CN105478079A - 高吸附性能的磁性介孔碳纳米微球的原位MgO模板制备方法与应用 - Google Patents

高吸附性能的磁性介孔碳纳米微球的原位MgO模板制备方法与应用 Download PDF

Info

Publication number
CN105478079A
CN105478079A CN201510922164.4A CN201510922164A CN105478079A CN 105478079 A CN105478079 A CN 105478079A CN 201510922164 A CN201510922164 A CN 201510922164A CN 105478079 A CN105478079 A CN 105478079A
Authority
CN
China
Prior art keywords
mesoporous carbon
magnetic mesoporous
nsio
absorption property
high absorption
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201510922164.4A
Other languages
English (en)
Other versions
CN105478079B (zh
Inventor
胡斌
张强英
何蔓
陈贝贝
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Wuhan University WHU
Original Assignee
Wuhan University WHU
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wuhan University WHU filed Critical Wuhan University WHU
Priority to CN201510922164.4A priority Critical patent/CN105478079B/zh
Publication of CN105478079A publication Critical patent/CN105478079A/zh
Application granted granted Critical
Publication of CN105478079B publication Critical patent/CN105478079B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/20Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising free carbon; comprising carbon obtained by carbonising processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/06Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising oxides or hydroxides of metals not provided for in group B01J20/04
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/10Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising silica or silicate
    • B01J20/103Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising silica or silicate comprising silica
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28002Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their physical properties
    • B01J20/28009Magnetic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28014Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their form
    • B01J20/28016Particle form
    • B01J20/28021Hollow particles, e.g. hollow spheres, microspheres or cenospheres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/32Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating
    • B01J20/3202Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating characterised by the carrier, support or substrate used for impregnation or coating
    • B01J20/3204Inorganic carriers, supports or substrates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/32Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating
    • B01J20/3231Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating characterised by the coating or impregnating layer
    • B01J20/3287Layers in the form of a liquid
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/28Treatment of water, waste water, or sewage by sorption
    • C02F1/281Treatment of water, waste water, or sewage by sorption using inorganic sorbents
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/28Treatment of water, waste water, or sewage by sorption
    • C02F1/288Treatment of water, waste water, or sewage by sorption using composite sorbents, e.g. coated, impregnated, multi-layered

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Analytical Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Hydrology & Water Resources (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Silicates, Zeolites, And Molecular Sieves (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)

Abstract

本发明公开了一种高吸附性能的磁性介孔碳纳米微球的原位MgO模板制备方法与应用,属于磁性介孔碳纳米微球的制备方法领域。一种高吸附性能的磁性介孔碳纳米微球的原位MgO模板制备方法为:将Fe3O4nSiO2与柠檬酸镁固体混合研磨均匀,在氮气氛围中煅烧后,依次用HNO3和高纯水对其进行洗涤处理,即得高吸附性能的磁性介孔碳纳米微球;所述Fe3O4nSiO2与柠檬酸镁固体的质量比为0-5:5-10。其优点是:本发明提供的方法具有简单、高效、成本低、环境友好及可大量制备等优点;本发明制备的磁性介孔碳吸附剂具有较高的比表面积和孔体积,在吸附Cu和Pb等金属离子方面,表现高吸附容量、宽的pH范围、高吸附效率等优势;该方法制备的磁性介孔碳纳米微球可应用于污水处理、药物释放和催化载体等领域。

