当待检物不仅有细菌、病毒类大分子危害因子,还有细菌的代谢产物、次生代谢产物、抗生素等其他小分子危害因子时,检测方法大致分为两种。
方法一,本方法是预先将待检测的溶液加入到检测通道内,然后再将含有多种荧光纳米探针的容易加入到检测通道内进行检测。
在这种情况下,对于细菌、病毒类大分子危害因子,采用“夹心法”进行检测,该检测通道内和用于检测该危害因子的荧光纳米探针的表面均固定有该危害因子的捕获抗体;具体举例来说明:若待检物中需要检测肠出血性大肠杆菌O157:H7,则微流控芯片中某一条或两条检测通道内固定肠出血性大肠杆菌O157:H7的单克隆抗体,并且荧光纳米探针溶液中有表面偶联肠出血性大肠杆菌O157:H7的单克隆抗体的荧光纳米探针,形成抗体-抗原-抗体的三明治结构,通过检测荧光信号即可得到待检物中的肠出血性大肠杆菌O157:H7的含量。
对于如细菌的代谢产物、次生代谢产物、抗生素等小分子危害因子,采用“竞争法”进行检测,该检测通道内固定有该危害因子的捕获抗体,且用于检测该危害因子的荧光纳米探针的表面固定有该危害因子的模拟物;具体举例来说明:若待检物中需要检测三聚氰胺,则微流控芯片中某一条或两条检测通道内固定三聚氰胺的单克隆抗体,并且荧光纳米探针溶液中有表面偶联BSA-三聚氰胺的荧光纳米探针,在测试过程中,三聚氰胺先被检测通道内的三聚氰胺的单克隆抗体捕获,此时,检测通道内的三聚氰胺的单克隆抗体还有部分处于未捕获三聚氰胺的状态,此时加入荧光纳米探针溶液,未捕获三聚氰胺的单克隆抗体继续与表面偶联BSA-三聚氰胺的荧光纳米探针结合,通过检测荧光信号即可得到待检物中的三聚氰胺的含量。
方法二、本方法是预先将多种荧光纳米探针加入到待检测的溶液中混合,然后在微流控芯片的检测通道内进行检测。
在这种情况下,对应检测的细菌、病毒类大分子危害因子,采用“夹心法”进行检测,该检测通道内和用于检测该危害因子的荧光纳米探针的表面均固定有该危害因子的捕获抗体,具体如方法一中大分子危害因子的检测方法。在此不再重复论述。
对于如细菌的代谢产物、次生代谢产物、抗生素等小分子危害因子,采用“竞争法”进行检测,该检测通道内固定有该危害因子的模拟物,且用于检测该危害因子的荧光纳米探针的表面固定有该危害因子的捕获抗体;具体举例来说明:若待检物中需要检测三聚氰胺,则微流控芯片中某一条或两条检测通道内固定BSA-三聚氰胺,并且荧光纳米探针溶液中有表面偶联三聚氰胺单克隆抗体的荧光纳米探针,在测试过程中,三聚氰胺先被荧光纳米探针溶液的具有三聚氰胺单克隆抗体的荧光纳米探针捕获,此时,还有部分三聚氰胺单克隆抗体的荧光纳米探针处于未捕获三聚氰胺的状态,此时将混合溶液加入到检测通道中,未捕获三聚氰胺的荧光纳米探针继续与检测通道内的BSA-三聚氰胺结合,通过检测荧光信号即可得到待检物中的三聚氰胺的含量。
在荧光检测过程中,采用“竞争法”进行检测的检测通道会显示荧光。如果荧光越强烈,代表样品中如细菌的代谢产物、次生代谢产物、抗生素或其他小分子物质类危害因子越少,甚至于无该类危害因子。
采用“夹心法”法进行检测的检测通道会显示荧光。如果荧光越强烈,代表样品中细菌、病毒类危害因子越多。
“夹心法”检测法和“竞争法”检测法在荧光数据上是截然相反的体现,“夹心法”检测法所检出的荧光强度越大,则代表对应的危害因子的浓度越高,“竞争法”检测法所检出的荧光强度越小,则代表对应的危害因子的浓度越高。
通过上述的操作,可以实现同一样品中多种危害因子同时进行检测,检出限低,检测精度高,操作简单。
以上所述的仅为本发明的较佳实施例,凡在本发明的精神和原则范围内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。

Claims (6)

