CN105390540A - 一种基于GaN异质结材料的Fin-HEMT器件 - Google Patents

一种基于GaN异质结材料的Fin-HEMT器件 Download PDF

Info

Publication number
CN105390540A
CN105390540A CN201510688708.5A CN201510688708A CN105390540A CN 105390540 A CN105390540 A CN 105390540A CN 201510688708 A CN201510688708 A CN 201510688708A CN 105390540 A CN105390540 A CN 105390540A
Authority
CN
China
Prior art keywords
fin
gate
hemt device
grid
heterojunction material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201510688708.5A
Other languages
English (en)
Inventor
张鹏
宓珉翰
何云龙
张濛
马晓华
郝跃
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xidian University
Original Assignee
Xidian University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xidian University filed Critical Xidian University
Priority to CN201510688708.5A priority Critical patent/CN105390540A/zh
Publication of CN105390540A publication Critical patent/CN105390540A/zh
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/778Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/20Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds
    • H01L29/2003Nitride compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/20Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds
    • H01L29/201Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds including two or more compounds, e.g. alloys
    • H01L29/205Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds including two or more compounds, e.g. alloys in different semiconductor regions, e.g. heterojunctions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/401Multistep manufacturing processes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/423Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions not carrying the current to be rectified, amplified or switched
    • H01L29/42312Gate electrodes for field effect devices
    • H01L29/42316Gate electrodes for field effect devices for field-effect transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66431Unipolar field-effect transistors with a heterojunction interface channel or gate, e.g. HFET, HIGFET, SISFET, HJFET, HEMT

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • Junction Field-Effect Transistors (AREA)

Abstract

本发明提供了一种基于GaN异质结材料的Fin-HEMT器件,器件包括衬底、异质结材料、Fin结构,以及栅金属,所述异质结材料设置在衬底上表面,Fin结构包括多个平行且间隔设置的Fin,栅金属设置在Fin结构上表面且采用T型结构。本发明在Fin-HEMT器件中加入了T型栅结构,能够有效提高沿栅电流传导方向的栅金属截面积,同时由于电流主要在T型栅金属的上层传导,有效的降低了Fin-HEMT器件的实际栅金属长度,有效减小栅极分布寄生电阻,提高器件的微波性能。

