CN105393456A - 虚拟采样率增加的音频滤波 - Google Patents
虚拟采样率增加的音频滤波 Download PDFInfo
- Publication number
- CN105393456A CN105393456A CN201480030470.0A CN201480030470A CN105393456A CN 105393456 A CN105393456 A CN 105393456A CN 201480030470 A CN201480030470 A CN 201480030470A CN 105393456 A CN105393456 A CN 105393456A
- Authority
- CN
- China
- Prior art keywords
- filter
- point
- sampled point
- audio signal
- sampling rate
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000001914 filtration Methods 0.000 title claims abstract description 37
- 230000004044 response Effects 0.000 claims abstract description 68
- 230000005236 sound signal Effects 0.000 claims abstract description 53
- 238000005070 sampling Methods 0.000 claims abstract description 50
- 239000002131 composite material Substances 0.000 claims abstract description 48
- 238000000034 method Methods 0.000 claims abstract description 43
- 238000006073 displacement reaction Methods 0.000 claims description 14
- 230000001105 regulatory effect Effects 0.000 claims description 12
- 238000004590 computer program Methods 0.000 claims description 3
- 238000005516 engineering process Methods 0.000 description 7
- 230000000875 corresponding effect Effects 0.000 description 6
- 238000010586 diagram Methods 0.000 description 4
- 230000008859 change Effects 0.000 description 3
- 230000008901 benefit Effects 0.000 description 2
- 238000004891 communication Methods 0.000 description 2
- 230000002596 correlated effect Effects 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- 238000004088 simulation Methods 0.000 description 2
- 238000001228 spectrum Methods 0.000 description 2
- 238000005303 weighing Methods 0.000 description 2
- 108010003272 Hyaluronate lyase Proteins 0.000 description 1
- 230000001143 conditioned effect Effects 0.000 description 1
- 238000012937 correction Methods 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000003384 imaging method Methods 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 230000007480 spreading Effects 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04R—LOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
- H04R3/00—Circuits for transducers, loudspeakers or microphones
- H04R3/04—Circuits for transducers, loudspeakers or microphones for correcting frequency response
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F3/00—Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
- G06F3/16—Sound input; Sound output
- G06F3/165—Management of the audio stream, e.g. setting of volume, audio stream path
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T5/00—Image enhancement or restoration
-
- G—PHYSICS
- G10—MUSICAL INSTRUMENTS; ACOUSTICS
- G10L—SPEECH ANALYSIS TECHNIQUES OR SPEECH SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING TECHNIQUES; SPEECH OR AUDIO CODING OR DECODING
- G10L21/00—Speech or voice signal processing techniques to produce another audible or non-audible signal, e.g. visual or tactile, in order to modify its quality or its intelligibility
- G10L21/02—Speech enhancement, e.g. noise reduction or echo cancellation
- G10L21/0316—Speech enhancement, e.g. noise reduction or echo cancellation by changing the amplitude
- G10L21/0324—Details of processing therefor
- G10L21/0332—Details of processing therefor involving modification of waveforms
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03H—IMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
- H03H17/00—Networks using digital techniques
- H03H17/02—Frequency selective networks
- H03H17/0248—Filters characterised by a particular frequency response or filtering method
- H03H17/0264—Filter sets with mutual related characteristics
- H03H17/0266—Filter banks
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03H—IMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
- H03H17/00—Networks using digital techniques
- H03H17/02—Frequency selective networks
- H03H17/0283—Filters characterised by the filter structure
- H03H17/0286—Combinations of filter structures
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04R—LOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