1.一种用于食品中多种危害因子同步检测的方法,其特征在于:所述的方法通过具有多条检测通道的微流控芯片和多种荧光纳米探针实施;所述的荧光纳米探针包括内部载有Eu3+和/或Tb3+的稀土螯合物的TEOS纳米内核,所述的TEOS纳米内核表面修饰有多层表面键合有Eu3+和/或Tb3+稀土螯合物的TEOS壳层;不同种类的荧光纳米探针的Eu3+和Tb3+的摩尔比例不同;
所述的方法具体为:将待检物溶液加入到多条检测通道后,用缓冲液冲洗后加入含多种荧光纳米探针的溶液,最后用缓冲液冲洗后检测检测通道内的荧光信号;
其中,对于采用夹心法检测的危害因子,该危害因子对应的检测通道内和用于检测该危害因子的荧光纳米探针的表面均固定有该危害因子的捕获抗体;
对于采用竞争法检测的危害因子,该危害因子对应的检测通道内固定有该危害因子的捕获抗体,且用于检测该危害因子的荧光纳米探针的表面偶联有该危害因子的模拟物。
2.一种用于食品中多种危害因子同步检测的方法,其特征在于:所述的方法通过具有多条检测通道的微流控芯片和多种荧光纳米探针实施;所述的荧光纳米探针包括内部载有Eu3+和/或Tb3+的稀土螯合物的TEOS纳米内核,所述的TEOS纳米内核表面修饰有多层表面键合有Eu3+和/或Tb3+稀土螯合物的TEOS壳层;不同种类的荧光纳米探针的Eu3+和Tb3+的摩尔比例不同;
所述的方法具体为:首先将含多种荧光纳米探针的溶液与待检物溶液混合后,将混合溶液加入到多条检测通道中,然后用缓冲液冲洗后检测检测通道内的荧光信号;
其中,对于采用夹心法检测的危害因子,该危害因子对应的检测通道内和用于检测该危害因子的荧光纳米探针的表面均固定有该危害因子的捕获抗体;
对于采用竞争法检测的危害因子,该危害因子对应的检测通道内固定有该危害因子的模拟物,且用于检测该危害因子的荧光纳米探针的表面偶联有该危害因子的捕获抗体。
3.根据权利要求1或2所述的用于食品中多种危害因子同步检测的方法,其特征在于:所述的TEOS纳米内核的表面也键合有Eu3+和/或Tb3+稀土螯合物。
4.根据权利要求1或2所述的用于食品中多种危害因子同步检测的方法,其特征在于:所述的稀土螯合物所用的螯合剂为BBCAP或BHHCT或PTTA,所述的表面键合有Eu3+和/或Tb3+稀土螯合物的TEOS壳层为3~5层。
5.根据权利要求1或2所述的用于食品中多种危害因子同步检测的方法,其特征在于:所述的模拟物为危害因子与BSA的复合物,或危害因子与卵清蛋白的复合物。
6.根据权利要求1或2所述的用于食品中多种危害因子同步检测的方法,其特征在于:所述的微流控芯片上还设有控制通道,所述的微流控芯片包括PDMS本体,所述的PDMS本体的中央设有进样口,所述的检测通道和控制通道分别与进样口相连,所述的进样通道的末端和控制通道的末端均设有出口,所述的进样通道和控制通道内均设有多个柱状的凸起;所述的微流控芯片设置在一可旋转的转盘上,通过旋转转盘使待测样品、缓冲溶液、荧光纳米探针进入检测通道中。
CN201510833301.7A 2015-11-25 2015-11-25 荧光纳米探针及其制备方法和用于食品中多种危害因子同步检测的方法 Expired - Fee Related CN105510574B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201510833301.7A CN105510574B (zh) 2015-11-25 2015-11-25 荧光纳米探针及其制备方法和用于食品中多种危害因子同步检测的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201510833301.7A CN105510574B (zh) 2015-11-25 2015-11-25 荧光纳米探针及其制备方法和用于食品中多种危害因子同步检测的方法

Publications (2)

Publication Number Publication Date
CN105510574A CN105510574A (zh) 2016-04-20
CN105510574B true CN105510574B (zh) 2018-11-20

Family

ID=55718702

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201510833301.7A Expired - Fee Related CN105510574B (zh) 2015-11-25 2015-11-25 荧光纳米探针及其制备方法和用于食品中多种危害因子同步检测的方法

Country Status (1)

Country Link
CN (1) CN105510574B (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107607506A (zh) * 2017-09-05 2018-01-19 中山大学 一种基于磁性复合微纳米探针和微流控芯片的快速检测平台
CN107907684A (zh) * 2017-09-29 2018-04-13 何皓 一种基于多重荧光寿命分辨检测技术的前列腺癌早期诊断系统
CN108956556B (zh) * 2018-05-18 2021-06-25 复旦大学 一种发光探针及时间分辨荧光检测系统

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101225306A (zh) * 2008-02-02 2008-07-23 厦门大学 一种荧光稀土络合物硅纳米颗粒的制备方法
CN101705084A (zh) * 2009-11-09 2010-05-12 东南大学 多色稀土纳米粒子及其制备方法
CN102288755A (zh) * 2011-07-19 2011-12-21 浙江大学 一种用于微生物现场快速检测的pdms多通道免疫分析芯片
CN102500291A (zh) * 2011-09-30 2012-06-20 深圳市易瑞生物技术有限公司 具有壳核结构的磁性荧光纳米颗粒的制备方法及应用
CN102585813A (zh) * 2011-12-28 2012-07-18 大连海事大学 一种紫外光激发的可控颜色长余辉材料及其制备方法
CN103389371A (zh) * 2013-08-07 2013-11-13 苏州扬清芯片科技有限公司 一种圆盘式多指标分析芯片

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011003109A1 (en) * 2009-07-02 2011-01-06 Sloan-Kettering Institute For Cancer Research Fluorescent silica-based nanoparticles
JP6568802B2 (ja) * 2013-02-20 2019-08-28 コーネル ユニバーシティCornell University 多層蛍光性ナノ粒子及びその製造並びに使用方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101225306A (zh) * 2008-02-02 2008-07-23 厦门大学 一种荧光稀土络合物硅纳米颗粒的制备方法
CN101705084A (zh) * 2009-11-09 2010-05-12 东南大学 多色稀土纳米粒子及其制备方法
CN102288755A (zh) * 2011-07-19 2011-12-21 浙江大学 一种用于微生物现场快速检测的pdms多通道免疫分析芯片
CN102500291A (zh) * 2011-09-30 2012-06-20 深圳市易瑞生物技术有限公司 具有壳核结构的磁性荧光纳米颗粒的制备方法及应用
CN102585813A (zh) * 2011-12-28 2012-07-18 大连海事大学 一种紫外光激发的可控颜色长余辉材料及其制备方法
CN103389371A (zh) * 2013-08-07 2013-11-13 苏州扬清芯片科技有限公司 一种圆盘式多指标分析芯片

Also Published As

Publication number Publication date
CN105510574A (zh) 2016-04-20

Similar Documents

Publication Publication Date Title
Song et al. Rapid and sensitive detection of β-agonists using a portable fluorescence biosensor based on fluorescent nanosilica and a lateral flow test strip
CN100476435C (zh) 用于磁结合测定的自校正系统以及检测分析物的存在及其量的方法
CN105181680B (zh) 一种三聚氰胺的磁珠分离化学发光免疫检测方法
CN107817232A (zh) 用于进行过敏症和自身免疫性疾病的诊断测定的自动化免疫分析系统
CN105510574B (zh) 荧光纳米探针及其制备方法和用于食品中多种危害因子同步检测的方法
CN112433048A (zh) 一种用于化学发光免疫法的试剂盒及其制备方法和应用
WO2017206800A1 (zh) 离心层析免疫检测方法
CN110736739A (zh) 一种均相化学发光检测试剂盒及其应用
CN110095596A (zh) 基于Fe-MOFs的化学发光-荧光双响应免疫传感器
CN106546725A (zh) 一种稀土元素荧光微球偶联抗体冻干粉的制备方法及应用
CN102288764A (zh) 一种基于量子点的免疫荧光检测三聚氰胺的方法及专用试剂盒
CN110736735A (zh) 一种均相化学发光检测试剂盒及其应用
CN108445216B (zh) 一种人抗缪勒氏管激素测定试剂盒及其制备方法与应用
CN108535486A (zh) 一种基于铕标记的氯霉素免疫荧光测定方法
Linyu et al. A highly sensitive detection of chloramphenicol based on chemiluminescence immunoassays with the cheap functionalized Fe3O4@ SiO2 magnetic nanoparticles
US7220596B2 (en) Real time detection of antigens
FI111194B (fi) Kaksikohtainen immuunitesti vasta-aineelle käyttäen kemiluminisoivaa leimaa ja biotiiniin sidottua ligandia
EP0201211A1 (en) Method and compositions for visual solid phase immunoassays based on luminescent microspheric particles
CN110346553A (zh) 一种pcr产物磁珠法纯化联合快速荧光定量检测试剂盒及其检测方法
CN102253214A (zh) 一种基于量子点的免疫荧光检测环丙沙星的方法及专用试剂盒
CN102262157B (zh) 一种基于量子点的免疫荧光检测盐酸克伦特罗的方法及专用试剂盒
CN109870442B (zh) 一种甲基苯丙胺包被抗原、其制备方法及利用其检测甲基苯丙胺的方法
CN101769931A (zh) 胎儿甲种球蛋白检测微粒、其制备及应用
CN107543922A (zh) 一种离心层析荧光免疫检测技术及其用途
CN208172009U (zh) 一种时间分辨荧光免疫层析试纸条

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20181120

Termination date: 20191125

CF01 Termination of patent right due to non-payment of annual fee