Description

一种基于GaN异质结材料的Fin-HEMT器件
【技术领域】
本发明涉及一种半导体器件,特别涉及一种基于GaN异质结材料的Fin-HEMT器件。
【背景技术】
GaN基材料作为第三代半导体材料,由于其突出的材料特性,已成为现代国际上研究的热点。GaN材料特有的异质结极化效应以及GaN材料的高电子饱和速度,使得GaN基HEMT器件成为良好的微波功率器件。而随着无线通信市场的快速发展以及传统军事应用的持续发展,微波器件在人类生活及工作的许多方面扮演着重要的角色。
GaN基HEMT器件的常规结构如图1所示,包括衬底1’、衬底1’上自下而上依次为GaN缓冲层3’和势垒层5’,在所述势垒层5’上为源漏电极7’和栅电极9’,源漏电极为两个分别在栅电极的两侧,所述势垒层为AlGaN或其他化合物材料,在源漏电极和栅电极之间的势垒层上还有钝化层。所述GaN缓冲层和势垒层形成异质结结构,在该异质结结构上,由于压电极化和自发极化效应,会在势垒层和缓冲层的交接处,较靠近缓冲层的位置,形成一层带负电的二维电子气,由于能带的关系,二维电子气具有一定限域性。因此,当源漏电极存在电压差时,电子就会在该二维平面上根据电势方向移动,形成电流。同时,通过栅电极施加一定负电压,能够耗尽电子,获得器件的开关控制。
应用于微波功率放大器的GaN基HEMT器件,栅电极结构通常为T型,如图2所示,与势垒层接触的栅长较小,以保证具有较高的微波截止频率fT(或称电流截止频率),同时栅沿电流传导方向的截面积较大,以保证具有较小的栅极分布寄生电阻,从而提高最大振荡频率fMAX(或称增益截止频率)。而fMAX相较于fT更具有实际应用价值,更能够决定器件的实际最高工作频率。因此T型栅结构能获得均衡的fT和fMAX值,获得更好的器件的整体工作性能。
f m a x ≈ f t 2 ( R i + R s + R g ) / R d s + ( 2 πf T ) R g C g d - - - ( 1 )
f t = g m 2 πC g - - - ( 2 )
其中,Ri为本征沟道电阻,Rs为源极寄生电阻,Rg为栅极分布寄生电阻,Rds为漏极输出电阻,Cgd为栅极-漏极本征电容,gm为跨导,Cg为栅极本征电容。
为了进一步改善HEMT器件的性能,有人提出了一种新的HEMT结构,如图3所示。通过引入硅基CMOS中的Fin-FET概念,构建GaN基的Fin-HEMT器件。由于加入了Fin结构,并且在Fin的两侧有栅电极覆盖,能够得到更好的栅控效果。经过测试,采用Fin结构的HEMT器件,饱和输出电流提高了三倍,跨导提高了四倍,亚阈值特性得到显著改善,获得了更大的电流开关比,可以说各项参数均有大幅提高。因此,Fin-HEMT器件具有非常广阔的应用前景。
由于Fin-HEMT器件已证明了其饱和电流、跨导等关键特性大幅提高,因此如果将其应用于微波领域,必然会使器件的微波和功率性能有大幅的提升,体现在几个主要指标就是两个频率指标fT、fMAX和输出功率,输出功率如下式(4):
P o u t = 1 8 I D S S ( V B K - V k n e e ) - - - ( 4 )
其中,IDSS即为漏极饱和电流,Fin结构会减低膝点电压Vknee,同时不影响VBK,因此输出功率Pout增加了。同时,FinHEMT结构也能提高跨导gm,根据(1)(2)式,必然会提高fT、fMAX
但是,这种Fin-HEMT器件,器件栅宽只是等于Fin上表面的宽度×Fin个数,因此器件栅宽方向的实际栅金属长度远大于器件栅宽,设Fin深度为t,Fin间隙为w,Fin上表面宽度为Wg,个数为n,则对于同样器件栅宽、同样栅金属截面积的常规HEMT器件来说,Fin-HEMT器件的实际栅金属长度对于的器件栅宽的比例r为:
r = n × ( W g + 2 t + w ) n × W g = W g + 2 t + w W g - - - ( 5 )
相当于将Fin-HEMT器件的栅极分布寄生电阻增大了r倍,降低了器件的微波特性,见式(1)。因此,目前的Fin-HEMT器件,如果应用于微波功率放大器中,最主要的问题就是栅极分布寄生电阻Rg过大带来的器件性能下降。
鉴于以上技术问题,实有必要提供一种新的HEMT器件结构,应用于微波功率放大器中,不增加栅极分布寄生电阻Rg的情况下,提高HEMT器件的性能。
【发明内容】
本发明提供了一种基于GaN异质结材料的Fin-HEMT器件,采用T-gate结构同时结合Fin结构,以提高器件栅控能力,降低器件的栅极分布寄生电阻,提高HEMT器件的最大振荡频率fmax,进而提高器件的整体微波功率特性。
本发明采用以下技术方案:
一种基于GaN异质结材料的Fin-HEMT器件,在HEMT器件的异质结平面材料上通过光刻形成有平行且间隔设置的多个Fin,在该Fin上设置有T型结构的栅。
上述栅包括栅头和栅脚,所述栅脚的上表面为平面,下表面为梳齿形状,梳齿中的每个齿刚好填充在相邻Fin之间的空隙。
上述栅包括栅头和栅脚,所述栅脚的最大高度大于Fin结构的高度。
上述栅包括栅头和栅脚,所述栅脚的上表面高于Fin结构的上表面。
所述栅头为平板状结构,栅头的下表面接触栅脚的上表面。
所述栅设置在Fin结构的中心位置或者偏置放置。
与现有技术相比,本发明至少具有以下有益效果:在Fin-HEMT器件中加入本发明提出的T型栅结构,能够有效提高沿电流传导方向的栅截面积,同时栅脚的梳齿结构有效降低了Fin-HEMT器件的实际栅金属长度,缩短了电流在T型栅金属的传导距离,有效减小栅极分布寄生电阻,提高器件的微波性能。
【附图说明】
图1是GaNHEMT器件的常规结构示意图。
图2为应用于微波功率放大器的GaN基HEMT器件,其中,栅电极结构为T型。
图3是一种引入硅基CMOS中的Fin-FET概念的HEMT结构。
图4是本发明提出的基于GaN-HEMT器件结构图。
图5是本发明提出的基于GaN-HEMT器件俯视图。
图6是图5中C方向的示意图。
图7是图5中D方向的示意图。
图8是本发明器件的加工工艺流程图(从俯视图的角度)。
图9是本发明器件的加工工艺流程图(图6中A方向的剖视图)。
图10是本发明器件的加工工艺流程图(图6中B方向的剖视图)。
【具体实施方式】
请参阅图4至图6所示,本发明的一种基于GaN异质结材料的Fin-HEMT器件,采用T型栅结构结合Fin器件结构,具体包括衬底1、异质结结构3、形成在异质结结构上的Fin结构5、栅头73和栅脚71,其中,Fin结构5包括多个平行且间隔设置的Fin,栅脚71为梳齿结构,该结构上表面为平面,与栅头的下表面接触,栅脚下表面为梳齿形状,梳齿中的每个齿刚好填充在相邻Fin之间的空隙,所述栅脚71的高度大于Fin结构的高度,因此,栅脚的上表面高于Fin结构5的上表面;所述栅头为平板状结构,且栅头的下表面接触栅脚的上表面。栅头和栅脚共同构成T型结构的栅,栅设置在Fin结构的中心位置或者偏置放置。
设定Fin结构延伸的方向为X方向,栅头的延伸方向为Y方向(该方向为栅极电流传导方向),与X方向和Y方向均垂直的方向为Z方向,则X方向为宽度方向,Y方向为长度方向,Z方向为高度方向。栅头7的宽度大于栅脚5的宽度。从X方向的截面看,栅头和栅脚形成T型结构的栅电极。
本发明的工艺步骤如下:
步骤(1):在GaN异质结平面材料上,采用电子束光刻工艺形成Fin结构;
步骤(2):在步骤(1)得到的器件表面涂覆第一光刻胶,具体地说,在GaN异质结平面材料上涂覆第一光刻胶,使第一光刻胶填满相邻Fin之间的间隙直至第一光刻胶完全覆盖Fin结构的上表面;
步骤(3):在第一光刻胶的上表面涂覆第二光刻胶,保证第二光刻胶完全覆盖第一光刻胶;
步骤(4):在第二光刻胶的表面进行二次曝光,其中,第一次曝光的曝光剂量保证第一光刻胶和第二光刻胶同时发生反应,第二次曝光的曝光剂量保证仅上层的第二光刻胶发生反应而第一光刻胶不发生反应,且第一次曝光的曝光窗口区域包含于第一次曝光的曝光窗口区域之内;
步骤(5):在步骤(4)形成的器件表面沉积金属,在步骤(4)形成的窗口区域内沉积形成T型结构的栅金属;沉积金属采用电子束蒸发工艺;
步骤(6):采用剥离工艺将第一光刻胶、第二光刻胶,以及第二光刻胶表面多余的金属剥离掉,获得T型结构的栅金属。
本发明结构,首先在Fin-HEMT器件中加入了T型栅结构,能够有效提高沿栅电流传导方向的栅金属截面积,同时由于栅极电流主要在T型栅金属的上层传导,栅脚的梳齿结构有效的降低了Fin-HEMT器件的实际栅金属长度,缩短了电流在T型栅金属内的传导距离,有效减小栅极分布寄生电阻,提高器件的微波性能。