- H04R1/00—Details of transducers, loudspeakers or microphones
- H04R1/20—Arrangements for obtaining desired frequency or directional characteristics
- H04R1/22—Arrangements for obtaining desired frequency or directional characteristics for obtaining desired frequency characteristic only
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/20—Special algorithmic details
- G06T2207/20024—Filtering details
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/20—Special algorithmic details
- G06T2207/20172—Image enhancement details
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03H—IMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
- H03H17/00—Networks using digital techniques
- H03H17/02—Frequency selective networks
- H03H17/0248—Filters characterised by a particular frequency response or filtering method
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03H—IMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
- H03H17/00—Networks using digital techniques
- H03H17/02—Frequency selective networks
- H03H17/06—Non-recursive filters
- H03H17/0621—Non-recursive filters with input-sampling frequency and output-delivery frequency which differ, e.g. extrapolation; Anti-aliasing
- H03H17/0635—Non-recursive filters with input-sampling frequency and output-delivery frequency which differ, e.g. extrapolation; Anti-aliasing characterized by the ratio between the input-sampling and output-delivery frequencies
- H03H17/065—Non-recursive filters with input-sampling frequency and output-delivery frequency which differ, e.g. extrapolation; Anti-aliasing characterized by the ratio between the input-sampling and output-delivery frequencies the ratio being integer
- H03H17/0657—Non-recursive filters with input-sampling frequency and output-delivery frequency which differ, e.g. extrapolation; Anti-aliasing characterized by the ratio between the input-sampling and output-delivery frequencies the ratio being integer where the output-delivery frequency is higher than the input sampling frequency, i.e. interpolation
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Acoustics & Sound (AREA)
- Signal Processing (AREA)
- Health & Medical Sciences (AREA)
- Theoretical Computer Science (AREA)
- Audiology, Speech & Language Pathology (AREA)
- Multimedia (AREA)
- Human Computer Interaction (AREA)
- General Physics & Mathematics (AREA)
- Computer Hardware Design (AREA)
- Mathematical Physics (AREA)
- General Health & Medical Sciences (AREA)
- Quality & Reliability (AREA)
- Computational Linguistics (AREA)
- General Engineering & Computer Science (AREA)
- Otolaryngology (AREA)
- Stereophonic System (AREA)
- Circuit For Audible Band Transducer (AREA)
- Compression, Expansion, Code Conversion, And Decoders (AREA)
- Filters That Use Time-Delay Elements (AREA)
- Tone Control, Compression And Expansion, Limiting Amplitude (AREA)
Abstract
本发明广义上涉及一种通过应用复合音频滤波器来对音频信号进行数字滤波的方法。该复合音频滤波器可以通过将一个音频滤波器应用于另一个音频滤波器来获得,每一个音频滤波器具有相同的预定采样率,包括多个邻近采样点。该另一个音频滤波器还可以包括在其邻近采样点中的相邻采样点之间的一个或多个介于中间的采样点。可以将一个音频滤波器相对于另一个音频滤波器在调节后的采样率下应用于该另一个音频滤波器。该调节后的采样率可以相对于该另一个滤波器的邻近采样点的数目与介于中间的采样点的数目成反比。针对使用该调节后的采样率得到的该复合滤波器的频率响应曲线可以更能指示理想化的低通滤波器。与不使用调节后的采样率的频率响应(用虚线详细示出)相比,使用调节后的采样率的频率响应可以显示出更加钟形的特点。
Description
本申请要求于2013年3月26日递交的第61/805,469号美国专利申请的优先权,该专利申请的内容将被认为通过引用结合在此。本申请与全部于2013年3月26日递交的第61/805,406号、第61/805,432号、第61/805,466号、第61/805,449号以及第61/805,463号美国专利申请相关,并且视需要要求这些美国专利申请的优先权,这些专利申请的内容被认为通过引用结合在此。本申请还与于2013年5月5日递交的第61/819,630号美国专利申请和于2013年11月12日递交的第61/903,225号美国专利申请相关,并且视需要要求这些美国专利申请的优先权,这些专利申请的内容被认为通过引用结合在此。
技术领域
本发明广义上涉及一种对音频信号进行数字滤波的方法。具体地但是非排他性地,本发明涉及在音频均衡(EQ)中对音频信号进行数字滤波。本发明扩展到其他数字滤波,包括对图像和包括与数字通信和处理相关联的信号的其他信号进行滤波。
背景技术
在数字记录和回放时,将表示音频的模拟信号转换成适于操纵和存储的数字信号。转换在模数转换器(ADC)中执行。可以在数模转换器(DAC)中将所存储的数字信号转换回模拟信号。使用常规音频设备(如放大器和扬声器)来回放模拟信号。可以在DAC之前操纵数字信号以在回放之前改善它的质量。这种操纵包括音频EQ,其中对音频的频谱的选定部分进行滤波以(例如)补偿频率响应的不规则性。也可以对数字信号进行滤波以解决它转换成数字信号或转换回模拟信号的问题。
发明内容
根据本发明的第一方面,提供一种对音频信号进行数字滤波的方法,该方法可以包括以下步骤:
提供在一个预定采样率下的一个音频滤波器,包括多个邻近采样点;
提供在该预定采样率下的另一个音频滤波器,该预定采样率包括在其邻近采样点中的相邻采样点之间的一个介于中间的采样点;
将该音频滤波器应用于该另一个音频滤波器从而提供一个复合音频滤波器,相对于该另一个音频滤波器在一个调节后的采样率下应用所述滤波器;并且
使用该复合音频滤波器对该音频信号进行滤波。
优选地,该调节后的采样率与相对于该另一个滤波器的相邻采样点的数目与介于中间的采样点的数目成反比。
优选地,所述将该音频滤波器应用于该另一个音频滤波器的步骤可以涉及该音频滤波器在这些邻近采样点中的每个采样点与该另一个音频滤波器至少在这些介于中间的采样点中的每个采样点的卷积。更优选地,该卷积涉及使该音频滤波器相对于该另一个音频滤波器在该调节后的采样率下移位,其中,该音频滤波器中的这些邻近采样点中的至少一个采样点与该另一个音频滤波器中的这些介于中间的采样点中的至少一个采样点相对应。
优选地,这些介于中间的采样点基本上位于其邻近采样点中的相邻采样点中间,其中,用于将这些滤波器应用于彼此的该调节后的采样率基本上是该预定采样率的一半。
优选地,该方法还包括将这些音频滤波器的采样率从该预定采样率增加到一个增加后的采样率的步骤。
优选地,所述增加这些音频滤波器的采样率的步骤可以包括:
定义位于在该预定采样率下的邻近采样点之间的在该增加后的采样率下的中间采样点;
针对这些中间采样点中的每个采样点计算一个加权数,该计算包括以下步骤:(i)在这些邻近采样点中的对应邻近采样点指定多个邻近音频信号;(ii)使所指定的这些邻近样本中的每个邻近样本在该邻近采样点与该中间采样点之间的时域中移位;以及(iii)组合这些移位后的邻近样本在该中间采样点的值从而得到该加权数;并且
在这些中间采样点中的对应中间采样点将该加权数应用于该音频信号或一个相关联的音频信号。
优选地,使所指定的这些邻近样本在该时域中移位到基本上该邻近采样点与该中间采样点中间。
优选地,所述增加这些音频滤波器的采样率的步骤包括:
定义位于在该预定采样率下的邻近采样点之间的在该增加后的采样率下的中间采样点;
针对这些中间采样点中的每个中间采样点计算一个加权数,该计算包括以下步骤:(i)提供一个假设音频信号,该假设音频信号具有与该音频信号相对应并且在其时域中被移位成与该中间采样点对准的一个波形;(ii)在该时域中扩展该移位后的假设音频信号;(iii)组合该扩展后的假设音频信号在这些邻近采样点的值从而得到该加权数;
在这些中间采样点中的对应中间采样点将该加权数应用于该音频信号或一个相关联的音频信号。
优选地,所指定的这些邻近样本在该时域中被扩展基本上两倍。
优选地,跨越预定数目的这些邻近采样点应用该加权数。
优选地,该复合音频滤波器包括一组滤波器。更优选地,该组滤波器一起定义通常表示待滤波的该音频信号的频率带宽。
优选地,该复合音频滤波器是接近奈奎斯特(Nyquist)频率的一个低通或带通滤波器。
优选地,该音频滤波器和/或该另一个音频滤波器由被馈送到所述滤波器的脉冲产生的脉冲响应表示。更优选地,该方法还包括将一条平均曲线应用于该脉冲响应的步骤。更优选地,将该平均曲线调节为与它所应用于的该脉冲响应的频率成比例的宽度。
优选地,该脉冲响应在在时域中由一个正弦函数表示。替代地,该脉冲响应在该时域中由一个绝对值正弦函数表示。
根据本发明的第二方面,提供了一种计算机或设备可读介质,该计算机或设备可读介质包括用于使用各自具有一个预定采样率的多个音频滤波器对一个音频信号进行数字滤波的指令,在由一个处理器执行时,这些指令使所述处理器:
将这些滤波器之一应用于这些滤波器中的另一个滤波器从而提供一个复合音频滤波器,相对于这些滤波器中的该另一个滤波器在一个调节后的采样率下应用这些滤波器中的所述一个滤波器;并且
使用该复合音频滤波器对该音频信号进行滤波。
根据本发明的第三方面,提供了一种用于对音频信号进行数字滤波的系统,该系统可以包括:
多个音频滤波器;以及
一个处理器,该处理器被配置为用于:
将这些滤波器之一应用于这些滤波器中的另一个滤波器从而提供一个复合音频滤波器,相对于这些滤波器中的该另一个滤波器在一个调节后的采样率下应用这些滤波器中的所述一个滤波器;并且
使用该复合音频滤波器对该音频信号进行滤波。
根据本发明的第四方面,提供了一种对信号进行数字滤波的方法,所述方法可以包括以下步骤:
提供在一个预定采样率下的滤波器,包括邻近采样点;
提供在该预定采样率下的另一滤波器,包括在其邻近采样点中的相邻采样点之间的介于中间采样点;
将该滤波器应用于该另一个滤波器从而提供一个复合滤波器,相对于该另一个滤波器在一个调节后的采样率下应用所述滤波器;并且
使用该复合滤波器对该信号进行滤波。
优选地,该信号是图像或来自图像的像素。替代地,该信号是从传感器或测量设备的位移得到的电子信号。
附图说明
本文中所描述的本发明的某些实施例涉及一种对音频信号进行数字滤波的方法,现在将仅通过示例的方式参照附图来描述这些实施例,在附图中:
图1是本发明的实施例在数字音频记录和回放中的应用的示意图;
图2是本发明的某些实施例的音频滤波器的脉冲响应;
图3是图2中的在采样率增加后的脉冲响应的放大图;
图4是用于增加脉冲响应的采样率的示例性技术的示意图;
图5是描绘了中间采样点的待应用于相关音频值的加权数的曲线图;
图6是根据本发明的实施例的用于调节采样率的示例性技术的示意图;
图7是用于增加脉冲响应的采样率的另一种示例性技术的示意图;
图8和图9展示了根据本发明的某些实施例应用于对应脉冲响应的平均曲线;
图10是描绘了随脉冲响应的频率变化的不同宽度的平均曲线的曲线图;
图11是在采样调节后的本发明的实施例的滤波器的频率响应与采样未调节的频率响应(用虚线详细示出)的比较。
具体实施方式
本文中本发明的某些实施例针对一种通过应用复合音频滤波器来对音频信号进行数字滤波的方法。该复合音频滤波器可以通过将一个音频滤波器应用于另一个音频滤波器来获得,每一个音频滤波器具有相同的预定采样率,包括多个邻近采样点。另一个音频滤波器还可包括在其相邻采样点的相邻采样点之间的一个或多个介于中间采样点。可以将一个音频滤波器相对于另一个音频滤波器在调节后的采样率下应用于该另一个音频滤波器。在某些实施例中,调节后的采样率可以相对于另一个滤波器的邻近采样点的数目与介于中间的采样点的数目成反比。
图1示出了本发明的某些实施例在数字音频记录和回放过程中的应用。可以在模数转换器(ADC)12将模拟音频信号10转换成数字音频信号。然后可以使数字音频信号在数字处理器14(例如在音频均衡(EQ)中)经受信号处理。可以在采样率增加之前对经处理的数字信号进行下采样并且存储在存储存储器16以在回放之前增加其分辨率。然后可以在数模转换器(DAC18)将相对高分辨率的数字音频信号转换回模拟信号20。
应当理解的是,本发明的某些实施例可以应用在:
i)ADC12,在这里,数字音频信号经历采样率增加或过采样,在某些实施例中通过加权来进行;
ii)数字信号处理器14或与EQ相关联的数字滤波器,在这里,例如可以用低通滤波器或带通滤波器对数字信号进行滤波;和/或
iii)存储存储器16的下游,在这里,经滤波的音频信号在回放之前可以经历采样率增加或上采样。
本文中的某些实施例涉及一种在计算机程序代码或软件中体现的方法。数字信号处理器14的数字滤波器可以由特别的频率响应表示。特别的频率响应通常可以通常取决于滤波器的脉冲响应,该滤波器的特征可以在于本发明的各实施例的软件或技术。本文中所描述的某些实施例可以涵盖可以将数字滤波器分类所根据的基本频率响应类型,包括低通、高通、带通和带阻或陷波滤波器。数字滤波器可以广义上被分类为有限脉冲响应(FIR)滤波器或无限脉冲响应(IIR)滤波器。
为了易于理解涉及调节后的采样率的音频滤波,在某些实施例中,为简单起见,从两(2)个音频滤波器得到复合音频滤波器,但是应当认识到,可以使用任意数目的滤波器。复合音频滤波器通常可以包括一组滤波器。
在某些实施例中,滤波器组可以一起定义表示待滤波的音频信号或频谱的频率带宽。在某些实施例中,脉冲响应由被馈送到对应滤波器的脉冲产生。可以根据以下方程式由正弦函数来表示这些滤波器中的每一个滤波器的脉冲响应:
式中,lpf是低通滤波器的拐角频率,x是x轴上的时间变量,并且表示平均曲线,其中q表示平均曲线的纵横比。应当理解的是,正弦函数是余弦分量的总和。
图2展示了方程式1的脉冲响应。应当理解,a[0]是脉冲发生所在的实例,并且a[n]表示针对脉冲响应的相邻采样点,其中n是在预定采样率下的采样点的数目。在某些实施例中,预定采样率可以是44.1kHz(采样/秒),但是应当认识到的是,取决于应用,可以使用任何其他采样率。
在某些示例中,音频滤波器中的每个滤波器可以经历从预定采样率增加采样率。图3展示了图2中的在采样率增加到增加后的采样率下脉冲响应的放大图。仅出于说明目的,通过在相邻采样点(例如a[0]和a[1])之间定位九(9)个中间且间隔相等的采样点(表示为a[0a]到a[0i])来将预定采样率增加十(10)倍。可以在实践中将预定采样率增加到高达1000倍,其中增加后的采样率是44100kHz。
在某些实施例中,通过卷积将滤波器应用于彼此从而获得复合音频滤波器。脉冲响应a和b的此卷积可以由样本阵列表示,这还可以通过以下方程式以数学方式来定义:
其中N是脉冲响应a和b中的每个脉冲响应的样本的数目,并且k针对脉冲响应b的样本中的每个样本是0至N-1。样本阵列因此包括2N-1个行和列。阵列中的每一行的样本值的总和可以表示复合音频滤波器。在某些实施例中,可以通过跨越无限数目的样本对脉冲响应求积分从而以数学方式表示复合音频滤波器。
在某些示例中,复合音频滤波器可以是接近奈奎斯特频率的低通滤波器。在对各个脉冲响应执行采样率增加时基本上除去奈奎斯特频率及其以上频率。取决于应用,复合滤波器或其他复合滤波器也可以充当带通滤波器或带阻滤波器。
在某些实施例中,复合音频滤波器可以被“构造”成在增加后的采样率下具有准确性得到提高的益处。在对音频信号进行滤波之前可以使复合音频滤波器返回到预定采样率。从而,可以利用虚拟采样率增加(这在处理器能力方面要求不高)将复合滤波器应用于在预定采样率下的音频信号。
在某些实施例中,可以通过各种技术来对音频滤波器中的每个滤波器执行采样率增加,这些技术可涉及i)移位后的邻近音频信号,和/或ii)扩展后的假设音频信号。
在使用移位后的音频信号对脉冲响应的值进行加权时,可以针对待确定的中间采样点的任一侧指定邻近脉冲响应。可以使这些指定的邻近信号中的每个信号在邻近采样点与中间采样点之间的时域中移位。在某些示例中,可以通过将移位后并且指定的邻近脉冲响应中的每个脉冲响应在相关中间采样点贡献的值求和来计算相关加权数。图4示意性展示了这种技术。可以跨越预先确定数目的相邻采样点(例如1024个采样点)来应用加权。
图5展示了将应用于相关的脉冲响应的针对中间采样点a[oa]至a[oi]中的每个采样点的加权数。
在某些实施例中,可以在调节后的采样率下执行音频滤波器的卷积,从而使得音频滤波器的邻近采样点至少与它所应用于的另一个音频滤波器的介于中间的采样点中的每个采样点对准或相对应。这可以涉及使音频滤波器相对于另一个音频滤波器在调节后的采样率下移位。例如,如果另一个音频滤波器包括基本上位于其邻采近样点中的相邻采样点中间的介于中间的采样点,则用于将滤波器应用于彼此的调节后的采样率可以是基本上预定采样率的一半。图6示意性展示了用于调节采样率的一种技术。在某些实施例中,可以通过将滤波器的频率减半到(例如)奈奎斯特频率的大约一半或者约11kHz(当奈奎斯特频率大约是22kHz时)来对滤波器的采样率进行调节。
在某些实施例中,可以通过对每隔一个脉冲响应求卷积来调节采样率。这意味着,用实线详细示出的三(3)个脉冲响应对图6中的最上面的脉冲响应求卷积,并且有效地忽略用虚线详细示出的其他脉冲响应。所产生的或复合音频滤波器是图6的以虚线详细示出的最下面的脉冲响应并且在某些示例中可以由以下方程式来表示。
新卷积点为脉冲脉冲
新卷积点为脉冲脉冲
新卷积点为脉冲脉冲方程式3
针对44.1kHz的预定采样率,本示例中的调节后的采样率是22.05kHz。如果另一个音频滤波器在其邻近采样点中的相邻采样点之间包括九(9)个介于中间的采样点,则调节后的采样率可以是预定采样率的十分之一。针对44.1kHz的预定采样率,这等于4.41kHz的调节后的采样率。应当理解的是,调节后的采样率“校正”了在针对中间采样点中的每一个计算加权数时指定的邻近采样点的移位。指定的相邻样本在时域中的移位通常与在对音频滤波器求卷积时对采样率的调节成比例。因此,指定的邻近信号移位到邻近采样点与中间采样点中间可以意味着采样率被调节基本上一半。
脉冲响应a和b的此卷积可以提供如由(例如)方程式2表示的样本阵列。然而,在调节后的采样率下,脉冲响应a可以存在N个样本并且脉冲响应b可以存在M个样本。样本阵列因此可以包括(N+M)-1行及M列。阵列中的每一行的样本值的总和可以表示复合音频滤波器。
在使用扩展后的假设音频信号对脉冲响应的值进行加权时,可以将相关的脉冲响应有效地复制为假设脉冲响应,其中,它的时域被移位成与待确定的中间采样点对准。然后,可以在该时域中扩展假设并且移位后的脉冲响应。在某些示例中,可以通过将扩展后的脉冲响应在邻近采样点的值求和来计算相关加权数。图7示意性展示了这种技术。优选地,跨越预定数目的邻近采样点(例如1024个采样点)来应用加权数。
在某些实施例中,可以将指定的邻近信号在时域中扩展基本上2倍。这可以“校正”为预定采样率的一半的调节后的采样率。应当认识到的是,可以使用其他扩展因子来针对中间采样点计算加权数,在这种情况下,调节后的采样率可以与这个扩展因子成反比。
在某些实施例中,可以将应用于脉冲响应的平均曲线调节为与它所应用于的脉冲响应的频率成比例的宽度。图8展示了一条平均曲线,该平均曲线具有大约四(4)个样本的宽度,这些样本被应用于具有相对高的频率的脉冲响应。图9示出了调节后的平均曲线,该平均曲线具有大约八(8)个样本的宽度,这些样本被应用于具有相对低的频率的另一脉冲响应。可以看出,在这两种情况下,平均曲线的宽度或q可以基本上与相应脉冲响应的频率成比例。这在图10中示意性示出,其中平均曲线的宽度随着脉冲响应中的频率减小而在z轴上增加。
从图1的比较频率响应曲线中可以看出,在调节后的采样率下,频率响应可以更能指示理想化的低通滤波器。与不使用调节后的采样率的频率响应(用虚线详细示出)相比,根据本发明实施例使用调节后的采样率的频率响应显示出更钟形的特点。
至此已经描述了本发明的若干实施例,对于本领域技术人员而已将明显的是,对音频信号进行数字滤波的方法至少具有优于现有技术的以下优点:
1.可以在增加后的采样率下的复合音频滤波器,该复合音频滤波器在其频率响应上提供了相对“平滑”的滤波器;
2.复合滤波器可以在(例如)EQ中提供改善的滤波;
3.就复合滤波器由在显著增加的采样率下的滤波器“构造”而言,复合滤波器“设计”可以类似于模拟;
4.复合音频滤波器可以大幅度减少模拟和现有数字滤波器中所固有的不期望的响音;
5.该方法提供了可以更平滑并且在这方面更类似于模拟滤波器的频率响应。
6.复合滤波器可以应用于相对高分辨率的相关音频而不需要采样率增加;
7.经滤波的音频相对于带滤波的信号可以是基本上相位相干的
本领域技术人员应当认识到,本文所描述的本发明易于作出除具体描述的那些变化和修改外的变化和修改。例如,脉冲响应实际上可以具有任何波形。如果由数学方程式表示,则脉冲响应不限于正弦函数,而是包括其他波形,如但不限于:
i)在时域中表示的绝对值正弦函数;以及
ii)仅从零(0)到正无穷的值的正弦函数;
iii)仅正值的正弦函数(余弦分量的总和)。
音频信号的处理不必限于声学,而是扩展到其他声音应用,包括超声和声呐。本发明还扩展超出音频信号到其他信号,包括从物理位移得到的信号,如从测量设备(例如应变仪或通常将位移转换成电子信号的其他传感器)获得的信号。本发明还涵盖与数字通信相关联的信号的数字滤波。
在某一实施例中,本发明可以应用于成像。例如,可以用通过以调节后的采样率将滤波器应用于彼此而获得的复合滤波器来对图像中的像素矩阵中的每个像素进行滤波。该调节后的采样率可以相对于该另一个滤波器的邻近采样点的数目与介于中间的采样点的数目成反比。
所有这些变化和修改应当被视为在本发明的范围内,本发明的性质要从前面的描述来确定。
Claims (25)
1.一种对音频信号进行数字滤波的方法,所述方法包括以下步骤:
提供在一个预定采样率下的一个音频滤波器,该预定采样率包括多个邻近采样点;
提供在该预定采样率下的另一个音频滤波器,该预定采样率包括在其邻近采样点中的相邻采样点之间的一个介于中间的采样点;
将该音频滤波器应用于该另一个音频滤波器从而提供一个复合音频滤波器,相对于该另一个音频滤波器在一个调节后的采样率下应用所述滤波器;并且
使用该复合音频滤波器对该音频信号进行滤波。
2.如权利要求1中任一项所述的方法,其中,该调节后的采样率相对于该另一个滤波器的邻近采样点的数目与介于中间的采样点的数目成反比。
3.如权利要求1或2中任一项所述的方法,其中,所述将该音频滤波器应用于该另一个音频滤波器的步骤涉及该音频滤波器在这些邻近采样点中的每个邻近采样点与该另一个音频滤波器至少在这些介于中间的采样点中的每个采样点的卷积。
4.如权利要求3所述的方法,其中,该卷积涉及使该音频滤波器相对于该另一个音频滤波器在该调节后的采样率下移位,其中,该音频滤波器中的这些邻近采样点中的至少一个邻近采样点与该另一个音频滤波器中的这些介于中间的采样点中的至少一个中间采样点相对应。
5.如以上权利要求中任一项所述的方法,其中,这些介于中间的采样点基本上位于其邻近采样点中的相邻采样点中间,其中,用于将这些滤波器应用于彼此的该调节后的采样率基本上是该预定采样率的一半。
6.如以上权利要求中任一项所述的方法,还包括将这些音频滤波器的该采样率从该预定采样率增加到一个增加后的采样率的步骤。
7.如权利要求6所述的方法,其中,所述增加这些音频滤波器的该采样率的步骤包括:
定义位于在该预定采样率下的邻近采样点之间的在该增加后的采样率下的中间采样点;
针对这些中间采样点中的每个采样点计算一个加权数,该计算包括以下步骤:(i)在这些邻近采样点中的对应邻近采样点指定多个邻近音频信号;(ii)使所指定的这些邻近信号中的每个信号在该邻近采样点与该中间采样点之间的时域中移位;以及(iii)组合这些移位后的邻近信号在该中间采样点的值从而得到该加权数;并且
在这些中间采样点中的对应中间采样点将该加权数应用于该音频信号或一个相关联的音频信号。
8.如权利要求7所述的方法,其中,使所指定的这些邻近样本在该时域中移位到基本上该邻近采样点与该中间采样点中间。
9.如权利要求6所述的方法,其中,所述增加这些音频滤波器的该采样率的步骤包括:
定义位于在该预定采样率下的邻近采样点之间的在该增加后的采样率下的中间采样点;
针对这些中间采样点中的每个中间采样点计算一个加权数,该计算包括以下步骤:(i)提供一个假设音频信号,该假设音频信号具有与该音频信号相对应并且在其时域中被移位成与该中间采样点对准的一个波形;(ii)在该时域中扩展该移位后的假设音频信号;以及(iii)组合该扩展后的假设音频信号在这些邻近采样点的值从而得到该加权数;并且
在这些中间采样点中的对应中间采样点将该加权数应用于该音频信号或一个相关联的音频信号。
10.如权利要求9所述的方法,其中,该假设音频信号在时域中被扩展基本上两倍。
11.如权利要求7至10中任一项所述的方法,其中,跨越预定数目的所述邻近采样点应用该加权数。
12.如以上权利要求中任一项所述的方法,其中,该复合音频滤波器包括一组滤波器。
13.如以上权利要求中任一项所述的方法,其中,该复合音频滤波器是一起定义通常表示待滤波的该音频信号的一个频率带宽的多个复合音频滤波器之一。
14.如以上权利要求中任一项所述的方法,其中,该复合音频滤波器是接近奈奎斯特频率的低通滤波器或带通滤波器。
15.如以上权利要求中任一项所述的方法,其中,该音频滤波器和/或该另一个音频滤波器由被馈送到所述滤波器的一个脉冲产生的一个脉冲响应来表示。
16.如权利要求15所述的方法,其中,该方法还包括将一条平均曲线应用于该脉冲响应的步骤。
17.如权利要求16所述的方法,其中,将该平均曲线调节为与它所应用于的该脉冲响应的频率成比例的宽度。
18.如权利要求15至17中任一项所述的方法,其中,该脉冲响应在该时域中由一个正弦函数表示。
19.如权利要求15至17中任一项所述的方法,其中,该脉冲响应在该时域中由一个绝对值正弦函数表示。
20.一种计算机或设备可读介质,该计算机或设备可读介质包括用于使用各自具有一个预定采样率的多个音频滤波器对一个音频信号进行数字滤波的指令,在由一个处理器执行时,所述指令使所述处理器:
将这些滤波器之一应用于这些滤波器中的另一个滤波器从而提供一个复合音频滤波器,相对于这些滤波器中的该另一个滤波器在一个调节后的采样率下应用这些滤波器中的所述一个滤波器;并且
使用该复合音频滤波器对该音频信号进行滤波。
21.一种用于对音频信号进行数字滤波的系统,所述系统包括:
在一个预定采样率下的一个音频滤波器,该预定采样率包括多个邻近采样点;
在该预定采样率下的另一个音频滤波器,该预定采样率包括在其邻近采样点中的相邻采样点之间的一个介于中间的采样点;以及
一个处理器,用于:
将该音频滤波器应用于该另一个音频滤波器从而提供一个复合音频滤波器,相对于该另一个音频滤波器在一个调节后的采样率下应用所述滤波器;并且
使用该复合音频滤波器对该音频信号进行滤波。
22.一种对信号进行数字滤波的方法,所述方法包括以下步骤:提供在一个预定采样率下的一个音频滤波器,包括多个邻近采样点;
提供在该预定采样率下的另一个音频滤波器,该预定采样率包括在其邻近采样点中的相邻采样点之间的一个介于中间的采样点;
将该音频滤波器应用于该另一个音频滤波器从而提供一个复合音频滤波器,相对于该另一个音频滤波器在一个调节后的采样率下应用所述滤波器;并且
使用该复合音频滤波器对该音频信号进行滤波。
23.如权利要求22所述的方法,其中,所述信号是图像或来自图像的像素。
24.如权利要求22所述的方法,其中,该信号是从一个传感器或测量设备的位移得到的一个电子信号。
25.计算机程序代码,在被执行时,该计算机程序代码实施如权利要求1至19或22至24中任一项所述的方法。
Applications Claiming Priority (17)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US201361805463P | 2013-03-26 | 2013-03-26 | |
US201361805466P | 2013-03-26 | 2013-03-26 | |
US201361805469P | 2013-03-26 | 2013-03-26 | |
US201361805449P | 2013-03-26 | 2013-03-26 | |
US201361805432P | 2013-03-26 | 2013-03-26 | |
US201361805406P | 2013-03-26 | 2013-03-26 | |
US61/805,449 | 2013-03-26 | ||
US61/805,463 | 2013-03-26 | ||
US61/805,466 | 2013-03-26 | ||
US61/805,432 | 2013-03-26 | ||
US61/805,406 | 2013-03-26 | ||
US61/805,469 | 2013-03-26 | ||
US201361819630P | 2013-05-05 | 2013-05-05 | |
US61/819,630 | 2013-05-05 | ||
US201361903225P | 2013-11-12 | 2013-11-12 | |
US61/903,225 | 2013-11-12 | ||
PCT/AU2014/000325 WO2014153609A1 (en) | 2013-03-26 | 2014-03-26 | Audio filtering with virtual sample rate increases |
Publications (2)
Publication Number | Publication Date |
---|---|
CN105393456A true CN105393456A (zh) | 2016-03-09 |
CN105393456B CN105393456B (zh) | 2018-06-22 |
Family
ID=51622277
Family Applications (3)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201480030470.0A Expired - Fee Related CN105393456B (zh) | 2013-03-26 | 2014-03-26 | 虚拟采样率增加的音频滤波 |
CN201480030467.9A Expired - Fee Related CN105393554B (zh) | 2013-03-26 | 2014-03-26 | 对音频信号进行数字滤波的方法和系统、计算机可读介质 |
CN201480030463.0A Expired - Fee Related CN105393553B (zh) | 2013-03-26 | 2014-03-26 | 虚拟采样率增加的音频滤波 |
Family Applications After (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201480030467.9A Expired - Fee Related CN105393554B (zh) | 2013-03-26 | 2014-03-26 | 对音频信号进行数字滤波的方法和系统、计算机可读介质 |
CN201480030463.0A Expired - Fee Related CN105393553B (zh) | 2013-03-26 | 2014-03-26 | 虚拟采样率增加的音频滤波 |
Country Status (6)
Country | Link |
---|---|
US (3) | US9913032B2 (zh) |
EP (3) | EP2979464A4 (zh) |
JP (3) | JP6573869B2 (zh) |
CN (3) | CN105393456B (zh) |
HK (3) | HK1224121A1 (zh) |
WO (5) | WO2014153607A1 (zh) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109459612A (zh) * | 2019-01-09 | 2019-03-12 | 上海艾为电子技术股份有限公司 | 数字音频信号的采样频率的检测方法及装置 |
Families Citing this family (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
SE537818C2 (sv) * | 2013-04-05 | 2015-10-27 | Ten Medical Design Ab | Strålskyddande material |
US10536136B2 (en) | 2014-04-02 | 2020-01-14 | Lachlan Paul BARRATT | Modified digital filtering with sample zoning |
KR102318581B1 (ko) * | 2014-06-10 | 2021-10-27 | 엠큐에이 리미티드 | 오디오 신호의 디지털 캡슐화 |
EP3198723A4 (en) * | 2014-09-26 | 2018-06-20 | Lachlan Paul Barratt | Improved digital processing of audio signals utilizing cosine functions |
KR20170072229A (ko) * | 2014-09-26 | 2017-06-26 | 라클란 바래트 | 수정된 컨볼루션으로 오디오 처리 |
WO2016179648A1 (en) * | 2015-05-08 | 2016-11-17 | Barratt Lachlan | Controlling dynamic values in digital signals |
CN109065064B (zh) * | 2018-08-09 | 2020-10-20 | 歌尔科技有限公司 | 一种生成eq曲线的方法、音频输出的方法及输出设备 |
TW202105908A (zh) * | 2019-06-26 | 2021-02-01 | 美商杜拜研究特許公司 | 具有改善頻率解析度的低延遲音訊濾波器組 |
CN114339582B (zh) * | 2021-11-30 | 2024-02-06 | 北京小米移动软件有限公司 | 双通道音频处理、方向感滤波器生成方法、装置以及介质 |
Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5270481A (en) * | 1991-07-29 | 1993-12-14 | Kabushiki Kaisha Kawai Gakki Seisakusho | Filter coefficient generator for electronic musical instruments |
EP0795755A2 (en) * | 1996-03-05 | 1997-09-17 | HIRATA, Yoshimutsu | Method of non-harmonic analysis of waveforms for synthesis, interpolation and extrapolation |
US5907295A (en) * | 1997-08-04 | 1999-05-25 | Neomagic Corp. | Audio sample-rate conversion using a linear-interpolation stage with a multi-tap low-pass filter requiring reduced coefficient storage |
US6236731B1 (en) * | 1997-04-16 | 2001-05-22 | Dspfactory Ltd. | Filterbank structure and method for filtering and separating an information signal into different bands, particularly for audio signal in hearing aids |
US20030154224A1 (en) * | 2001-10-30 | 2003-08-14 | Zhongnong Jiang | Efficient real-time computation of FIR filter coefficients |
US20080192957A1 (en) * | 2007-02-09 | 2008-08-14 | Katsutoshi Kubo | Filter coefficient calculation device, filter coefficient calculation method, control program, computer-readable storage medium, and audio signal processing apparatus |
US20090319065A1 (en) * | 2008-06-19 | 2009-12-24 | Texas Instruments Incorporated | Efficient Asynchronous Sample Rate Conversion |
CN101930736A (zh) * | 2009-06-24 | 2010-12-29 | 展讯通信(上海)有限公司 | 基于子带滤波框架的解码器的音频均衡方法 |
WO2011063361A1 (en) * | 2009-11-20 | 2011-05-26 | Maxlinear, Inc. | Integrated if saw filter in baseband digital design for analog tv (or hybrid) tuner |
US20110144934A1 (en) * | 2009-12-12 | 2011-06-16 | Can Bilgin | Method and arrangement for sampling rate conversion |
US20110145310A1 (en) * | 2008-07-29 | 2011-06-16 | France Telecom | Method for updating an encoder by filter interpolation |
Family Cites Families (35)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS63103509A (ja) * | 1986-10-20 | 1988-05-09 | Sony Corp | デジタルフイルタ |
CA1324674C (en) * | 1988-08-18 | 1993-11-23 | Ronald W. Potter | Method and apparatus for interpolating between data samples |
US5235534A (en) * | 1988-08-18 | 1993-08-10 | Hewlett-Packard Company | Method and apparatus for interpolating between data samples |
US5075880A (en) * | 1988-11-08 | 1991-12-24 | Wadia Digital Corporation | Method and apparatus for time domain interpolation of digital audio signals |
US5170369A (en) * | 1989-09-25 | 1992-12-08 | E-Mu Systems, Inc. | Dynamic digital IIR audio filter and method which provides dynamic digital filtering for audio signals |
US5422827A (en) | 1993-02-12 | 1995-06-06 | Cirrus Logic, Inc. | Integrated video scaling and sharpening filter |
US5592403A (en) * | 1993-03-11 | 1997-01-07 | Monolith Technologies Corporation | Digital-to-analog converter including integral digital audio filter |
JPH06283968A (ja) * | 1993-03-26 | 1994-10-07 | Sony Corp | ディジタル信号演算装置 |
US6128539A (en) | 1994-08-30 | 2000-10-03 | Texas Instruments Incorporated | Method and apparatus for forming image scaling filters |
CN1273709A (zh) * | 1998-04-27 | 2000-11-15 | 皇家菲利浦电子有限公司 | 使用多项式内插法的取样率转换器 |
US6487573B1 (en) * | 1999-03-26 | 2002-11-26 | Texas Instruments Incorporated | Multi-rate digital filter for audio sample-rate conversion |
EP1104101A3 (en) * | 1999-11-26 | 2005-02-02 | Matsushita Electric Industrial Co., Ltd. | Digital signal sub-band separating / combining apparatus achieving band-separation and band-combining filtering processing with reduced amount of group delay |
EP1160979B1 (en) * | 2000-06-02 | 2007-10-31 | Texas Instruments Inc. | Sampling rate converter and method |
US7002997B2 (en) * | 2001-06-22 | 2006-02-21 | Winbond Electronics Corp. | Interpolation filter structure |
US7253753B2 (en) * | 2002-02-26 | 2007-08-07 | Broadcom Corporation | Method and apparatus of performing sample rate conversion of a multi-channel audio signal |
JP2004120182A (ja) * | 2002-09-25 | 2004-04-15 | Sanyo Electric Co Ltd | デシメーションフィルタおよびインターポレーションフィルタ |
US7167112B2 (en) * | 2003-03-21 | 2007-01-23 | D2Audio Corporation | Systems and methods for implementing a sample rate converter using hardware and software to maximize speed and flexibility |
US7908306B1 (en) * | 2003-03-21 | 2011-03-15 | D2Audio Corp | SRC with multiple sets of filter coefficients in memory and a high order coefficient interpolator |
