CN105470308B - 一种mos管 - Google Patents

一种mos管 Download PDF

Info

Publication number
CN105470308B
CN105470308B CN201511017962.9A CN201511017962A CN105470308B CN 105470308 B CN105470308 B CN 105470308B CN 201511017962 A CN201511017962 A CN 201511017962A CN 105470308 B CN105470308 B CN 105470308B
Authority
CN
China
Prior art keywords
grid
oxide
unit
semiconductor
adjacent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201511017962.9A
Other languages
English (en)
Other versions
CN105470308A (zh
Inventor
王钊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Wuxi Zhonggan Microelectronics Co Ltd
Original Assignee
Wuxi Zhonggan Microelectronics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wuxi Zhonggan Microelectronics Co Ltd filed Critical Wuxi Zhonggan Microelectronics Co Ltd
Priority to CN201511017962.9A priority Critical patent/CN105470308B/zh
Publication of CN105470308A publication Critical patent/CN105470308A/zh
Application granted granted Critical
Publication of CN105470308B publication Critical patent/CN105470308B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7831Field effect transistors with field effect produced by an insulated gate with multiple gate structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0603Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0684Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape, relative sizes or dispositions of the semiconductor regions or junctions between the regions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/423Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions not carrying the current to be rectified, amplified or switched
    • H01L29/42312Gate electrodes for field effect devices
    • H01L29/42316Gate electrodes for field effect devices for field-effect transistors
    • H01L29/4232Gate electrodes for field effect devices for field-effect transistors with insulated gate
    • H01L29/42356Disposition, e.g. buried gate electrode

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)

Abstract

本发明涉及MOS管版图设计。在一个实施例中,MOS管呈阵列排布的多个栅极单元,每个栅极单元呈正方形,每个栅极单元包括四个边部以及四个角区,相邻的两个栅极单元之间间隔预定距离,其中至少具有互相相邻的四个栅极单元,该四个栅极单元都具有一个角区与其他三个栅极单元的角区相邻且对应;位于各个栅极单元内的漏极区;位于各个栅极单元内的漏极区的中心处的漏极接触孔;位于各个栅极单元之间的源极区;位于所述四个栅极单元的相互相邻的四个角区围绕的源极区的中心处的源极接触孔。本发明实施例针对需要较大漏极间距的功率器件设计了新型版图结构,减小了芯片面积。

Description

一种MOS管
技术领域
本发明涉及一种集成电路设计,特别涉及MOS管版图设计。
背景技术
在许多集成电路中,有时需要宽长比特别大的功率MOS管。宽长比是指沟道宽度与沟道长度的比值,宽长比较大有助于导通较大电流。现有技术中已经存在一些关于功率MOS管的版图设计方案来减小版图面积。但是一些功率MOS管还需要直接连接到芯片管脚,这些功率MOS通常需要遵循防静电设计规则来实现一定的抗静电性能。一般防静电设计规则需要这些功率MOS管存在较大的漏极接触孔到沟道间距,这个间距一般也被称为漏极间距(Drain Space)。对于较大面积的功率器件,无法在制造时保证功率器件各部分的击穿电压完全相等,所以一种可能的解决方案是增加漏极间距来对功率器件的每处局部进行限流,这样可以实现某些先击穿的部分的静电泄放电流被限制,直到功率器件的各部分都被击穿,共同来泄放较大的静电泄放电流,从而避免某些局部被过大的电流所永久损坏。图1是传统交错条形(Alterative Bar)结构的功率器件,如果增大漏极间距,其所需的芯片面积较大。
发明内容
本发明提供一种解决上述问题的MOS管。在一个实施例中,MOS管包括呈阵列排布的多个栅极单元,每个栅极单元呈正方形,每个栅极单元包括四个边部以及四个角区,相邻的两个栅极单元之间间隔预定距离,其中至少具有互相相邻的四个栅极单元,该四个栅极单元都具有一个角区与其他三个栅极单元的角区相邻且对应;位于各个栅极单元内的漏极区;位于各个栅极单元内的漏极区的中心处的漏极接触孔;位于各个栅极单元之间的源极区;位于所述四个栅极单元的相互相邻的四个角区围绕的源极区的中心处的源极接触孔。
优选地,栅极单元的角区具有呈斜角或圆弧形的顶角。
优选地,源极接触孔和漏极接触孔为圆形或等边的多边形。
进一步优选地,源极接触孔的边与栅极的各边可以呈45度角或135度角。或者,漏极接触孔和源极接触孔为正方形时,各自的正方形彼此成45度角旋转关系。
本发明实施例针对需要较大漏极间距的功率器件设计了新型版图结构,减小了芯片面积。
附图说明
图1是传统交错条形(Alterative Bar)结构的功率器件;
图2是本发明实施例的MOS管版图。
具体实施方式
下面通过附图和实施例,对本发明的技术方案做进一步的详细描述。
图2是本发明实施例的MOS管版图。如图2所示,MOS管版图中,几乎所有的区域都覆盖了有源区,有源区被栅极区域分割成源极区域和漏极区域。可以利用自对准技术,实现栅极位置分别与源和漏位置的自对准,由此降低珊对源漏的覆盖电容,提高电路的开关速度。此外,注入层会覆盖整个有源区。以NMOS为例,N+注入层还会覆盖整个有源区,为了简化说明,图2中未画出N+注入层。
栅极区域包括呈阵列排布的多个栅极单元,图中例示了栅极单元22-1,22-2,22-3和22-4,相邻的两个栅极单元之间间隔预定距离。其余栅极单元按同理排布。每个栅极单元呈近似正方形,每个栅极单元包括四个边部以及四个角区,该四个栅极单元都具有一个角区与其他三个栅极单元的角区相邻且对应。在一个例子中,栅极单元在四个角上呈斜角。栅极单元的四个角也可以采用圆弧形。
源极区域位于栅极单元之间。在相邻四个栅极单元22-1,22-2,22-3和22-4之间、相互相邻的四个角区围绕的源极区的中心处放置一个或几个源极接触孔26。在一个例子中,源极接触孔可为正方形,并且/或者源极接触孔的边与栅极的各边可以呈45度角或135度角。源极接触孔还可为圆形,或等边的多边形(边数例如可为4-8)。
每个栅极单元(例如22-1)中间的区域为漏极区域。漏极区域通常设置有接触孔(例如24-1,24-2,24-3,24-4)。漏极接触孔的形状一般和源极接触孔一致。漏极接触孔和源极接触孔为正方形时,各自的正方形可彼此成45度角旋转关系。漏极接触孔(24-1,24-2,24-3和24-4)到任何沟道距离都等于或大于一定的最小漏极间距。最小漏极间距是由希望通过的静电测试标准决定,例如希望通过2千伏静电测试和通过4千伏静电测试,其值可能不一样。
由漏极接触孔24-1,24-2,24-3和24-4为顶点的虚线框可定义一个重复单元,功率MOS管版图可由此重复单元或其镜像图像重复拼凑而成。在这样的一个重复单元中,每个源极接触孔的电流分别流向(或来自)周边的四个漏极接触孔,每个漏极接触孔大约接收(或提供)1/4的来自(去)该源极接触孔的电流,反之同理,每个漏极接触孔的电流分别流向(或来自)周边的四个源极接触孔,每个源极接触孔大约接收(或提供)1/4的来自(去往)该源极接触孔的电流。在一个例子中,重复单元为正方形。
如此设计有助于让相邻的栅极单元间距更近,从而得到在相同芯片面积的条件下取得更大等效MOS管沟道宽度的效果。
对于功率器件来说,通常希望宽长比足够大,所以通常MOS功率器件的长度被设置为最小多晶硅栅极宽度。在标准自对准MOS工艺中,栅极宽度用来定义MOS管的沟道长度。一般可通过定义单位有效MOS管宽度的面积消耗来比较功率器件的面积有效性,实现单位有效MOS管宽度所需的面积越小越优。
下面计算并比较本发明实施例和现有技术的单位有效MOS管宽度的面积消耗。
设最小多晶硅(栅极)宽度为dg,最小接触孔宽度为dc,最小源极接触孔到栅极间距为ds,漏极接触孔到栅极间距为dd。在一个典型0.5μm工艺中,dg=0.5μm,dc=0.4μm,dd=1.2μm,ds=0.3μm。
可以计算重复单元的边长为:
因此,X2=4.224μm。其中,下脚标2指代本发明实施例。
对于图2所示重复单元,由于拐角处导通不理想,因此拐角的有效宽度需要根据实验测量的经验值确定。根据经验公式每个拐角的有效宽度为
重复单元的有效MOS管宽度为
W2=(8×dd+(0.55/2)×dg×4)
因此,W2=10.15μm。
重复单元面积为:
S2=X2×X2=17.84μm2
单位有效MOS管宽度的面积消耗λ为
计算可得:λ2=1.76
而对于图1所示的现有技术方案(下脚标1指代现有技术),可以计算重复单元的面积为:
S1=K×(dc+ds+dd+dg)
重复单元的有效MOS管宽度为:
W1=K
则单位有效MOS管宽度的面积消耗λ1
计算可得λ1=2.4
所以,λ12成立。
可见本发明实施例比现有技术图1,单位有效MOS管宽度的面积消耗更小。反过来说,同等面积来说,本发明实施例的单位有效MOS管宽度更大。一般而言,栅极宽度即为沟道长度。沟道长度越小,器件导通电流能力越强。因此,同等面积来说,本发明实施例提供更强的导通电流能力。
另外,本发明中每个漏极接触孔到每个源极接触孔的间距完全相等,结构对称性好,其抗静电特性更佳。
以上所述的具体实施方式,对本发明的目的、技术方案和有益效果进行了进一步详细说明,所应理解的是,以上所述仅为本发明的具体实施方式而已,并不用于限定本发明的保护范围,凡在本发明的精神和原则之内,所做的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (3)

1.一种MOS管,包括:
呈阵列排布的多个栅极单元,每个栅极单元呈正方形,每个栅极单元包括四个边部以及四个角区,相邻的两个栅极单元之间间隔预定距离,其中至少具有互相相邻的四个栅极单元,该四个栅极单元都具有一个角区与其他三个栅极单元的角区相邻且对应;
位于各个栅极单元内的漏极区;
位于各个栅极单元内的漏极区的中心处的漏极接触孔;
位于各个栅极单元之间的源极区;
位于所述四个栅极单元的相互相邻的四个角区围绕的源极区的中心处的源极接触孔;
其中,漏极接触孔和源极接触孔为正方形时,所述正方形彼此成45度角旋转关系。
2.如权利要求1所述的MOS管,其中栅极单元的角区具有呈斜角或圆弧形的顶角。
3.如权利要求1所述的MOS管,其中源极接触孔的外边缘与对应的栅极单元的对应角区的外边缘平行,呈45度角或135度角。
CN201511017962.9A 2015-12-30 2015-12-30 一种mos管 Active CN105470308B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201511017962.9A CN105470308B (zh) 2015-12-30 2015-12-30 一种mos管

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201511017962.9A CN105470308B (zh) 2015-12-30 2015-12-30 一种mos管

Publications (2)

Publication Number Publication Date
CN105470308A CN105470308A (zh) 2016-04-06
CN105470308B true CN105470308B (zh) 2019-04-12

Family

ID=55607833

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201511017962.9A Active CN105470308B (zh) 2015-12-30 2015-12-30 一种mos管

Country Status (1)

Country Link
CN (1) CN105470308B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111599807B (zh) * 2020-05-22 2023-09-01 赛卓电子科技(上海)股份有限公司 一种标准mos工艺下提升性能的差分输入对管及提升方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101459198A (zh) * 2007-12-12 2009-06-17 精工电子有限公司 半导体装置及其制造方法
CN101771084A (zh) * 2010-01-20 2010-07-07 电子科技大学 一种横向功率器件版图结构
CN205452293U (zh) * 2015-12-30 2016-08-10 无锡中感微电子股份有限公司 一种mos管

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9419130B2 (en) * 2013-11-27 2016-08-16 Infineon Technologies Austria Ag Semiconductor device and integrated circuit

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101459198A (zh) * 2007-12-12 2009-06-17 精工电子有限公司 半导体装置及其制造方法
CN101771084A (zh) * 2010-01-20 2010-07-07 电子科技大学 一种横向功率器件版图结构
CN205452293U (zh) * 2015-12-30 2016-08-10 无锡中感微电子股份有限公司 一种mos管

Also Published As

Publication number Publication date
CN105470308A (zh) 2016-04-06

Similar Documents

Publication Publication Date Title
TWI677986B (zh) 半導體裝置
CN106298764B (zh) 一种半导体器件和电子装置
US8415764B2 (en) High-voltage BJT formed using CMOS HV processes
CN105531813B (zh) 半导体装置
US20170194349A1 (en) Integrated circuit layout structure
US20160148926A1 (en) Integrated circuit device
CN106328644B (zh) 一种半导体器件和电子装置
US11450735B2 (en) Method of forming guard ring and circuit device
US7808046B2 (en) Electrostatic protection device for semiconductor circuit
US20150041848A1 (en) Silicon-controlled rectification device with high efficiency
CN103855156B (zh) 与finfet工艺相兼容的二极管结构
CN205828393U (zh) 一种用于静电放电保护的高密度栅极二极管
US8134205B2 (en) Layout structure of power MOS transistor
CN105427789B (zh) 驱动电路、阵列基板及显示装置
CN105470308B (zh) 一种mos管
CN100550368C (zh) 一种保护静电放电的硅控整流器
US10381343B2 (en) Electrostatic protection device of LDMOS silicon controlled structure
CN205452293U (zh) 一种mos管
US9721844B2 (en) Semiconductor device comprising a switch
CN101510559B (zh) 功率金属氧化物半导体晶体管元件与布局
US20230013672A1 (en) Transistor unit and array and integrated circuit thereof
CN106298763B (zh) 一种半导体器件和电子装置
US20140367789A1 (en) Power array with staggered arrangement for improving on-resistance and safe operating area
CN110518008A (zh) 一种esd保护器件及其制作方法、电子装置
CN102403310A (zh) 金属氧化物半导体场效晶体管布局及结构

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant