CN105387098B - 液力减速器充液制动过程制动扭矩的控制方法 - Google Patents

液力减速器充液制动过程制动扭矩的控制方法 Download PDF

Info

Publication number
CN105387098B
CN105387098B CN201510894049.0A CN201510894049A CN105387098B CN 105387098 B CN105387098 B CN 105387098B CN 201510894049 A CN201510894049 A CN 201510894049A CN 105387098 B CN105387098 B CN 105387098B
Authority
CN
China
Prior art keywords
hydraulic retarder
braking torque
braking
hydraulic
oil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201510894049.0A
Other languages
English (en)
Other versions
CN105387098A (zh
Inventor
徐鸣
吕庆军
张志凯
李慧渊
秦绪情
望运虎
宋振川
卜树峰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
China North Vehicle Research Institute
Original Assignee
China North Vehicle Research Institute
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by China North Vehicle Research Institute filed Critical China North Vehicle Research Institute
Priority to CN201510894049.0A priority Critical patent/CN105387098B/zh
Publication of CN105387098A publication Critical patent/CN105387098A/zh
Application granted granted Critical
Publication of CN105387098B publication Critical patent/CN105387098B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Transmission Of Braking Force In Braking Systems (AREA)
  • Braking Arrangements (AREA)

Abstract

本发明提供了液力减速器充液制动过程制动扭矩的控制方法,属于液力减速器技术领域。该方法解决了液力减速器在充液制动过程中对制动扭矩精确控制的问题,为包括液力减速器的联合制动系统控制策略和液力减速器的控制结构设计提供支撑,本发明的控制方法,包括液力减速器的结构设计内容以及通过对该特定的液力减速器充液制动过程循环圆最高压力区压力的控制,进行制动扭矩控制的内容。该方法可实现液力减速器充液制动过程的扭矩控制,满足了液力减速器充液制动过程制动扭矩动态控制验证的急需。