US7336793B2 (en) | 2003-05-08 | 2008-02-26 | Harman International Industries, Incorporated | Loudspeaker system for virtual sound synthesis |
JP2005217837A (ja) * | 2004-01-30 | 2005-08-11 | Sony Corp | サンプリングレート変換装置およびその方法、並びに、オーディオ装置 |
EP1684428A1 (en) * | 2005-01-13 | 2006-07-26 | Deutsche Thomson-Brandt Gmbh | Sample rate converter |
US7599451B2 (en) * | 2005-05-11 | 2009-10-06 | Sigmatel, Inc. | Sample rate conversion module and applications thereof |
EP4178110B1 (en) * | 2006-01-27 | 2024-04-24 | Dolby International AB | Efficient filtering with a complex modulated filterbank |
US7831001B2 (en) * | 2006-12-19 | 2010-11-09 | Sigmatel, Inc. | Digital audio processing system and method |
CN101262662B (zh) * | 2007-06-29 | 2011-02-09 | 浙江华立通信集团有限公司 | 用于3g和4g终端的音调生成方法及装置 |
JP2009128559A (ja) * | 2007-11-22 | 2009-06-11 | Casio Comput Co Ltd | 残響効果付加装置 |
US8467891B2 (en) * | 2009-01-21 | 2013-06-18 | Utc Fire & Security Americas Corporation, Inc. | Method and system for efficient optimization of audio sampling rate conversion |
US8971551B2 (en) * | 2009-09-18 | 2015-03-03 | Dolby International Ab | Virtual bass synthesis using harmonic transposition |
ES2522171T3 (es) * | 2010-03-09 | 2014-11-13 | Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. | Aparato y método para procesar una señal de audio usando alineación de borde de patching |
US8755460B2 (en) * | 2010-07-30 | 2014-06-17 | National Instruments Corporation | Phase aligned sampling of multiple data channels using a successive approximation register converter |
US8644520B2 (en) * | 2010-10-14 | 2014-02-04 | Lockheed Martin Corporation | Morphing of aural impulse response signatures to obtain intermediate aural impulse response signals |
TWI517028B (zh) | 2010-12-22 | 2016-01-11 | 傑奧笛爾公司 | 音訊空間定位和環境模擬 |
US8943117B1 (en) * | 2011-04-18 | 2015-01-27 | Arthur Torosyan | Method and apparatus for hybrid digital filtering |
SG11201400789UA (en) * | 2011-09-30 | 2014-04-28 | Creative Tech Ltd | A novel efficient digital microphone decimation filter architecture |
US9531343B2 (en) * | 2015-03-20 | 2016-12-27 | Texas Instruments Incorporated | Systems and methods of variable fractional rate digital resampling |
-
2014
- 2014-03-26 JP JP2016504419A patent/JP6573869B2/ja not_active Expired - Fee Related
- 2014-03-26 US US14/780,398 patent/US9913032B2/en not_active Expired - Fee Related
- 2014-03-26 CN CN201480030470.0A patent/CN105393456B/zh not_active Expired - Fee Related
- 2014-03-26 EP EP14776119.1A patent/EP2979464A4/en not_active Withdrawn
- 2014-03-26 WO PCT/AU2014/000321 patent/WO2014153607A1/en active Application Filing
- 2014-03-26 WO PCT/AU2014/000325 patent/WO2014153609A1/en active Application Filing
- 2014-03-26 CN CN201480030467.9A patent/CN105393554B/zh not_active Expired - Fee Related
- 2014-03-26 WO PCT/AU2014/000319 patent/WO2014153606A1/en active Application Filing
- 2014-03-26 EP EP14775520.1A patent/EP2979360A4/en not_active Withdrawn
- 2014-03-26 US US14/780,367 patent/US9628912B2/en active Active
- 2014-03-26 WO PCT/AU2014/000317 patent/WO2014153604A1/en active Application Filing
- 2014-03-26 JP JP2016504417A patent/JP6510487B2/ja not_active Expired - Fee Related
- 2014-03-26 JP JP2016504418A patent/JP6553590B2/ja not_active Expired - Fee Related
- 2014-03-26 US US14/780,387 patent/US9949029B2/en not_active Expired - Fee Related
- 2014-03-26 WO PCT/AU2014/000318 patent/WO2014153605A1/en active Application Filing
- 2014-03-26 EP EP14774918.8A patent/EP2982134A4/en not_active Withdrawn
- 2014-03-26 CN CN201480030463.0A patent/CN105393553B/zh not_active Expired - Fee Related
-
2016
- 2016-09-09 HK HK16110723.5A patent/HK1224121A1/zh not_active IP Right Cessation
- 2016-09-09 HK HK16110730.6A patent/HK1222479A1/zh not_active IP Right Cessation
- 2016-09-09 HK HK16110721.7A patent/HK1224120A1/zh not_active IP Right Cessation
Patent Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5270481A (en) * | 1991-07-29 | 1993-12-14 | Kabushiki Kaisha Kawai Gakki Seisakusho | Filter coefficient generator for electronic musical instruments |
EP0795755A2 (en) * | 1996-03-05 | 1997-09-17 | HIRATA, Yoshimutsu | Method of non-harmonic analysis of waveforms for synthesis, interpolation and extrapolation |
US6236731B1 (en) * | 1997-04-16 | 2001-05-22 | Dspfactory Ltd. | Filterbank structure and method for filtering and separating an information signal into different bands, particularly for audio signal in hearing aids |
US5907295A (en) * | 1997-08-04 | 1999-05-25 | Neomagic Corp. | Audio sample-rate conversion using a linear-interpolation stage with a multi-tap low-pass filter requiring reduced coefficient storage |
US20030154224A1 (en) * | 2001-10-30 | 2003-08-14 | Zhongnong Jiang | Efficient real-time computation of FIR filter coefficients |
US20080192957A1 (en) * | 2007-02-09 | 2008-08-14 | Katsutoshi Kubo | Filter coefficient calculation device, filter coefficient calculation method, control program, computer-readable storage medium, and audio signal processing apparatus |
US20090319065A1 (en) * | 2008-06-19 | 2009-12-24 | Texas Instruments Incorporated | Efficient Asynchronous Sample Rate Conversion |
US20110145310A1 (en) * | 2008-07-29 | 2011-06-16 | France Telecom | Method for updating an encoder by filter interpolation |
CN101930736A (zh) * | 2009-06-24 | 2010-12-29 | 展讯通信(上海)有限公司 | 基于子带滤波框架的解码器的音频均衡方法 |
WO2011063361A1 (en) * | 2009-11-20 | 2011-05-26 | Maxlinear, Inc. | Integrated if saw filter in baseband digital design for analog tv (or hybrid) tuner |
US20110144934A1 (en) * | 2009-12-12 | 2011-06-16 | Can Bilgin | Method and arrangement for sampling rate conversion |
Non-Patent Citations (1)
Title |
---|
ANONYMOUS: ""Goertzel Filterbank to the Implementation of a Nonuniform DFT"", 《HTTPS://WWW.DSPRELATED.COM/SHOWCODE/49.PHP》 * |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109459612A (zh) * | 2019-01-09 | 2019-03-12 | 上海艾为电子技术股份有限公司 | 数字音频信号的采样频率的检测方法及装置 |
Also Published As
Publication number | Publication date |
---|---|
HK1222479A1 (zh) | 2017-06-30 |
HK1224121A1 (zh) | 2017-08-11 |
US9913032B2 (en) | 2018-03-06 |
EP2982134A1 (en) | 2016-02-10 |
EP2982134A4 (en) | 2016-11-23 |
US9628912B2 (en) | 2017-04-18 |
JP6510487B2 (ja) | 2019-05-08 |
US20160037252A1 (en) | 2016-02-04 |
JP2016518756A (ja) | 2016-06-23 |
CN105393554B (zh) | 2019-08-23 |
EP2979464A4 (en) | 2016-11-23 |
JP2016519482A (ja) | 2016-06-30 |
CN105393553B (zh) | 2019-07-09 |
JP6573869B2 (ja) | 2019-09-11 |
JP6553590B2 (ja) | 2019-07-31 |
CN105393456B (zh) | 2018-06-22 |
CN105393554A (zh) | 2016-03-09 |
EP2979360A1 (en) | 2016-02-03 |
WO2014153605A1 (en) | 2014-10-02 |
WO2014153609A1 (en) | 2014-10-02 |
CN105393553A (zh) | 2016-03-09 |
WO2014153606A1 (en) | 2014-10-02 |
US20160057536A1 (en) | 2016-02-25 |
WO2014153604A1 (en) | 2014-10-02 |
US9949029B2 (en) | 2018-04-17 |
JP2016518755A (ja) | 2016-06-23 |
EP2979360A4 (en) | 2017-03-29 |
WO2014153607A1 (en) | 2014-10-02 |
HK1224120A1 (zh) | 2017-08-11 |
US20160057535A1 (en) | 2016-02-25 |
EP2979464A1 (en) | 2016-02-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN105393456A (zh) | 虚拟采样率增加的音频滤波 | |
CN103262162B (zh) | 用于有理重采样器的心理声学滤波器设计 | |
CN101877237B (zh) | 降噪装置和噪声确定方法 | |
CN101241150B (zh) | 信号处理装置、方法以及信号生成方法 | |
CN106997767A (zh) | 基于人工智能的语音处理方法及装置 | |
JP2730860B2 (ja) | 音響信号の線形歪補償方法及びその装置 | |
CN106575508A (zh) | 音频信号的数字封装 | |
CN111970627A (zh) | 音频信号的增强方法、装置、存储介质和处理器 | |
JPS6051017A (ja) | アナログ信号の解析及び検索方法及び装置 | |
CN102543091A (zh) | 一种模拟音效的生成系统及方法 | |
US11488574B2 (en) | Method and system for implementing a modal processor | |
CN110992969B (zh) | 一种电子耳蜗的滤波器组配置方法及装置 | |
US10581408B2 (en) | Digital processing of audio signals utilizing cosine functions | |
US10536136B2 (en) | Modified digital filtering with sample zoning | |
US20170250676A1 (en) | Audio processing with modified convolution | |
WO2016179648A1 (en) | Controlling dynamic values in digital signals |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
REG | Reference to a national code |
Ref country code: HK Ref legal event code: DE Ref document number: 1222479 Country of ref document: HK |
|
GR01 | Patent grant | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20180622 Termination date: 20210326 |