Claims (6)

1.一种基于GaN异质结材料的Fin-HEMT器件,其特征在于:在HEMT器件的异质结平面材料上通过光刻并刻蚀形成有平行且间隔设置的多个Fin,在该Fin上设置有T型结构并为梳齿状的栅。
2.根据权利要求1所述的一种基于GaN异质结材料的Fin-HEMT器件,其特征在于:上述栅包括栅头和栅脚,所述栅脚的上表面为平面,下表面为梳齿形状,梳齿中的每个齿刚好填充在相邻Fin之间的空隙。
3.根据权利要求1或2所述的一种基于GaN异质结材料的Fin-HEMT器件,其特征在于:上述栅包括栅头和栅脚,所述栅脚的最大高度大于Fin结构的高度。
4.根据权利要求1或2所述的一种基于GaN异质结材料的Fin-HEMT器件,其特征在于:上述栅包括栅头和栅脚,所述栅脚的上表面高于Fin结构的上表面。
5.根据权利要求1所述的一种基于GaN异质结材料的Fin-HEMT器件,其特征在于:所述栅头为平板状结构,栅头的下表面接触栅脚的上表面。
6.根据权利要求1至5中任意一项所述的一种基于GaN异质结材料的Fin-HEMT器件,其特征在于:所述栅设置在Fin结构的中心位置或者偏置放置。
CN201510688708.5A 2015-10-21 2015-10-21 一种基于GaN异质结材料的Fin-HEMT器件 Pending CN105390540A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201510688708.5A CN105390540A (zh) 2015-10-21 2015-10-21 一种基于GaN异质结材料的Fin-HEMT器件

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201510688708.5A CN105390540A (zh) 2015-10-21 2015-10-21 一种基于GaN异质结材料的Fin-HEMT器件

Publications (1)

Publication Number Publication Date
CN105390540A true CN105390540A (zh) 2016-03-09

Family

ID=55422625

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201510688708.5A Pending CN105390540A (zh) 2015-10-21 2015-10-21 一种基于GaN异质结材料的Fin-HEMT器件

Country Status (1)

Country Link
CN (1) CN105390540A (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190121523A (ko) * 2018-04-18 2019-10-28 경북대학교 산학협력단 반도체 소자 제조방법
CN111584619A (zh) * 2020-05-28 2020-08-25 浙江大学 GaN器件及制备方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140016360A1 (en) * 2012-07-10 2014-01-16 Fujitsu Limted Compound semiconductor device and method of manufacturing the same
CN104218082A (zh) * 2013-06-04 2014-12-17 中芯国际集成电路制造(上海)有限公司 高迁移率鳍型场效应晶体管及其制造方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140016360A1 (en) * 2012-07-10 2014-01-16 Fujitsu Limted Compound semiconductor device and method of manufacturing the same
CN104218082A (zh) * 2013-06-04 2014-12-17 中芯国际集成电路制造(上海)有限公司 高迁移率鳍型场效应晶体管及其制造方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
DONG SEUP LEE等: "Nanowire Channel InAlN/GaN HEMTs With High Linearity of gm and fT", 《IEEE ELECTRON DEVICE LETTERS》 *
YOUNG-WOO JO,等: "AlGaN/GaN FinFET With Extremely Broad", 《IEEE ELECTRON DEVICE LETTERS》 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190121523A (ko) * 2018-04-18 2019-10-28 경북대학교 산학협력단 반도체 소자 제조방법
KR102045321B1 (ko) * 2018-04-18 2019-11-15 경북대학교 산학협력단 반도체 소자 제조방법
CN111584619A (zh) * 2020-05-28 2020-08-25 浙江大学 GaN器件及制备方法

Similar Documents

Publication Publication Date Title
US9419121B1 (en) Semiconductor device with multiple carrier channels
US20150179782A1 (en) Field effect transistor
CN104051519A (zh) 器件、高电子迁移率晶体管及控制其工作的方法
CN100521236C (zh) 源漏双凹结构的金属半导体场效应晶体管
CN107464837B (zh) 一种超结功率器件
CN101232045A (zh) 一种场效应晶体管多层场板器件及其制作方法
CN111799322B (zh) 面向高频应用的双沟槽型SiC MOSFET结构及制造方法
CN110660851A (zh) 一种高压n沟道HEMT器件
CN110649096A (zh) 一种高压n沟道HEMT器件
CN115084232B (zh) 异质结横向双扩散场效应晶体管、制作方法、芯片及电路
CN110649097B (zh) 一种高压p沟道HFET器件
CN105390540A (zh) 一种基于GaN异质结材料的Fin-HEMT器件
CN110660843A (zh) 一种高压p沟道HEMT器件
US10854741B2 (en) Enhanced HFET
CN117253917A (zh) 一种通过表面陷阱屏蔽的GaN MIS HEMT及其制备方法
CN107170797B (zh) 基于漏场板的电流孔径异质结晶体管及其制作方法
US20210399121A1 (en) Novel approach to controlling linearity in n-polar gan mishemts
CN109817711B (zh) 具有AlGaN/GaN异质结的氮化镓横向晶体管及其制作方法
KR20220125032A (ko) Hemt 소자 및 이의 제조 방법
Noorbakhsh et al. Improved 4H–SiC MESFET with double source field plate structures
CN117174758B (zh) Sgt mosfet器件及制备方法
CN105789295A (zh) 一种基于GaN异质结材料的Fin-HEMT器件及其制备方法
TWI857772B (zh) 一種hemt器件
WO2024146457A1 (zh) 氮化镓器件及氮化镓器件的制作方法
CN115939216B (zh) 一种场效应晶体管及制备方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20160309

RJ01 Rejection of invention patent application after publication