Description

高吸附性能的磁性介孔碳纳米微球的原位 MgO 模板制备方法与应用
技术领域
本发明涉及一种磁性介孔碳纳米微球的制备方法,特别涉及一种高吸附性能的磁性介孔碳纳米微球的原位MgO模板制备方法与应用。
背景技术
碳基材料无处不在,碳基材料主要包括活性炭、碳纳米纤维、碳纳米管、介孔碳、石墨烯和碳化物衍生碳。碳基材料具有比表面积大、孔隙率发达、热稳定性好和耐酸碱性,故其在重要技术领域有着广泛的应用,包括分离技术、多相催化、水处理、固定相材料以及未来发展为能源再生和存贮等。其中,介孔碳材料是指孔径在2-50 nm的多孔碳材料。介孔碳微球因具有均匀的空隙;高比表面积,高孔隙率;化学稳定性好、具有不同形体外貌,在大分子催化、生物载药等方面受到人们的广泛关注,尤其在水处理和生物医学的应用受到了广泛的青睐。
合成介孔碳的方法包括催化活化、溶胶-凝胶法和模板法,其中,模板法分为模板浇铸法(硬模板法)和嵌段共聚物自组装法(软模板法),是合成介孔材料的主要方法之一。而模板法中的造孔剂或者模板分子在介孔材料合成过程中多数只起到孔径模板的作用,在材料成型之后,又需采用化学或物理法将其去除和刻蚀。如:采用介孔硅作为硬模板制备介孔碳,需要浓氢氧化钠或HF刻蚀掉模板分子,浓氢氧化钠不仅具有较强的腐蚀性,且溶解后的模板分子难于回收,造成资源的浪费。因而,发展具有简单、高效、绿色的合成方法是必须的。
文献中制备磁性碳基材料,经典的以酚醛树脂为碳源,原料对环境污染较大、合成过程复杂、聚合度不易控制,从而不适宜大规模生产。
发明内容:
本发明的目的是为解决传统路径制备磁性碳时,合成步骤繁琐、原料毒性大、吸附量有限的问题。通过一步反应可以集成碳化、原位MgO模板、磁化一体的三功能反应,提供了一种高吸附性能的磁性介孔碳纳米微球的制备方法与应用。
本发明的目的通过以下技术方案来实现:
一种高吸附性能的磁性介孔碳纳米微球的原位MgO模板制备方法:
将Fe3O4@nSiO2与柠檬酸镁固体混合研磨均匀,在氮气氛围中煅烧后,依次用HNO3和高纯水对其进行洗涤处理,即得高吸附性能的磁性介孔碳纳米微球;所述Fe3O4@nSiO2与柠檬酸镁固体的质量比为0-5:5-10。
所述Fe3O4@nSiO2的制备方法为:以四乙氧基硅烷为偶联剂,以粒径为10-20 nm的磁性Fe3O4纳米球为核,采用Stöber硅胶偶联法制备具有核壳结构的Fe3O4@nSiO2
所述磁性Fe3O4纳米球的制备方法为共沉淀法。
所述柠檬酸镁固体为九水柠檬酸镁固体; HNO3的浓度为0.5 mol L-1
所述氮气氛围中煅烧的条件为:升温速率为5 oC/min,煅烧温度为600-800 oC,煅烧时间为2 h。
所述Fe3O4@nSiO2与柠檬酸镁固体的质量比为0.5/9.5。
上述方法还包括如下步骤:将高吸附性能的磁性介孔碳纳米微球Fe3O4@nSiO2@mC加入到H2O2中,超声混合,避光静置,然后依次对其进行洗涤、干燥处理,得高吸附性能的磁性介孔碳纳米微球Fe3O4@nSiO2@mC-H2O2
所述H2O2的浓度为30 wt%;所述静置时间为12 h。
利用上述方法制备的高吸附性能的磁性介孔碳纳米微球在吸附金属离子中的应用。
所述金属离子为Cu、Pb、Cr、Mn 、Co 、Ni、 Zn、Cd中的一种或几种。
本发明通过比表面积、红外、X射线衍射分析、扫描电镜分析及磁强度分析等表征手段对本发明的磁性介孔碳材料的结构和性能进行分析说明。
本发明要解决现有方法制备磁性介孔碳过程中步骤繁琐、原料毒性大、耗能大的问题。本发明通过碳化MgO前躯体的方法将Fe3O4@nSiO2与柠檬酸镁固体混合,在600 oC条件下煅烧2 h,采用0.5 mol L-1 HNO3洗去MgO模板,制备出不同比例,具有高饱和磁化度,高吸附效率,高比表面积的磁性介孔碳微球。在最优的比例下,通过简单的H2O2处理煅烧后的产物,既不破坏原有介孔碳的结构和形貌,同时提高了金属的吸附容量,还能增强其饱和磁化度。利用来源丰富的柠檬酸镁作为碳源和MgO模板,通过固体研磨柠檬酸镁和Fe3O4@nSiO2,再高温煅烧,这样一步反应可以集成碳化、原位生成MgO模板、磁化一体的三功能反应。本发明的磁性介孔碳纳米微球可应用于污水处理、药物释放和催化载体等领域。
MgO模板法是在高温条件下热解MgO前驱体和碳前驱体混合物,在煅烧后,采用弱酸洗去MgO模板,形成与MgO尺寸相当的介孔碳材料。采用MgO模板具有以下优势:MgO模板可以采用非腐蚀性弱酸洗去;且MgO能回收利用;可以通过碳前驱体和MgO前驱体的不同以实现尺寸可调。
传统路径制备磁性介孔碳时存在合成步骤繁琐、原料毒性较大、孔径分布不均、磁性较弱、吸附量有限等不足。本发明利用来源丰富的柠檬酸镁作为碳源和MgO模板前驱体,通过固体研磨柠檬酸镁和Fe3O4@nSiO2,再高温煅烧,这样一步反应可以是集成碳化、原位MgO模板、磁化一体的三功能反应。
本发明的优点及效果:
(1)本发明提供的方法具有简单、高效、成本低、环境友好及可大量制备等优点。
(2)本发明制备的磁性介孔碳吸附剂具有较高的比表面积和孔体积,在吸附Cu和Pb等金属离子方面,表现高吸附容量、宽的pH范围、高吸附效率等优势。
附图说明
图1为实施例1制备的介孔碳材料的N2吸附/解吸曲线(a)和粒径分布曲线(b)
图2为本发明磁性介孔碳(Fe3O4@nSiO2@mC-H2O2)的合成示意图
图3为实施例2制备的Fe3O4@nSiO2和Fe3O4@nSiO2@mC与实施例3制备的Fe3O4@nSiO2@mC-H2O2的红外光谱图,其中图3a是Fe3O4@nSiO2的红外光谱图;图3b是实施例2制备的Fe3O4@nSiO2@mC(质量比为0.5/9.5)的红外光谱图;图3c是实施例3制备的Fe3O4@nSiO2@mCFe3O4@nSiO2和柠檬酸镁的-H2O2的红外光谱图
图4为实施例2制备的Fe3O4@nSiO2和柠檬酸镁的质量比为0.5/9.5的酸洗前含有MgO模板的Fe3O4@nSiO2@mC和酸洗后不含有MgO模板的Fe3O4@nSiO2@mC与实施例3制备的Fe3O4@nSiO2@mC-H2O2的XRD谱图
图5为实施例1、2和3的介孔碳材料的扫描电镜图,其中,图5a是放大倍数为1000的实施例1制备的将600℃煅烧后得到的介孔碳材料的扫描电镜图,图5b是放大倍数为5000的实施例1制备的将600℃煅烧后得到的介孔碳材料的扫描电镜图,图5c是实施例2制备的Fe3O4@nSiO2和柠檬酸镁的质量比为0.5/9.5的Fe3O4@nSiO2@mC的扫描电镜图,图5d为实施例3制备的Fe3O4@nSiO2@mC-H2O2的扫描电镜图
图6为实施例2和3制备的磁性介孔碳材料的饱和磁化强度
图7为实施例2制备的Fe3O4@nSiO2和柠檬酸镁的质量比不同的磁性介孔碳材料对Cu和Pb吸附容量的影响
图8为实施例2制备的Fe3O4@nSiO2和柠檬酸镁的质量比为0.5/9.5的Fe3O4@nSiO2@mC与实施例3制备的Fe3O4@nSiO2@mC-H2O2对Cu和Pb吸附容量图
图9为在磁性介孔碳在不同pH下对金属离子吸附率图,其中,图9a为实施例2制备的Fe3O4@nSiO2和柠檬酸镁的质量比为0.5/9.5的Fe3O4@nSiO2@mC在不同pH下对金属离子吸附率,图9b为实施例3制备的Fe3O4@nSiO2@mC-H2O2在不同pH下对金属离子吸附率
具体实施方式
以下结合附图和具体实施例来进一步说明本发明的技术方案,但本发明并不限制于实施例。
实施例1
将0.6 g柠檬酸镁分别在600、700和800 oC条件下,氮气氛的管式炉条件下煅烧2 h,升温速率为5 oC/min,将煅烧后的产物用0.5 mol L-1 HNO3洗去MgO模板后,用高纯水清洗多次后,烘干保存。
图1是柠檬酸镁经600 oC煅烧后得到的介孔碳材料的N2吸附/解吸曲线(a)和粒径分布曲线(b),由图可知,材料的比表面积可以高达1682 m2/g,微孔比表面积为466 m2/g,丰富的介孔比表面积达1216 m2/g,较大的孔体积为1.12 cm3/g,制备的介孔碳材料孔尺寸为3.7 nm。该材料相比文献制备的其它碳基材料,其比表面积处于较高水平。
实施例2
制备Fe3O4磁性纳米粒子:采用共沉淀法制备,将11.68 g氯化铁和4.30 g氯化亚铁溶解在200 mL高纯水中,在氮气保护下搅拌加热至85 ℃。然后迅速加入25 mL 30wt%的NH3 .H2O,溶液的颜色迅速由橘黄色变成黑色,反应30 min后停止,冷却至室温后,水洗多次后用乙醇洗3次,得到粒径为10-20 nm的磁性Fe3O4纳米球
制备Fe3O4@nSiO2纳米粒子:移取上述一半的Fe3O4磁性纳米粒子投入160 mL乙醇和40 mL高纯水混合溶剂中,搅拌条件下向混合液中依次加入5 mL 30wt%的NH3 .H2O和6 mL TEOS,然后在机械搅拌条件下,室温反应12 h,反应结束后,分别用高纯水和乙醇清洗多次,得Fe3O4@nSiO2纳米粒子,烘干备用。
固定Fe3O4@nSiO2和柠檬酸镁的总质量为0.6 g,将Fe3O4@nSiO2和柠檬酸镁分别按质量比为5/5、4/6、3/7、2/8、1/9和0.5/9.5混合研磨均匀,在氮气保护下,升温速率为5 oC/min,600 oC条件下煅烧2h。将煅烧后的产物用0.5 mol L-1 HNO3洗去MgO模板后,用高纯水清洗多次后,即得Fe3O4@nSiO2@mC,保存在高纯水备用。
实施例3
将实施列2中Fe3O4@nSiO2和柠檬酸镁的质量比为0.5/9.5时制备的Fe3O4@nSiO2@mC加入10 mL 30wt% H2O2中(保持H2O2与Fe3O4@nSiO2@mC的固液比为50 g L-1),超声混合后,避光静态反应12 h,依次对其进行洗涤、干燥处理,得到Fe3O4@nSiO2@mC-H2O2,磁性介孔碳(Fe3O4@nSiO2@mC-H2O2)的合成示意图如图2所示。
图3是实施例2 制备的Fe3O4@nSiO2和Fe3O4@nSiO2@mC(Fe3O4@nSiO2和柠檬酸镁的质量比为0.5/9.5)和实施例3 制备的Fe3O4@nSiO2@mC-H2O2的红外光谱图,其中,图3a是Fe3O4@nSiO2的红外光谱图;图3b是Fe3O4@nSiO2@mC的红外光谱图;图3c是Fe3O4@nSiO2@mC-H2O2的红外光谱图。图中,580 cm-1左右是Fe-O的吸收峰;1098和470 cm-1是Si-O的吸收峰;3430 cm-1是O-H吸收峰,1630 cm-1是C=C的吸收峰,1384 cm-1是O-H的弯曲振动吸收峰。由此可见,实施例2和3制备的磁性介孔碳材料具有明显的磁性粒子特征峰,红外图上,磁性介孔碳相比硅胶磁球并没有明显差异,但H2O2处理后,多出了1735 cm-1 C=O的伸缩振动峰,这是因为H2O2处理后,-COO-的量增加,因而在红外中可以看到明显的C=O峰。
图4是实施例2制备的酸洗前含有MgO模板的Fe3O4@nSiO2@mC(Fe3O4@nSiO2和柠檬酸镁的质量比为0.5/9.5)和酸洗后不含有MgO模板Fe3O4@nSiO2@mC(Fe3O4@nSiO2和柠檬酸镁的质量比为0.5/9.5)与实施例3制备的Fe3O4@nSiO2@mC-H2O2的XRD谱图。从XRD上可见,在未洗去MgO模板之前(4a图),可以看到明显的MgO(200)、(220)的峰,当洗去模板后(4b图),可以看到Fe3O4 (311) 和无定型C(002)的峰;当用H2O2处理后(4c图)峰形没有影响。说明H2O2处理并不会影响磁性碳材料的结构。
图5是实施例1、2和3制备的介孔碳材料扫描电镜图,图5a-图5b是实施例1制备的介孔碳材料(600℃煅烧),放大倍数分别为1000和5000倍,可以清晰地看到制备的介孔碳材料是层层堆积而成,且形成透明碳薄膜。图5c是实施例2制备的Fe3O4@nSiO2@mC(Fe3O4@nSiO2和柠檬酸镁的质量比为0.5/9.5,放大倍数为10000);图5d是实施例3制备的Fe3O4@nSiO2@mC-H2O2,放大倍数5000倍,载铁以后可以看见明显的碳膜和均匀的纳米粒子,H2O2处理后并未改变其形貌。
图6为实施例2和3制备的磁性介孔碳材料的饱和磁强度。前驱体碳源含量比例较大,材料的磁强度呈下降趋势,磁强度可以通过Fe3O4@nSiO2与前驱体碳源的比例进行调节。从测试结果可以看出,材料表现为超顺磁性,实施例2制备的Fe3O4@nSiO2@mC(Fe3O4@nSiO2和柠檬酸镁的质量比为0.5/9.5)与实施例3制备的Fe3O4@nSiO2@mC-H2O2的饱和磁化强度分别为3.4 和4.8 emu/g,H2O2处理后磁性有所增强,这是因为H2O2处理过程中,丢失了部分碳成分。
实施例4
将实施例1中制备的介孔碳材料对Cu和Pb吸附效果比较,选取Cu和Pb两个金属离子为代表性的离子,在柱条件下进行吸附容量的考察,实施例1中制备的介孔碳材料为15 mg;上样流速为1 mL/min; 金属离子的浓度为20 μg mL-1;体积为100 mL,采用0.5 mol L-1 HNO3洗脱回收,测定吸附容量。
吸附的结果如表1所示,随着温度的升高,吸附容量有降低的趋势,碳化产率也逐渐降低。煅烧温度为600 oC时,吸附效果最好,对Cu和Pb的吸附容量分别为43.9和74.8mg/g,这是因为在低温条件下,含氧功能基的量相对高温煅烧后的量要多,因而,吸附效果较好。而在700 oC和800 oC碳化后的产物,吸附效果并没有显著差异,本发明在600~800 oC范围内都能制备出高性能的介孔碳材料,其中600 oC条件最佳。
表1不同煅烧温度制备的介孔碳对Cu和Pb吸附容量的影响
实施例5
将5mg实施例2制备的Fe3O4@nSiO2和柠檬酸镁的质量比不同的磁性介孔碳材料,分别加入到30mL pH为6的Cu(20μg mL-1)和Pb(40μg mL-1)溶液中,在室温摇床以150转/分钟条件下,保持3小时,磁分离后测定上清液,计算吸附容量。
吸附的结果如图7所示,随着柠檬酸镁的含量逐渐增加,煅烧后的产物对Cu和Pb的吸附效果增强。当Fe3O4@nSiO2和柠檬酸镁的质量比为0.5/9.5时,吸附效果和碳化产率几乎接近柠檬酸镁煅烧后的介孔碳材料,本发明中Fe3O4@nSiO2与柠檬酸镁质量比在5/5~0.5/9.5范围内,对Cu和Pb都有高吸附容量,其中质量比为0.5/9.5为最佳。
实施例6
将5 mg实施例2 制备的Fe3O4@nSiO2@mC(Fe3O4@nSiO2和柠檬酸镁的质量比为0.5/9.5)与实施例3中H2O2处理后的Fe3O4@nSiO2@mC- H2O2,分别加入30 mL pH为6 的Cu (20 μg mL-1) 和Pb (40 μg mL-1) 溶液中,在室温摇床以150转/分钟保持3小时,磁分离后测定上清液,计算吸附容量。
吸附的结果如图8所示,H2O2处理能增加材料的含氧基,因而增加吸附容量,经过H2O2处理后材料对Cu离子的吸附容量从未处理的36.9 mg/g增加到67.4 mg/g,Pb离子的吸附容量从未处理的75.9 mg/g提高到163.3 mg/g,吸附容量处于较高水平。
实施例7
将2 mg实施例2制备的Fe3O4@nSiO2@mC(Fe3O4@nSiO2和柠檬酸镁的质量比为0.5/9.5)与实施例3中H2O2处理后的Fe3O4@nSiO2@mC- H2O2,分别加入到样品体积为4 mL混合金属离子溶液中,金属离子的浓度为1 μg mL-1,超声30 min后测定上清液,计算吸附效率,考察pH吸附行为。
吸附的结果如图9所示,磁性介孔碳对金属离子具有较宽的pH范围,在pH 4-7范围内时,金属离子都能定量吸附。在pH较小时,H+浓度较高,会发生表面功能基质子化,与目标分析离子产生静电斥力,减少其吸附效率。H2O2处理(b)相比未处理的磁性介孔碳(a) 对金属离子的吸附pH行为并没有区别, H2O2处理后吸附行为在酸性条件下,吸附效率增加了,这是因为H2O2处理后功能基增加。本发明的磁性介孔材料在pH 4-7范围内都能实现定量吸附。
上述实例表明,磁性介孔碳制备简单,对金属离子具有较高的吸附容量,吸附动力学快,操作条件温和,可广泛应用于含重金属离子废水的处理回收利用。

Claims (10)

1.一种高吸附性能的磁性介孔碳纳米微球的原位MgO模板制备方法,其特征在于:
将Fe3O4@nSiO2与柠檬酸镁固体混合研磨均匀,在氮气氛围中煅烧后,依次用HNO3和高纯水对其进行洗涤处理,即得高吸附性能的磁性介孔碳纳米微球;所述Fe3O4@nSiO2与柠檬酸镁固体的质量比为0-5:5-10。
2.根据权利要求1所述一种高吸附性能的磁性介孔碳纳米微球的原位MgO模板制备方法,其特征在于:所述Fe3O4@nSiO2的制备方法为:以四乙氧基硅烷为偶联剂,以粒径为10-20 nm的磁性Fe3O4纳米球为核,采用Stöber硅胶偶联法制备具有核壳结构的Fe3O4@nSiO2
3.根据权利要求2所述一种高吸附性能的磁性介孔碳纳米微球的原位MgO模板制备方法,其特征在于:所述磁性Fe3O4纳米球的制备方法为共沉淀法。
4.根据权利要求1-4任一项所述一种高吸附性能的磁性介孔碳纳米微球的原位MgO模板制备方法,其特征在于:所述柠檬酸镁固体为九水柠檬酸镁固体; HNO3的浓度为0.5 mol L-1
5.根据权利要求1-4任一项所述一种高吸附性能的磁性介孔碳纳米微球的原位MgO模板制备方法,其特征在于:所述氮气氛围中煅烧的条件为:升温速率为5 oC/min,煅烧温度为600-800 oC,煅烧时间为2 h。
6.根据权利要求5所述一种高吸附性能的磁性介孔碳纳米微球的原位MgO模板制备方法,其特征在于:所述Fe3O4@nSiO2与柠檬酸镁固体的质量比为0.5/9.5。
7.根据权利要求1-4或6任一项所述一种高吸附性能的磁性介孔碳纳米微球的原位MgO模板制备方法,其特征在于:上述方法还包括如下步骤:将高吸附性能的磁性介孔碳纳米微球Fe3O4@nSiO2@mC加入到H2O2中,超声混合,避光静置,然后依次对其进行洗涤、干燥处理,得高吸附性能的磁性介孔碳纳米微球Fe3O4@nSiO2@mC-H2O2
8.根据权利要求7所述一种高吸附性能的磁性介孔碳纳米微球的原位MgO模板制备方法,其特征在于:所述H2O2的浓度为30 wt%;所述静置时间为12 h。
9.利用权利要求1-8任一项所述方法制备的高吸附性能的磁性介孔碳纳米微球在吸附金属离子中的应用。
10.根据权利要求9所述一种高吸附性能的磁性介孔碳纳米微球在吸附金属离子中的应用,其特征在于:所述金属离子为Cu、Pb、Cr、Mn 、Co 、Ni、 Zn、Cd中的一种或几种。
CN201510922164.4A 2015-12-11 2015-12-11 高吸附性能的磁性介孔碳纳米微球的原位MgO模板制备方法与应用 Expired - Fee Related CN105478079B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201510922164.4A CN105478079B (zh) 2015-12-11 2015-12-11 高吸附性能的磁性介孔碳纳米微球的原位MgO模板制备方法与应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201510922164.4A CN105478079B (zh) 2015-12-11 2015-12-11 高吸附性能的磁性介孔碳纳米微球的原位MgO模板制备方法与应用

Publications (2)

Publication Number Publication Date
CN105478079A true CN105478079A (zh) 2016-04-13
CN105478079B CN105478079B (zh) 2018-07-27

Family

ID=55665564

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201510922164.4A Expired - Fee Related CN105478079B (zh) 2015-12-11 2015-12-11 高吸附性能的磁性介孔碳纳米微球的原位MgO模板制备方法与应用

Country Status (1)

Country Link
CN (1) CN105478079B (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106914267A (zh) * 2017-03-31 2017-07-04 温州大学 一种铁氮共掺杂介孔碳及其制备方法和应用
CN108636340A (zh) * 2018-06-12 2018-10-12 山东大学 一种介孔氧化镁纤维的制备方法及其在净化重金属废水中的应用

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20070004228A (ko) * 2005-07-04 2007-01-09 최성우 휘발성탄화수소 회수용 흡착제 및 그 제조방법
CN102225329A (zh) * 2011-05-09 2011-10-26 华中师范大学 碳与四氧化三铁介孔复合材料及其制备和在治理环境污水中的应用
CN102247803A (zh) * 2011-05-04 2011-11-23 中国科学院化学研究所 一种核壳式磁性介孔纳米微球及其制备方法与应用
CN102489300A (zh) * 2011-11-18 2012-06-13 东华大学 一种磁性纳米微球光催化复合材料的制备方法
CN104307481A (zh) * 2014-08-26 2015-01-28 武汉大学 一种磁性MOFs固相萃取剂及其制备方法和应用

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20070004228A (ko) * 2005-07-04 2007-01-09 최성우 휘발성탄화수소 회수용 흡착제 및 그 제조방법
CN102247803A (zh) * 2011-05-04 2011-11-23 中国科学院化学研究所 一种核壳式磁性介孔纳米微球及其制备方法与应用
CN102225329A (zh) * 2011-05-09 2011-10-26 华中师范大学 碳与四氧化三铁介孔复合材料及其制备和在治理环境污水中的应用
CN102489300A (zh) * 2011-11-18 2012-06-13 东华大学 一种磁性纳米微球光催化复合材料的制备方法
CN104307481A (zh) * 2014-08-26 2015-01-28 武汉大学 一种磁性MOFs固相萃取剂及其制备方法和应用

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
JIN ZHOU 等: "Capacitive performance of mesoporous carbons derived from the citrates in ionic liquid", 《CARBON》 *
朱前程: "Ni或Fe3O4担载的磁性介孔碳的合成及吸附性能研究", 《中国优秀硕士学位论文全文数据库 工程科技I辑》 *
王立敏 等: "功能化介孔碳的制备及在吸附领域的研究进展", 《浙江化工》 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106914267A (zh) * 2017-03-31 2017-07-04 温州大学 一种铁氮共掺杂介孔碳及其制备方法和应用
CN108636340A (zh) * 2018-06-12 2018-10-12 山东大学 一种介孔氧化镁纤维的制备方法及其在净化重金属废水中的应用

Also Published As

Publication number Publication date
CN105478079B (zh) 2018-07-27

Similar Documents

Publication Publication Date Title
Zhang et al. Direct carbonization of Zn/Co zeolitic imidazolate frameworks for efficient adsorption of Rhodamine B
Tang et al. Dye adsorption by self-recoverable, adjustable amphiphilic graphene aerogel
Huang et al. A novel ion-imprinted polymer based on graphene oxide-mesoporous silica nanosheet for fast and efficient removal of chromium (VI) from aqueous solution
Hao et al. Preparation of acrylic acid modified alkalized MXene adsorbent and study on its dye adsorption performance
Wang et al. Hydrothermal synthesis of hierarchical core–shell manganese oxide nanocomposites as efficient dye adsorbents for wastewater treatment
Xue et al. Mechanistic insights into selective adsorption and separation of multi-component anionic dyes using magnetic zeolite imidazolate framework-67 composites
JP2021074708A (ja) 変性ナノ材料及びそのアンチモン含有排水処理における応用
Li et al. Synthesis of a MnO2/Fe3O4/diatomite nanocomposite as an efficient heterogeneous Fenton-like catalyst for methylene blue degradation
CN106984261A (zh) 一种CoFe2O4/N/C空心纳米球及其制备与应用
Xiaoqi et al. Adsorption of rare earth ions using carbonized polydopamine nano carbon shells
Huang et al. Green recovery of lithium from water by a smart imprinted adsorbent with photo-controlled and selective properties
Zhu et al. Synthesis of magnetic activated carbons from black liquor lignin and Fenton sludge in a one-step pyrolysis for methylene blue adsorption
CN106378093B (zh) 一种磁性空心石墨烯基复合微球材料的制备方法及其应用
Huo et al. Adsorptive removal of Sr (II) from aqueous solution by polyvinyl alcohol/graphene oxide aerogel
CN105032375B (zh) 一种磁性石墨基重金属吸附材料的制备方法
Huang et al. 2-Methylol-12-crown-4 ether immobilized PolyHIPEs toward recovery of lithium (i)
Tang et al. Removal of bisphenol A by iron nanoparticle-doped magnetic ordered mesoporous carbon
Li et al. CTAB-controlled synthesis of phenolic resin-based nanofiber aerogels for highly efficient and reversible SO2 capture
Ling et al. Formation of uniform magnetic C@ CoNi alloy hollow hybrid composites with excellent performance for catalysis and protein adsorption
Zhao et al. Adsorption of methyl orange from aqueous solution by composite magnetic microspheres of chitosan and quaternary ammonium chitosan derivative
CN103223331A (zh) 一种对染料具有高吸附性能Ni(Co、Fe)担载磁性介孔碳材料的制备方法
CN103599749A (zh) 磁性载钴有序介孔碳及其制备方法和应用
Ling et al. Formation of uniform mesoporous TiO 2@ C–Ni hollow hybrid composites
CN109173989A (zh) 三维石墨烯宏观体负载纳米零价铁复合材料及制备方法
Zhang et al. Hollow porous molecularly imprinted polymer nanosphere for fast and efficient recognition of bisphenol A

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20180727

Termination date: 20181211

CF01 Termination of patent right due to non-payment of annual fee