Description

液力减速器充液制动过程制动扭矩的控制方法
技术领域
本发明属于液力减速器技术领域,具体涉及用于液力减速器充液制动过程制动扭矩特性的控制方法。
背景技术
1液力减速器的应用及发展
液力减速器是液力偶合器iTB=0的特殊形式,其循环圆由两种叶轮组成,旋转的叶轮称为动轮,固定不动的叶轮称为定轮。其工作原理是:工作时动轮随驱动轴转动,在充入液体时动轮将输入的机械能转变为液压能,使液流以高速冲向定轮叶片;定轮不转动,形成流体流动的阻力,以此产生制动转矩并将液压能全部转化成热能。液力减速器的制动力矩可由以下公式表示:Mk=γk·λ·n2·Da5,其中γk为由减速器的结构、充液率决定的力矩系数、λ为油液的重度、n为减速器动轮的转速、Da为减速器循环圆的直径。
液力减速器主要用于车辆辅助制动,是目前应用最广的车辆辅助制动器,通常装配于城市公交车、载重货车、高档汽车上,用于车辆长期、持续下长坡制动。上个世纪八十年代,国外先进国家在高档车辆上开发了以高速、大功率液力减速器作为辅助制动器与机械制动器联合实现恒制动力矩的技术,液力减速器在高速区(即>1/2Vmax)部分充液保持恒扭矩减速,承担车辆整个制动过程50%-75%的制动能量,达到提高车辆高速行驶的安全性及降低机械制动器损耗的目的。近年来,国内外相继开发具有更广泛适用性AT自动变速器,在高档轮式车辆上将自动变速技术与液力减速器部分充液技术相结合,实现了车辆自动巡航,进一步推动了轮式车辆的广泛应用和发展。液力减速器制动过程控制技术是以上两种先进技术应用的核心环节,近十几年我国一直开展相关技术仿研,但尚未形成自主化技术和产品。
2高速、大功率液力减速器制动过程控制技术的发展
我国从八十年代末开展高速、大扭矩液力减速器制动控制技术研究,国内针对液力减速器制动过程控制技术的研究文献初见于2001年《工程机械》第6期发表的论文“车辆传动中液力减速器的技术发展”,该文章引用的ZF公司LSG3000液力减速器与机械制动器组成的联合制动系统的液压原理图和制动力矩特性图,提出了“根据制动力矩控制减速器循环流量的大小”的问题,但未涉及控制的具体方法。此后,国内很多学者对液力减速器部分充液条件下的制动扭矩和流场特性进行了研究,通过仿真计算和试验方法研究说明了充液量与制动扭矩相关、工作腔压力与制动扭矩相关、流场的构成与制动扭矩相关,但始终未给出针对液力减速器部分充液制动过程控制的规律和方法。
2012年在国际期刊《Advanced Materials Research》上发表的论文“Research onConstant Torque Control System Design for Hydraulic Retarder of HeavyVehicle”,针对液力减速器部分充液制动过程中循环圆内部流动特性进行了分析,给出了同转速下制动扭矩与充液率的理论关系曲线、同一控制扭矩下转速与充液率关系曲线、制动扭矩与循环圆最高压力的理论关系曲线,提出了以循环圆最高压力替代充液率系数作为表征液力减速器扭矩特性控制参数的研究结论,并设计了液力减速器恒扭矩控制系统对该技术方法进行了台架试验验证。但该论文未没有给出液力减速器动扭矩与循环圆最高压力的具体和完整的关系,也并未公开液力减速器的制动扭矩动态控制方法所采用的液力减速器具体结构特征,因此对于具体的某一种液力减速器对制动扭矩的精确控制和完整控制,需要进一步研究确定。
发明内容
本发明解决的技术问题是,提供了液力减速器充液制动过程制动扭矩的控制方法,解决了控制输出某一特定扭矩的技术问题,以及液力减速器在充液制动过程中对制动扭矩精确控制的问题,为包含液力减速器的联合制动系统控制策略和液力减速器的控制结构设计提供支撑,本发明的控制方法,包括一种液力减速器的结构设计内容以及通过对该特定的液力减速器充液制动过程循环圆最高压力区压力的控制,从而控制制动扭矩的内容。其中包括,380 液力减速器循环圆结构、380液力减速器制动扭矩控制曲线。
本发明的技术方案是,液力减速器充液制动过程制动扭矩的控制方法,该方法包括以下内容:
S1:按照下述参数设计液力减速器:
液力减速器的有效直径设计为380mm,即从液力减速器动轮和液力减速器定轮的外边缘到液力减速器旋转轴的距离为190mm;坐标Z轴是液力减速器旋转轴,坐标R轴在液力减速器动轮和液力减速器定轮之间的对称面上且与坐标Z轴垂直;液力减速器动轮是径向截面为半圆面的圆环体,液力减速器定轮也是径向截面为半圆面的圆环体,两个半圆面的半径相等;液力减速器动轮和液力减速器定轮圆环体的端面各距R轴1mm,在液力减速器动轮圆环体的端面和液力减速器定轮圆环体的端面之间形成了2mm宽的空隙;液力减速器动轮、液力减速器定轮和空隙共同组成循环圆内腔,循环圆其它参数如表1:
表1
S2:确定液力减速器循环圆最高压力区油压与制动扭矩的关系曲线:
步骤1中所述的液力减速器,循环圆最高压力区油压与制动扭矩对应的数据表2为:
表2
将上述数据表中的数据连接为圆滑的曲线,即得到液力减速器循环圆最高压力区油压与制动扭矩的关系曲线;
S3:液力减速器连接控制装置:
控制装置主要包括液力减速器进油控制阀、出油控制阀;步骤S1中所述的液力减速器的进油端连接进油控制阀、出油端连接出油控制阀;在液力减速器充液制动过程中,进油控制阀完全打开,出油控制阀为压力控制阀:能够根据出油控制阀的压力调节,使循环圆最大压力区压力为确定的压力;
S4:确定目标制动扭矩,选择该制动扭矩需要的目标转速;
S5:根据液力减速器循环圆最高压力区油压与制动扭矩的关系曲线,确定制动扭矩下对应的各个循环圆最高压力区油压。
S6:按照步骤S4中的目标制动扭矩对应的转速值作为液力减速器的转速值,按照步骤 S5中得到的目标制动扭对应的液力减速器循环圆最高压力区油压,分别调节液力减速器的转速值、液力减速器循环圆最高压力区油压,得到需要的制动扭矩。
本发明的有益效果在于:
本发明以液力减速器的扭矩控制目标,提出了充液制动过程中循环圆最高压力区压力与制动扭矩关系曲线,可实现液力减速器充液制动过程的扭矩控制,满足了液力减速器充液制动过程制动扭矩动态控制验证的急需,为包含液力减速器的联合制动系统控制策略和控制结构设计提供技术支撑。
本发明的380液力减速器和上述数据结合的所产生的特有的技术效果是,可用于指导380 减速器基型充液制动过程,包括恒扭矩控制、恒转速控制、恒功率控制中对于某一工况点的制动扭矩进行控制和调整。
附图说明
图1为本发明的一种液力减速器部分充液制动过程制动扭矩动态控制方法中的380液力减速器循环圆结构图(轴侧图);
图2为本发明的一种液力减速器部分充液制动过程制动扭矩动态控制方法中的380液力减速器充液制动扭矩控制曲线,即为液力减速器循环圆最高压力区油压与制动扭矩的关系曲线。
其中,1-液力减速器动轮、2-液力减速器定轮
具体实施方式
下面对本发明的一种液力减速器部分充液制动过程制动扭矩动态控制方法进一步详细的描述:
S1:按照下述参数设计液力减速器:
如图1所示,380液力减速器循环圆结构图(轴侧图)包括:液力减速器动轮1、液力减速器定轮2、坐标R轴、坐标Z轴。
液力减速器的有效直径设计为380mm,即从液力减速器动轮和液力减速器定轮的外边缘到液力减速器旋转轴的距离为190mm。
坐标Z轴是液力减速器旋转轴,坐标R轴在液力减速器动轮1和液力减速器定轮2之间的对称面上且与坐标Z轴垂直。液力减速器动轮1是径向截面为半圆面的圆环体,液力减速器定轮2也是径向截面为半圆面的圆环体,两个半圆面的半径相等;液力减速器动轮1和液力减速器定轮2圆环体的端面各各距R轴1mm,在液力减速器动轮1圆环体的端面和液力减速器定轮2圆环体的端面之间形成了2mm宽的空隙;液力减速器动轮1、液力减速器定轮2 和空隙共同组成循环圆内腔。循环圆其它主要参数如下:
表1 380液力减速器循环圆主要参数
结构参数 动轮 定轮
径向截面形状 半圆形 半圆形
叶片数目(个) 20 24
叶片厚度(mm) 6 7
叶片角度(。) 39 39
S2:确定液力减速器循环圆最高压力区油压与制动扭矩的关系曲线:
如图2所示,本发明一种液力减速器部分充液制动过程制动扭矩动态控制方法中的步骤 1中的380液力减速器部分充液制动扭矩控制曲线图包括:P(MPa)表示循环圆内部最大压力,M(kNm)表示扭矩。
步骤1中所述的液力减速器的循环圆最高压力区油压(循环圆压力)与制动扭矩对应的数据表,见表2所示:
表2扭矩与循环圆压力对应关系
将上述数据表连接为圆滑的曲线,即得到液力减速器循环圆最高压力区油压与制动扭矩的关系曲线。
S3:液力减速器连接控制装置:
控制装置主要包括液力减速器进油控制阀、出油控制阀,用于控制液力减速器循环圆最高压力区压力;在液力减速器充液制动过程中,进油控制阀完全打开,出油控制阀同时调节循环圆最大压力区压力,使循环圆最大压力区压力为确定的压力。出油控制阀为采用现有压力控制阀,循环圆最大压力区压力根据现有的压力控制阀的调节,得到其确定的压力。例如可以采用实用 新型专利ZL200920064470.9中的控制阀。
S4:确定目标制动扭矩,选择该制动扭矩需要的目标转速;
上述选择方法可以根据表3中的转速和扭矩范围的对应关系;
表3转速对应循环圆压力和扭矩调整范围
目标制动扭矩为A1、A2、A3、A4、A5,获得需要的目标转速分别为C1、C2、C3、C4、 C5,如下表4所示,
表4
转速(r/min) C1 C2 C3 C4 C5
制动扭矩(kNm) A1 A2 A3 A4 A5
S5:根据液力减速器循环圆最高压力区油压与制动扭矩的关系曲线,确定表2中的一定的转速、制动扭矩下对应的各个循环圆压力;各个循环圆压力分别为B1,B2,B3,B4,B5,参见下表5所示:
表5
转速(r/min) C1 C2 C3 C4 C5
制动扭矩(kNm) A1 A2 A3 A4 A5
循环圆压力(Mpa) B1 B2 B3 B4 B5
S6:按照步骤S4中的目标制动扭矩对应的转速值作为液力减速器的转速值,按照步骤S5中得到的目标制动扭矩对应的液力减速器循环圆压力值,分别调节液力减速器的转速值和控制液力减速器循环圆压力,即得到需要的制动扭矩。
实例如下:
1)提出380液力减速器部分充液制动过程需要的制动扭矩,标在对应转速下,即将结果写入在表6中A1-A5位置;
2)根据控制扭矩,查询图2,获得各转速下对应扭矩下的循环圆压力,并将结果写入在表6中B1-B5位置;
3)控制装置按表6B1-B5位置数据确定制动过程各转速点下的循环圆压力,即可实现制动过程扭矩制动。
表6转速-循环圆压力关系表

