CN105448812A - 半导体器件制造方法 - Google Patents

半导体器件制造方法 Download PDF

Info

Publication number
CN105448812A
CN105448812A CN201410351208.8A CN201410351208A CN105448812A CN 105448812 A CN105448812 A CN 105448812A CN 201410351208 A CN201410351208 A CN 201410351208A CN 105448812 A CN105448812 A CN 105448812A
Authority
CN
China
Prior art keywords
layer
refractory metal
metal
gate electrode
predecessor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201410351208.8A
Other languages
English (en)
Inventor
项金娟
赵超
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Institute of Microelectronics of CAS
Original Assignee
Institute of Microelectronics of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Institute of Microelectronics of CAS filed Critical Institute of Microelectronics of CAS
Priority to CN201410351208.8A priority Critical patent/CN105448812A/zh
Publication of CN105448812A publication Critical patent/CN105448812A/zh
Pending legal-status Critical Current

Links

Abstract

本发明公开了一种半导体器件制造方法,包括:在下层结构上形成介质层;在介质层中形成暴露下层结构一部分的沟槽和/或孔;在沟槽和/或孔中生长界面层;在界面层上沉积绝缘介质层;在绝缘介质层上沉积栅电极层;采用原子层沉积法,在栅电极层上形成难熔金属的铝合金层,其中前驱物至少包括作为第一还原剂的含铝的第一前驱物、以及含难熔金属的第二前驱物;在难熔金属的铝合金层上形成金属材质的上层结构。依照本发明的半导体器件制造方法,采用铝基还原剂与金属前驱物反应形成功函数层,避免了悬挂效应造成的孔洞形成,提高了金属填充率,同时避免下层结构受损,提高了器件可靠性。

Description

半导体器件制造方法
技术领域
本发明涉及一种半导体器件制造方法,特别是涉及一种具有共形台阶覆盖率的功函数层沉积方法。
背景技术
随着CMOS器件特征尺寸缩小到22纳米技术节点及以下,高k栅介质/金属栅(HK/MG)MOS器件的金属栅叠层结构的材料选择、制备以及等效功函数调节都是技术难点。
通常的后栅(gate-last)工艺中,如图1A所示,首先在衬底1中形成基本结构:在衬底上沉积并刻蚀形成假栅极堆叠(未示出),以假栅极堆叠为掩模轻掺杂注入衬底1形成LDD结构的源漏延伸区1L;在假栅极堆叠两侧衬底1上形成栅极侧墙2(可以包括未示出的多重侧墙,氮化硅的第一侧墙层、氧化硅层或空气隙的第二侧墙层,以及氮化硅或类金刚石无定形碳的第三侧墙层);以栅极侧墙2为掩模重掺杂注入形成源漏区1H,优选地在源漏区1H上形成硅化物1S;在源漏区1H表面上形成氮化硅的接触刻蚀停止层(CESL)3;在衬底1上旋涂层间介质层(ILD)4;随后刻蚀去除假栅极堆叠,在ILD4中留下栅极沟槽4G。
随后如图1B所示,依次沉积填充氧化硅材质的界面层5、高介电常数绝缘材料(HK)的栅极介质层6、金属/金属氮化物材质的盖层或功函数(WF)层7、以及栅极填充层8,构成最终的栅极。对于NMOS和PMOS而言,功函数层7的材质通常是不同的,以便通过不同金属配比实现所需的功函数。具体地,对于PMOS而言,金属堆叠的有效功函数应该在5.12~4.92eV左右,而对于NMOS而言,金属堆叠的有效功函数应该4.05~4.25eV左右。从材料选择的方面看,有一系列金属可以既满足PMOS有效功函数需求而同时又满足NMOS需求。但是当器件尺寸缩减至22nm技术节点乃至以下时,采用传统的PVD技术在窄线宽沟槽或开孔中沉积共形的良好台阶覆盖率的薄膜变得越来越困难。
此外,在如图1C的多层金属互连工艺中,在多层ILD层3(例如包括第一ILD3A、第二ILD3B)中刻蚀形成连接衬底1中下层焊垫或源漏接触2的孔3H(可以具有上宽下窄的T型结构),在孔3H中沉积Ti、Ta、TiN、TaN、TiAl等金属阻挡层或种晶层4,在此之上再沉积Cu、W、Al等金属填充层5形成连线或接触塞。其中,阻挡层也可以采用TiAl材质。然而,随着器件尺寸减小,金属阻挡层或种晶层4的尺寸也一并减小,低至22nm技术节点以下。
由于PVD(蒸发、溅射等)能够适用于各种金属沉积,因此被广泛使用。然而,当面对具有小尺寸的沟槽或接触孔时,PVD存在悬挂现象,也即沟槽或孔顶部先于底部闭合,导致在金属栅极或多层互连中存在空气隙,导致严重的可靠性问题。而包括MOCVD、HDPCVD等工艺的CVD方法也无法得到完全100%的台阶覆盖率,同样会在沟槽或孔中部形成孔洞。
例如TaAl、TiAl等含难熔金属的铝合金是用于NMOS器件的良好低功函数金属,其通常采用(磁控)溅射或电子束蒸发等PVD工艺方法来沉积,CVD工艺难以制备该合金。但是由于PVD方法带来的悬挂问题,难以适用于22nm技术节点及其以下的小尺寸器件。
另一方面,虽然原子层沉积(ALD)工艺具有良好的台阶覆盖率,由此可以减少孔洞的形成、提高填充率。但是,ALD纯金属沉积具有难度,因为受到前驱物的限制。氢等离子处理通常用于得到纯净金属,但是这会同时刻蚀损伤衬底等下层结构,增大了栅极泄漏或者互连损耗。
发明内容
由上所述,本发明的目的在于克服上述技术困难,提出一种创新性半导体器件制造方法。
为此,本发明提供了一种半导体器件制造方法,包括:在下层结构上形成介质层;在介质层中形成暴露下层结构一部分的沟槽和/或孔;在沟槽和/或孔中生长界面层;在界面层上沉积绝缘介质层;在绝缘介质层上沉积栅电极层;采用原子层沉积法,在栅电极层上形成含难熔金属的铝合金层,其中前驱物至少包括作为第一还原剂的含铝的第一前驱物、以及含难熔金属的第二前驱物;在含难熔金属的铝合金层上形成金属材质的上层结构。
其中,所述界面层材质为SiO2,并且其厚度为0.3nm~1nm。
其中,所述绝缘介质层包含一层或多层绝缘介质。
其中,所述栅电极层包含一层栅电极结构或多层栅电极结构。
其中,所述绝缘介质层包含以下材料中的至少一种:HfO2、HfSiOx、HfON、HfSiON、HfAlOx、Al2O3、ZrO2、ZrSiOx、Ta2O5、La2O3、HfLaOx、LaAlOx、LaSiOx、Y2O3、AlN、以上所述任一种材料的氮化物、以上所述任一种材料的氮氧化物、SiNx或SiON。
其中,所述栅电极层包含以下材料中的至少一种:TiN、TaN、MoN、HfN、TaAlN、TiAlN、MoAlN、HfAlN、TaYbN、TaErN、TaTbN、TaC、HfC、TaSiC、HfSiC、Pt、Ru、Ir、W、Mo、Re、RuOx、RuTax、HfRux、多晶硅或金属硅化物。
其中,所述含难熔金属的铝合金层采用原子层法沉积。
其中,第一前驱物包括含铝的碳氢化合物。
其中,所述含铝的碳氢化合物选自以下之一及其组合:三烷基铝、烷基铝烷、或氨配位铝烷。
其中,第二前驱物包括含难熔金属的卤代物或含难熔金属的有机化合物。
其中,所含的难熔金属的卤代物选自以下之一及其组合:TiCl4、TiBr4、TiI4、TaCl5、TaBr5、TaI5、HfCl4、MoCl5;所述含难熔金属的有机化合物选自以下之一及其组合:钛酸四乙酯、钛酸四丁酯、钛酸四异丙酯、二氯二茂钛、二烯基二茂钛、四氢茚基钛、含吡咯基团配体的钛、钽酸五酯、钽酸五丁酯、钽酸五异丙酯、茂基氯化钽、烯基茂基钽、四氢茚基钽、含吡咯基团配体的钽、铪的环戊二烯基衍生物、四(二乙基酰胺)铪、醋酸钼。
其中,前驱物还包括第二还原剂。
其中,第二还原剂包括H2、NH3之一及其组合。
其中,含难熔金属的铝合金层用作后栅工艺的金属功函数层、或者多层互连工艺的金属阻挡层。
其中,通过调整工艺参数而调整含难熔金属的铝合金的配比或电阻率。
其中,所述工艺参数包括以下之一及其组合:前驱物脉冲序列、不同前驱物脉冲周期的比例、前驱物脉冲时间。
依照本发明的半导体器件制造方法,采用铝基还原剂与金属前驱物反应形成功函数层,避免了悬挂效应造成的孔洞形成,提高了金属填充率,同时避免下层结构受损,提高了器件可靠性。
附图说明
以下参照附图来详细说明本发明的技术方案,其中:
图1A、图1B、图1C为现有技术的制造方法的剖面示意图;以及
图2为依照本发明的方法的示意性流程图。
具体实施方式
以下参照附图并结合示意性的实施例来详细说明本发明技术方案的特征及其技术效果,公开了有效提高器件可靠性的半导体器件制造方法。需要指出的是,类似的附图标记表示类似的结构,本申请中所用的术语“第一”、“第二”、“上”、“下”等等可用于修饰各种器件结构或制造工序。这些修饰除非特别说明并非暗示所修饰器件结构或制造工序的空间、次序或层级关系。
首先,在下层结构上形成介质层(ILD),并在ILD中形成暴露下层结构一部分的沟槽或孔。
如图1A、图1B所示,下层结构可以包括衬底1中的源漏区1L/1H、栅极侧墙2、CESL层3,ILD层为层4。去除假栅极堆叠之后,在ILD层4中留下暴露了下层结构一部分(具体为衬底1中沟道区)的沟槽4G。
或者如图1C所示,下层结构包括衬底1中的接触垫2,ILD3中留下了暴露下层结构一部分(具体为接触焊垫2)的孔3H。
其次,在沟槽或孔中采用ALD法形成TiAl,TaAl等合金层。
对于图1B所示的后栅工艺而言,优选地在ALD法形成金属或金属合金材质的功函数层7之前,还采用CVD工艺在沟槽4G中形成界面层5、绝缘介质层6。对于图1C所示的多层互连工艺,则无需形成中间层。对于图1B而言,界面层5材质为二氧化硅材质,厚度优选0.3~1nm。绝缘介质层6可以以是单层或者多层结构其材质可以包括:HfO2、HfSiOx、HfON、HfSiON、HfAlOx、Al2O3、ZrO2、ZrSiOx、Ta2O5、La2O3、HfLaOx、LaAlOx、LaSiOx、Y2O3、AlN、以上所述任一种材料的氮化物、以上所述任一种材料的氮氧化物、SiNx或SiON。
采用原子层沉积(ALD)法,参与反应的原料至少包括:作为第一还原剂的含Al的第一前驱物,例如包括三烷基铝(trialkylaluminum)、烷基铝烷(alkylaluminumhydride)、或氨配位铝烷(aluminiumhydride-trialkylamine)等含Al碳氢化合物;以及作为氧化剂的含难熔金属的的第二前驱物,例如包括难熔金属的卤代物或难熔金属的有机化合物。其中,所含的难熔金属的卤代物通式为MaHbXc,其中M选自Ti、Ta、Hf、Mo、W、Co、Ni、Cr等难熔金属,X为包括F、Cl、Br、I的卤族元素,H为氢,a、c为大于等于1的正整数,b为大于等于0的整数;并且所含的难熔金属的卤代物优选地选自以下之一及其组合:TiCl4、TiBr4、TiI4、TaCl5、TaBr5、TaI5、HfCl4、MoCl5;所述含难熔金属的有机化合物选自以下之一及其组合:钛酸四乙酯、钛酸四丁酯、钛酸四异丙酯、二氯二茂钛、二烯基二茂钛、四氢茚基钛、含吡咯基团配体的钛、钽酸五酯、钽酸五丁酯、钽酸五异丙酯、茂基氯化钽、烯基茂基钽、四氢茚基钽、含吡咯基团配体的钽、铪的环戊二烯基衍生物、四(二乙基酰胺)铪、醋酸钼。
将上述第一前驱物与第二前驱物置于相应的源瓶中,采用对源瓶加热或者向源瓶中通入载气的方式,使前驱物交替通入反应腔室,到达包含衬底1的晶片表面,在40--450摄氏度的反应腔室内反应并形成金属薄膜,从而最终在待沉积的后栅结构或ILD沟槽或孔中留下含难熔金属的铝合金层,在图1B中构成了功函数层7,在图1C中则构成了阻挡层4。在此过程中,由于两种前驱物仅通过加热即可反应,无需采用等离子体轰击去除残留物(反应腔室无需额外添加射频等离子体源,由此降低了制造设备成本并且同时节省了时间(开启、关停等离子体源均耗时较多),因此避免了下层结构受损。同时,由于ALD法制备薄膜的致密性以及良好台阶覆盖率,使得功函数层7填充性能良好,不会在沟槽4G中上部形成悬臂而阻挡后续层的沉积。
值得注意的是,如本申请背景技术部分所述,常规的PVD、CVD工艺难以形成台阶覆盖率良好、沟槽填充率良好的共形的含难熔金属铝合金层,因此只有采用本发明所述的ALD法沉积才能实现本申请的技术效果。
在上述ALD过程中,可以通过调整工艺参数来调整含难熔金属的铝合金中难熔金属(如Ti、Ta、Hf、Mo等)与Al的比值(也即合金配比,通常以原子数计算)、或合金电阻率,工艺参数诸如前驱物脉冲序列(也即第一、第二前驱物依次/循环通入的顺序)、不同前驱物脉冲周期的比例(例如第一与第二前驱物脉冲式通入次数的比值)、前驱物脉冲时间(例如第一、第二前驱物脉冲式通入单次或者总的时间,与最终通入的量成正比)等。
此外,由于反应室内通气流量控制精度问题或者反应室腔内分布不均匀等问题,可能在某些地方难熔金属有机物反应不完全而具有残留物,这些残留物难以在后续工艺中完全去除,将大大影响栅极功函数调整精确度或者引起互连结构中金属迁移导致电连接失效或者下方沟道区迁移率变化,大大降低了器件的可靠性。为此,除了含Al的第一前驱物之外,还可以添加第二还原剂,包括H2、NH3等,以增强金属还原反应,从而使得难熔金属的前驱物反应完全,不会在栅极沟槽或者互连通孔中留下未反应的难熔金属。
最后,在金属层之上形成金属材质的上层结构。
在图1B中上层结构包括栅电极层8,其材质选自Al、Co、Ni、Cu、Pd、Pt、Ru、Re、Mo、Ta、Ti、Hf、Zr、W、Ir、Eu、Nd、Er、La等金属、这些金属的合金以及这些金属的氮化物,或者其组合。层8中还可掺杂有C、F、N、O、B、P、As等元素以进一步调节功函数。在本发明一个优选实施例中,图1B中的栅电极层8为单层或者多层结构,其材质可以包括:TiN、TaN、MoN、HfN、TaAlN、TiAlN、MoAlN、HfAlN、TaYbN、TaErN、TaTbN、TaC、HfC、TaSiC、HfSiC、Pt、Ru、Ir、W、Mo、Re、RuOx、RuTax、HfRux、多晶硅或金属硅化物。在图1C中上层结构包括互连线金属5,其材质通常包括Al、Cu、W、Mo等及其组合。
依照本发明的半导体器件制造方法,采用铝基还原剂与金属前驱物反应形成功函数层,避免了悬挂效应造成的孔洞形成,提高了金属填充率,同时避免下层结构受损,提高了器件可靠性。
尽管已参照一个或多个示例性实施例说明本发明,本领域技术人员可以知晓无需脱离本发明范围而对器件结构或方法流程做出各种合适的改变和等价方式。此外,由所公开的教导可做出许多可能适于特定情形或材料的修改而不脱离本发明范围。因此,本发明的目的不在于限定在作为用于实现本发明的最佳实施方式而公开的特定实施例,而所公开的器件结构及其制造方法将包括落入本发明范围内的所有实施例。

Claims (15)

1.一种半导体器件制造方法,包括:
在下层结构上形成介质层;
在介质层中形成暴露下层结构一部分的沟槽和/或孔;
在沟槽和/或孔中生长界面层;
在界面层上沉积绝缘介质层;
在绝缘介质层上沉积栅电极层;
采用原子层沉积法,在栅电极层上形成含难熔金属的铝合金层,其中前驱物至少包括作为第一还原剂的含铝的第一前驱物、以及含难熔金属的第二前驱物;
在含难熔金属的铝合金层上形成金属材质的上层结构。
2.根据权利要求1所述的方法,其中,所述界面层材质为SiO2,并且其厚度为0.3nm~1nm。
3.根据权利要求1所述的方法,其中,所述绝缘介质层包含一层或多层绝缘介质。
4.根据权利要求1所述的方法,其中,所述栅电极层包含一层栅电极结构或多层栅电极结构。
根据权利要求1所述的绝缘介质层,其中,所述绝缘介质层包含以下材料中的至少一种:HfO2、HfSiOx、HfON、HfSiON、HfAlOx、Al2O3、ZrO2、ZrSiOx、Ta2O5、La2O3、HfLaOx、LaAlOx、LaSiOx、Y2O3、AlN、以上所述任一种材料的氮化物、以上所述任一种材料的氮氧化物、SiNx或SiON。
5.根据权利要求1所述的方法,其中,所述栅电极层包含以下材料中的至少一种:TiN、TaN、MoN、HfN、TaAlN、TiAlN、MoAlN、HfAlN、TaYbN、TaErN、TaTbN、TaC、HfC、TaSiC、HfSiC、Pt、Ru、Ir、W、Mo、Re、RuOx、RuTax、HfRux、多晶硅或金属硅化物。
6.根据权利要求1所述的方法,其中,所述含难熔金属的铝合金层采用原子层法沉积。
7.如权利要求1的方法,其中,第一前驱物包括含铝的碳氢化合物。
8.如权利要求7的方法,其中,所述含铝的碳氢化合物选自以下之一及其组合:三烷基铝、烷基铝烷、或氨配位铝烷。
9.如权利要求1的方法,其中,第二前驱物包括难熔金属的卤代物或含难熔金属的有机化合物。
10.如权利要求9的方法,其中,所含的难熔金属的卤代物选自以下之一及其组合:TiCl4、TiBr4、TiI4、TaCl5、TaBr5、TaI5、HfCl4、MoCl5;所述含难熔金属的有机化合物选自以下之一及其组合:钛酸四乙酯、钛酸四丁酯、钛酸四异丙酯、二氯二茂钛、二烯基二茂钛、四氢茚基钛、含吡咯基团配体的钛、钽酸五酯、钽酸五丁酯、钽酸五异丙酯、茂基氯化钽、烯基茂基钽、四氢茚基钽、含吡咯基团配体的钽、铪的环戊二烯基衍生物、四(二乙基酰胺)铪、醋酸钼。
11.如权利要求1的方法,其中,前驱物还包括第二还原剂。
12.如权利要求11的方法,其中,第二还原剂包括H2、NH3之一及其组合。
13.如权利要求1的方法,其中,含难熔金属的铝合金层用作后栅工艺的金属功函数层、或者多层互连工艺的金属阻挡层。
14.如权利要求1的方法,其中,通过调整工艺参数而调整含难熔金属的铝合金的配比或电阻率。
15.如权利要求14的方法,其中,所述工艺参数包括以下之一及其组合:前驱物脉冲序列、不同前驱物脉冲周期的比例、前驱物脉冲时间。
CN201410351208.8A 2014-07-23 2014-07-23 半导体器件制造方法 Pending CN105448812A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201410351208.8A CN105448812A (zh) 2014-07-23 2014-07-23 半导体器件制造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201410351208.8A CN105448812A (zh) 2014-07-23 2014-07-23 半导体器件制造方法

Publications (1)

Publication Number Publication Date
CN105448812A true CN105448812A (zh) 2016-03-30

Family

ID=55558853

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201410351208.8A Pending CN105448812A (zh) 2014-07-23 2014-07-23 半导体器件制造方法

Country Status (1)

Country Link
CN (1) CN105448812A (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102918636A (zh) * 2010-04-26 2013-02-06 应用材料公司 使用具有金属类前驱物的cvd与ald工艺的nmos金属栅极材料、制造方法以及设备
CN103579111A (zh) * 2012-07-26 2014-02-12 中芯国际集成电路制造(上海)有限公司 一种金属栅半导体器件的制造方法
WO2014082332A1 (zh) * 2012-11-30 2014-06-05 中国科学院微电子研究所 半导体器件的制造方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102918636A (zh) * 2010-04-26 2013-02-06 应用材料公司 使用具有金属类前驱物的cvd与ald工艺的nmos金属栅极材料、制造方法以及设备
CN103579111A (zh) * 2012-07-26 2014-02-12 中芯国际集成电路制造(上海)有限公司 一种金属栅半导体器件的制造方法
WO2014082332A1 (zh) * 2012-11-30 2014-06-05 中国科学院微电子研究所 半导体器件的制造方法

Similar Documents

Publication Publication Date Title
US20220328318A1 (en) Deposition method
US8637390B2 (en) Metal gate structures and methods for forming thereof
KR102416486B1 (ko) NbMC 층
US10700010B2 (en) Copper contact plugs with barrier layers
CN101656205B (zh) 集成电路金属栅极结构及其制造方法
KR101990051B1 (ko) 무불소텅스텐 배리어층을 구비한 반도체장치 및 그 제조 방법
US9768069B2 (en) Method of manufacturing semiconductor device
US20130221445A1 (en) Atomic Layer Deposition Methods For Metal Gate Electrodes
US20170125548A1 (en) Semiconductor structure and fabrication method thereof
US20060292862A1 (en) Method for forming barrier metal of semiconductor device
WO2018231337A2 (en) Process integration approach of selective tungsten via fill
CN110875179A (zh) 金属层的形成和原位蚀刻工艺
CN103094325A (zh) 半导体器件及其制造方法
CN105336599B (zh) 半导体器件制造方法
US20220319855A1 (en) Methods for filling a gap and related systems and devices
CN104218000A (zh) 晶体管及其形成方法
CN103094114A (zh) 晶体管的制造方法
US8633119B2 (en) Methods for manufacturing high dielectric constant films
US20040217478A1 (en) Semiconductor device and manufacturing process therefor
CN105244265B (zh) 一种半导体器件及其制作方法和电子装置
US8633114B2 (en) Methods for manufacturing high dielectric constant films
CN105448812A (zh) 半导体器件制造方法
US9842770B1 (en) Reflow enhancement layer for metallization structures
US9589809B2 (en) Method of depositing tungsten layer with improved adhesion and filling behavior
TW201403718A (zh) 製造金屬閘極的方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20160330

RJ01 Rejection of invention patent application after publication