Claims (1)

1.液力减速器充液制动过程制动扭矩的控制方法,其特征在于,该方法包括以下内容:
S1:按照下述参数设计液力减速器:
液力减速器的有效直径设计为380mm,即从液力减速器动轮和液力减速器定轮的外边缘到液力减速器旋转轴的距离为190mm;坐标Z轴是液力减速器旋转轴,坐标R轴在液力减速器动轮和液力减速器定轮之间的对称面上且与坐标Z轴垂直;液力减速器动轮是径向截面为半圆面的圆环体,液力减速器定轮也是径向截面为半圆面的圆环体,两个半圆面的半径相等;液力减速器动轮和液力减速器定轮圆环体的端面各距R轴1mm,在液力减速器动轮圆环体的端面和液力减速器定轮圆环体的端面之间形成了2mm宽的空隙;液力减速器动轮、液力减速器定轮和空隙共同组成循环圆内腔,循环圆其它参数如表1:
表1
结构参数 动轮 定轮 叶片数目(个) 20 24 叶片厚度(mm) 6 7 叶片角度(°) 39 39
S2:确定液力减速器循环圆最高压力区油压与制动扭矩的关系曲线:
步骤1中所述的液力减速器,循环圆最高压力区油压与制动扭矩对应的数据表2为:
表2
将上述数据表中的数据连接为圆滑的曲线,即得到液力减速器循环圆最高压力区油压与制动扭矩的关系曲线;
S3:液力减速器连接控制装置:
控制装置主要包括液力减速器进油控制阀、出油控制阀;步骤S1中所述的液力减速器的进油端连接进油控制阀、出油端连接出油控制阀;在液力减速器充液制动过程中,进油控制阀完全打开,出油控制阀为压力控制阀:能够根据出油控制阀的压力调节,使循环圆最大压力区压力为确定的压力;
S4:确定目标制动扭矩,选择该制动扭矩需要的目标转速;
上述选择方法可以根据下表中的转速和扭矩范围的对应关系;
转速(r/min) 扭矩范围(kNm) 200 0~0.349 300 0~0.865 400 0~1.609 500 0~2.609 600 0~3.870 700 0~5.347 800 0~7.096 900 0~9.096 1000 0~11.325 1100 0~13.783 1200 0~16.507 1300 0~19.290 1400 0~22.479 1500~3800 0~27.412
S5:根据液力减速器循环圆最高压力区油压与制动扭矩的关系曲线,确定制动扭矩下对应的各个循环圆最高压力区油压;
S6:按照步骤S4中的目标制动扭矩对应的转速值作为液力减速器的目标转速值,按照步骤S5中得到的目标制动扭矩对应的液力减速器循环圆最高压力区油压,分别调节液力减速器的转速值、液力减速器循环圆最高压力区油压,得到需要的制动扭矩。
CN201510894049.0A 2015-12-07 2015-12-07 液力减速器充液制动过程制动扭矩的控制方法 Active CN105387098B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201510894049.0A CN105387098B (zh) 2015-12-07 2015-12-07 液力减速器充液制动过程制动扭矩的控制方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201510894049.0A CN105387098B (zh) 2015-12-07 2015-12-07 液力减速器充液制动过程制动扭矩的控制方法

Publications (2)

Publication Number Publication Date
CN105387098A CN105387098A (zh) 2016-03-09
CN105387098B true CN105387098B (zh) 2017-12-12

Family

ID=55419707

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201510894049.0A Active CN105387098B (zh) 2015-12-07 2015-12-07 液力减速器充液制动过程制动扭矩的控制方法

Country Status (1)

Country Link
CN (1) CN105387098B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110394593B (zh) * 2019-06-14 2021-02-19 中国北方车辆研究所 一种液力减速器扭矩系数提升方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SE519995C2 (sv) * 2001-09-05 2003-05-06 Scania Cv Ab Arrangemang vid en tillsatsbroms i ett motorfordon
SE0202889D0 (sv) * 2002-10-01 2002-10-01 Volvo Lastvagnar Ab Mätanordning för en hydraulisk retarder i ett motorfordon
JP3565439B2 (ja) * 2002-12-12 2004-09-15 株式会社小松製作所 動力伝達装置の油圧リターダ装置
CN203023351U (zh) * 2013-01-25 2013-06-26 徐显营 液力缓速器的定子和转子结构
CN103185085A (zh) * 2013-04-01 2013-07-03 西安双特智能传动有限公司 一种液力缓速器
CN104191975B (zh) * 2014-08-29 2016-07-13 桂林电子科技大学 液力缓速器恒速档位的控制方法

Also Published As

Publication number Publication date
CN105387098A (zh) 2016-03-09

Similar Documents

Publication Publication Date Title
CN104879349B (zh) 用于能量回收和利用的液压系统及工程机械车辆
CN105387098B (zh) 液力减速器充液制动过程制动扭矩的控制方法
CN105889485A (zh) 一种自动变速器静态换挡中的中断换挡响应的控制方法
CN103273843A (zh) 自走式收获机液压分时四驱驱动系统
CN208149301U (zh) 一种集成液压辅助气制动装置的驱动桥
CN104358852B (zh) 一种轴流式导叶可调液力变矩器及导叶调节方法
CN109185449B (zh) 一种金属带式无级变速器目标速比变化率计算方法
CN108184353A (zh) 一种静液压驱动的水田工作装置通用底盘
CN204200993U (zh) 一种轴流式导叶可调液力变矩器
CN112032296B (zh) 自动变速器的主油压控制方法
CN202011389U (zh) 一种叉车制动系统
WO2009077021A8 (de) Hydrodynamische maschine, insbesondere hydrodynamischer retarder
CN204647073U (zh) 一种液力缓速器油液循环系统
CN204266285U (zh) 基于双马达和液压蓄能器的挖掘机的节能型转台驱动系统
CN106468338A (zh) 变矩器温度自动控制系统
CN204560277U (zh) 一种用于农业机械的行走速度控制系统
CN206000968U (zh) 一种变速箱用外壳
CN206297406U (zh) 一种低速大扭矩输出的平地机行驶液压驱动装置
CN107351827A (zh) 一种静液压驱动车辆行走制动系统
CN107237787A (zh) 一种采用闭式液压驱动系统的烟草收获机
CN106545649B (zh) 一种整车滑行控制方法及系统
CN207106477U (zh) 一种静液压驱动车辆行走制动系统
CN202144431U (zh) 一种可不受负载大小影响的液压千斤顶负载缓释油泵回路
CN205173389U (zh) 摩擦式变矩器
CN107339196A (zh) 一种风力发电机智能刹车系统

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant