CN105384916A - 含噻吩基单核钌配合物电聚合薄膜的制备方法和光电化学性质 - Google Patents

含噻吩基单核钌配合物电聚合薄膜的制备方法和光电化学性质 Download PDF

Info

Publication number
CN105384916A
CN105384916A CN201510641584.5A CN201510641584A CN105384916A CN 105384916 A CN105384916 A CN 105384916A CN 201510641584 A CN201510641584 A CN 201510641584A CN 105384916 A CN105384916 A CN 105384916A
Authority
CN
China
Prior art keywords
membrane
film
thienyl
ruthenium complexe
bias voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201510641584.5A
Other languages
English (en)
Other versions
CN105384916B (zh
Inventor
王克志
杨薇
薛龙新
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beijing Normal University
Original Assignee
Beijing Normal University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beijing Normal University filed Critical Beijing Normal University
Priority to CN201510641584.5A priority Critical patent/CN105384916B/zh
Publication of CN105384916A publication Critical patent/CN105384916A/zh
Application granted granted Critical
Publication of CN105384916B publication Critical patent/CN105384916B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G61/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G61/12Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule
    • C08G61/122Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides
    • C08G61/123Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides derived from five-membered heterocyclic compounds
    • C08G61/126Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides derived from five-membered heterocyclic compounds with a five-membered ring containing one sulfur atom in the ring
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/10Organic polymers or oligomers
    • H10K85/111Organic polymers or oligomers comprising aromatic, heteroaromatic, or aryl chains, e.g. polyaniline, polyphenylene or polyphenylene vinylene
    • H10K85/113Heteroaromatic compounds comprising sulfur or selene, e.g. polythiophene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/30Monomer units or repeat units incorporating structural elements in the main chain
    • C08G2261/32Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain
    • C08G2261/322Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain non-condensed
    • C08G2261/3229Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain non-condensed containing nitrogen and sulfur as heteroatoms
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/90Applications
    • C08G2261/92TFT applications

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Hybrid Cells (AREA)

Abstract

本发明公开了一种含噻吩基单核钌配合物的电聚合薄膜的制备方法及其电化学和光电化学的性质,采用简单的电化学的方法使单核钌配合物在ITO电极上形成聚合物薄膜,对薄膜的电化学的性质测试显示,该聚合物聚合20圈薄膜在水溶液中具有很好的稳定性,对薄膜进行的光电性能测试结果显示,在负偏压部分,所加偏压越负,该薄膜的光电流越大,当偏压为0V时也表现出了相当大的光电流,随着偏压继续增加,光电流的变化幅度明显小于在负偏压时的光电流大小,表现出了很好的整流性质。因此,本发明中的含噻吩基的单核钌配合物电聚合薄膜在能量转换领域有着广泛的应用前景。

Description

含噻吩基单核钌配合物电聚合薄膜的制备方法和光电化学性质
技术领域
本发明属于电化学领域,涉及含噻吩基单核钌配合物电聚合薄膜的制备方法及其电化学和光电化学性质。
背景技术
近几年,聚合物薄膜由于其制备方法简单,性能较单体优越,因此引起了研究者们的研究兴趣。在光电器件中,具有高效的光吸收、电荷分离和电荷转移运输功能的材料极为重要[A.Facchetti,π-Conjugatedpolymersfororganicelectronicsandphotovoltaiccellapplications,Chem.Mater.,2011,23,733-758]。然而,一些纯有机聚合物由于其不可逆的还原过程,导致了聚合材料电化学的不稳定性和电荷传输受阻[C.Groves,J.C.Blakesley,N.C.Greenham,Effectofchargetrappingongeminaterecombinationandpolymersolarcellperformance,NanoLett.,2010,10,1063-1069.]。而一些金属具有很好的可逆的氧化还原性质,因此包含这些金属元素的聚合物是一种新型的、有研究价值的功能材料[A.S.Abd-El-Aziz,S.S.Dalgakiran,L.Bichler,Novelsynthesisandelectropolymerizationofmetallo-conjugatedthiophenederivatives,EuropeanPolymerJournal.,2012,48,1901-1913]。而且含有过渡金属的聚合物材料通常具有氧化还原性、磁性、或者催化性能[W.W.Yeung,Luminescentorganometallicpoly(aryleneethynylene)s:functionalpropertiestowardsimplicationsinmolecularoptoelectronics,DaltonTrans.,2007,40,4495-4510.]。
Friebe等用电聚合的方法合成了含有2,6-二喹啉-8-吡啶钌(II)聚噻吩化合物,研究了不同比例的钌(II)-噻吩对其在电化学、导电率及其光学性能方面的影响。研究发现,随着钌(II)比率的增加,聚合物的可逆开关控制的导电率增大,可达到10-5S/cm[C.Friebe,M.Jager,U.S.Schubert,Emittingelectrodecoatingswithredox-switchableconductivity:incorporationofruthenium(II)-2,6-di(quinolin-8-yl)pyridinecomplexesintopolythiophenebyelectropolymerization,RSCAdv.,2013,3,11686-11690]。因此,含有噻吩基单核钌配合物的聚合薄膜具有很广泛的应用前景。
发明内容
本发明的目的是在铟-锡氧化物(ITO)导电玻璃上通过电化学的方法制备薄膜,该薄膜的稳定性较好,且形成的薄膜具有较大的光电响应及整流性质。
本发明的技术方案如下:
本发明所提供的含噻吩基单核钌配合物电聚合薄膜,是将钌配合物溶于0.1M四丁基六氟合磷酸铵的CH2Cl2溶液中,通过电化学的方法将钌配合物沉积到工作电极表面,通过扫描不同的圈数聚合形成具有不同厚度的聚合薄膜,所述单核钌配合物的由阳离子部分和阴离子(抗衡离子)部分组成,其中阳离子部分为[Ru(bpy)2L]2+,阴离子部分为无机盐阴离子ClO4 -,配体L的结构如下式所示:
具体地,单核钌配合物的分子式为[Ru(bpy)2L](ClO4)2,结构如下式所示:
上述单核钌配合物蒸发膜电极的制备方法,包括:将钌配合物溶于0.1M四丁基六氟合磷酸铵的二氯甲烷溶液中,钌配合物的浓度为1mM,以ITO导电玻璃为工作电极,铂电极为对电极,银丝为参比电极,向溶液中通15分钟N2,结束之后,以扫速为50mV/s,分别扫10圈,20圈,30圈,40圈,50圈,即得到聚合不同圈数的薄膜。
本发明还提供上述单核钌配合物聚合薄膜的电化学及光电化学性质。
与现有技术相比,本发明的有益效果在于:
本发明采用简单的电化学聚合的方法使含有噻吩基的单核钌配合物聚合到ITO片上,形成不同聚合圈数的薄膜,并测定薄膜的电化学性质(电化学稳定性及电子转移速率常数)和光电化学性质(光电流大小及光电转换效率),在聚合不同圈数的薄膜中发现聚合20圈的薄膜最稳定,聚合薄膜在0.1M硫酸钠水溶液中扫描50圈后,峰电流衰减不到20%。其光电流具有整流的性质。因此,本发明中的钌配合物聚合薄膜在能量转换领域具有广泛的应用前景。
附图说明
图1配合物[Ru(bpy)2L](ClO4)2溶液的电聚合循环伏安,ITO为工作电极,铂电极为对电极,银丝为参比电极,扫速为50mV/s(1-20圈)。
图2配合物[Ru(bpy)2L](ClO4)2电聚合20圈所得聚合薄膜的扫描50圈后循环伏安
图3配合物[Ru(bpy)2L](ClO4)2电聚合20圈所得聚合薄膜的在0.1M的Na2SO4溶液中随扫速变化的循环伏安,饱和甘汞电极(SCE)为参比电极,铂电极为对电极;内插为电子转移速率常数的点
图4配合物[Ru(bpy)2L](ClO4)2电聚合20圈所得聚合薄膜光电流与电极所加偏压的关系,偏压为-0.3V~+0.1V(a),+0.2V~+0.9V(b);光源为100mW/cm2的白光,电极面积为0.28cm2,0.1M的Na2SO4为支持电解质。
图5配合物[Ru(bpy)2L](ClO4)2电聚合20圈所得聚合薄膜在偏压为-0.2V时的单色光光电转化效率-波长(IPCE)曲线。
具体实施方式
下面通过实施例对本发明进一步说明。
实施例一、配体L的制备
配体L的合成路线如下所示:
化合物1按照文献[Z.H.Peng,A.R.Gharavi,L.P.Yu,Synthesisandcharacterizationofphotorefractivepolymerscontainingtransitionmetalcomplexesasphotosensitizer,J.Am.Chem.Soc.,1997,119(20),4622-4632.]方法制备。
将化合物1(0.33g,0.72mmol)与噻吩甲醛(0.188g,1.68mmol)溶于10ml四氢呋喃中,在氮气氛围,剧烈搅拌下把10ml的t-BuOK(0.18g)悬浊液缓慢滴加到上述溶液中,此时溶液由浅黄色变为暗红色,上层液面发蓝光。滴加完毕继续室温搅拌12h,体系变成亮黄色。反应完毕,把反应体系倒入300ml的二氯甲烷中,用水洗涤三次,硫酸钠干燥后除去二氯甲烷得粗产物,用二氯甲烷重结晶得亮黄色固体(0.24g,89.6%)。
氢核磁共振谱(δH,ppm,500MHz,CDCl3):d=8.77(s,2H;h),8.52(s,2H;f),7.98(d,J=7.8Hz,2H;a),7.41(d,J=16.12Hz,2H;d),7.29(d,J=5.08Hz,2H;g),7.17(d,J=3.4Hz,2H;c),7.05(t,J=8.64Hz,2H;b),6.97(d,J=16.12Hz,2H;e).
实施例二、钌配合物[Ru(bpy)2L](ClO4)2的制备
钌配合物[Ru(bpy)2L](ClO4)2的合成路线如下所示:
Ru(bpy)2Cl2按照文献[Z.Q.Ji,S.D.Huang,A.R.Guadalupe.,Synthesis,X-raystructures,spectroscopicandelectrochemicalpropertiesofruthenium(II)complexescontaining2,2’-bipyrimidine.Inorg.Chim.Acta,2000,305,127-134.]方法制备。
将50mg(0.19mmol)配体L溶于6mlDMF中,之后向其中加入10ml乙醇以及88mg(0.23mmol)Ru(bpy)2Cl2,N2保护下加热回流20小时,冷却到室温后,抽滤,除去没有反应的配体,将滤液中的乙醇旋出后,向其中加入高氯酸钠的水溶液,抽滤收集沉淀,将沉淀真空干燥后向其中加入少量的乙腈溶解,之后过氧化铝柱子,展开剂为二氯甲烷∶甲醇=50∶1,收集浅黄色色谱带,将溶剂旋干后,向其中加入少量乙腈溶解,之后在乙醚中扩散重结晶,抽滤收集沉淀,得到紫红色固体53mg,产率为40.0%。
氢核磁共振谱(δH,ppm,500MHz,DMSO-d6):8.81(m,6H),8,46(dd,J=1.7Hz,7.0Hz,2H),8.2(m,4H),7.82(d,J=5.1Hz,2H),7.72(m,4H),7.66(s,1H),7.61(s,1H),7.56(m,6H),7.27(d,J=3.2Hz,2H),7.10(dd,J=3.6Hz,1.4Hz,2H),6.81(s,1H),6.77(s,1H)。
快原子轰击质谱(MALDI-TOFMSinCH3CN):计算值:m/z(100%)=393.06([(M-2ClO4 -)]2+),881.5([M-ClO4 -]+)。实验值:m/z(100%)=392.9([(M-2ClO4 -)]2+),884.3([M-ClO4 -]+)。
元素分析:C42H32Cl2N6O8RuS2·1.5H2O(F.W=1011.87)计算值:C:49.85,H:3.49,N:8.31;测量值:C:49.82,H:3.59,N:8.27。
实施例三、钌配合物电聚合薄膜的制备
1.清洗铟-锡氧化物(ITO)导电玻璃。将ITO玻璃切成1.5cm×5cm的小块。依次用洗涤剂,一次水超声清洗各三次,每次超声5分钟,最后用浓氨水∶双氧水∶一次水=1∶1∶5(v∶v∶v)的混合溶液中70℃下保持半小时。取出后再用一次水超声清洗,最后用洗耳球吹干放入小瓶中,干燥备用。
2.将钌配合物溶于0.1M四丁基六氟合磷酸铵的二氯甲烷溶液中,钌配合物的浓度为1mM,以ITO为工作电极,铂电极为对电极,银丝为参比电极,向溶液中通入N2,通15min,结束之后,以扫速为50mV/s,分别扫描不同的圈数,即得到聚合不同圈数的薄膜,以聚合20圈的薄膜为例(见图1)。
实施例四、电聚合薄膜的电化学及光电化学性质
(一)电化学测试
在CHI-601电化学工作站中进行电化学测试,采用三电极体系,饱和甘汞电极为参比电极,铂丝为对电极,电聚合薄膜为工作电极。支持电解液为0.1M硫酸钠溶液。因为电聚合薄膜为表面控制的氧化还原过程,所以电子转移速率常数ks及转移因子α根据Laviron理论[E.Laviron,Generalexpressionofthelinearpotentialsweepvoltammograminthecaseofdiffusionlesselectrochemicalsystems,J.Electroanal.Chem.,1979,101,19.]通过ΔE(ΔE=Ep-E0′,E0′是氧化或还原峰的峰电位)与扫速(v)的log值作求得。
根据Laviron理论,ks及α可以由公式1及2求得,
α 1 - α = v a v c - - - ( 1 )
k s = nFαv c R T = ( 1 - α ) nFαv a R T - - - ( 2 )
F是法拉第常数,n为氧化还原过程中转移的电子数,va及vc是分别为氧化峰数据及还原峰数据直线拟合后在X轴上的截距,此公式适合用于ΔE>200mV的数据。
(二)光电化学性质
光源为500W超高压球形氙灯高亮度光源系统(北京畅拓科技有限公司);在CHI-601电化学工作站上测定电聚合薄膜的光电流-诱导时间曲线(I-t曲线),支持电解液为0.1M硫酸钠溶液,改变所加偏压,测不同偏压下的电聚合薄膜的光电流-诱导时间曲线(I-t曲线)。
单核钌配合物聚合薄膜的单色光转换效率IPCE通过公式3计算得出:
I P C E % = 1240 I ( μ A / cm 2 ) λ ( n m ) P i n c ( W / m 2 ) - - - ( 3 )
I为光电流密度的大小,Pinc是特定波长下入射光的强度。
通过测定电聚合20圈电聚合薄膜在电解质溶液中扫描50圈的循环伏安曲线(见图2),可以看出该薄膜在水溶液中比较稳定。
通过测定不同扫速下的电聚合薄膜的循环伏安曲线,可以测定该薄膜的电子转移速率常数(见图3),通过计算,20圈电聚合薄膜的电子转移速率常数为25s-1
通过测不同偏压下的电聚合薄膜的光电流-诱导时间曲线(见图4),发现所加的偏压越负,该电聚合薄膜的光电流越强,当偏压达到0V以上时,随着偏压的增加,薄膜的光电流增加的幅度远远小于在负偏压时的幅度大小,表现出了很好的整流性质。
通过测定在偏压为-0.2时电聚合20圈薄膜在不同波长单色光下的IPCE值(见图5),求得光电转换效率为0.12%。

Claims (4)

1.一种含噻吩基单核钌配合物电聚合薄膜,是通过电化学方法将含噻吩基钌配合物聚合到ITO导电玻璃上后得到的聚合薄膜。所述单核钌配合物由阳离子部分和阴离子部分组成,其中,阳离子部分为[Ru(bpy)2L]2+,阴离子部分为无机盐阴离子,配体L的结构如下式所示:
2.如权利要求1所述的单核钌配合物的聚合薄膜,其特征在于,所述单核钌配合物的分子式为[Ru(bpy)2L](ClO4)2,结构如下式所示:
3.权利要求1~2所述的单核钌配合物电聚合薄膜的制备方法,包括:以导电电极如ITO为工作电极的三电极的溶有配合物溶液的电化学槽中,循环伏安扫描不同圈数即可得到不同厚度的聚合物薄膜。
4.权利要求1~3所述的单核钌配合物薄膜在光电转换领域中的应用。
CN201510641584.5A 2015-10-08 2015-10-08 含噻吩基单核钌配合物电聚合薄膜的制备方法和光电化学性质 Expired - Fee Related CN105384916B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201510641584.5A CN105384916B (zh) 2015-10-08 2015-10-08 含噻吩基单核钌配合物电聚合薄膜的制备方法和光电化学性质

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201510641584.5A CN105384916B (zh) 2015-10-08 2015-10-08 含噻吩基单核钌配合物电聚合薄膜的制备方法和光电化学性质

Publications (2)

Publication Number Publication Date
CN105384916A true CN105384916A (zh) 2016-03-09
CN105384916B CN105384916B (zh) 2017-09-22

Family

ID=55417728

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201510641584.5A Expired - Fee Related CN105384916B (zh) 2015-10-08 2015-10-08 含噻吩基单核钌配合物电聚合薄膜的制备方法和光电化学性质

Country Status (1)

Country Link
CN (1) CN105384916B (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108676149A (zh) * 2018-03-30 2018-10-19 北京师范大学 一种钌配合物薄膜的高效电化学聚合制备和应用
CN110294855A (zh) * 2019-07-09 2019-10-01 北京师范大学 基于噻吩功能化的钌(ⅱ)配合物3d电聚合薄膜
CN110400910A (zh) * 2018-04-24 2019-11-01 北京工商大学 一种杂多配合物/钌配合物电聚合薄膜的制备及其光电性能
CN113278158A (zh) * 2021-05-21 2021-08-20 苏州大学 含氟金属聚合物及其制备方法和应用

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101358127A (zh) * 2008-09-23 2009-02-04 吉林大学 磷光金属类配合物及电化学沉积制备的有机电致磷光器件
CN101379140A (zh) * 2006-02-08 2009-03-04 岛根县 光敏染料

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101379140A (zh) * 2006-02-08 2009-03-04 岛根县 光敏染料
CN101358127A (zh) * 2008-09-23 2009-02-04 吉林大学 磷光金属类配合物及电化学沉积制备的有机电致磷光器件

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
XIE P H, ET AL.: "Spectroscopic and electrochemical properties of ruthenium (II) polypyridyl complexes.", 《JOURNAL OF THE CHEMICAL SOCIETY》 *
ZHENG Z B, ET AL.: "Off–on–off pH luminescence switching and DNA binding properties of a free terpyridine-appended ruthenium complex.", 《JOURNAL OF INORGANIC BIOCHEMISTRY》 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108676149A (zh) * 2018-03-30 2018-10-19 北京师范大学 一种钌配合物薄膜的高效电化学聚合制备和应用
CN110400910A (zh) * 2018-04-24 2019-11-01 北京工商大学 一种杂多配合物/钌配合物电聚合薄膜的制备及其光电性能
CN110294855A (zh) * 2019-07-09 2019-10-01 北京师范大学 基于噻吩功能化的钌(ⅱ)配合物3d电聚合薄膜
CN113278158A (zh) * 2021-05-21 2021-08-20 苏州大学 含氟金属聚合物及其制备方法和应用
CN113278158B (zh) * 2021-05-21 2022-05-17 苏州大学 含氟金属聚合物及其制备方法和应用

Also Published As

Publication number Publication date
CN105384916B (zh) 2017-09-22

Similar Documents

Publication Publication Date Title
Pitarch-Tena et al. Impedance spectroscopy measurements in perovskite solar cells: device stability and noise reduction
Correa-Baena et al. Changes from bulk to surface recombination mechanisms between pristine and cycled perovskite solar cells
Qin et al. A Novel Oligomer as a Hole Transporting Material for Efficient Perovskite Solar Cells.
Zeng et al. Efficient dye-sensitized solar cells with an organic photosensitizer featuring orderly conjugated ethylenedioxythiophene and dithienosilole blocks
Gao et al. Enhance the optical absorptivity of nanocrystalline TiO2 film with high molar extinction coefficient ruthenium sensitizers for high performance dye-sensitized solar cells
Xiao et al. Pulse potentiostatic electropolymerization of high performance PEDOT counter electrodes for Pt-free dye-sensitized solar cells
Qin et al. Preparation and characterization of polyaniline film on stainless steel by electrochemical polymerization as a counter electrode of DSSC
Hsu et al. A liquid junction photoelectrochemical solar cell based on p-type MeNH3PbI3 perovskite with 1.05 V open-circuit photovoltage
Zhang et al. Efficient solid-state dye sensitized solar cells: the influence of dye molecular structures for the in-situ photoelectrochemically polymerized PEDOT as hole transporting material
Gopinath et al. Novel anisotropic ordered polymeric materials based on metallopolymer precursors as dye sensitized solar cells
Wang et al. Solidification of liquid electrolyte with imidazole polymers for quasi-solid-state dye-sensitized solar cells
CN105384916A (zh) 含噻吩基单核钌配合物电聚合薄膜的制备方法和光电化学性质
JPS63500105A (ja) 導電性高分子
Chi et al. Rubbery copolymer electrolytes containing polymerized ionic liquid for dye-sensitized solar cells
Yue et al. Enhanced performance of flexible dye-sensitized solar cell based on nickel sulfide/polyaniline/titanium counter electrode
Li et al. Design of an organic redox mediator and optimization of an organic counter electrode for efficient transparent bifacial dye-sensitized solar cells
CN105368443A (zh) 一种含有氧氮自由基基团的三苯胺衍生物聚合物作为电致变色材料的应用
Tao et al. Gel electrolyte materials formed from a series of novel low molecular mass organogelators for stable quasi-solid-state dye-sensitized solar cells
Gomathi et al. Construction of Ni doped MoO3 nanostructures and their application as counter electrode in dye-sensitized solar cells
Cheng et al. Hierarchical forest-like photoelectrodes with ZnO nanoleaves on a metal dendrite array
Al Katrib et al. Optimizing perovskite solar cell architecture in multistep routes including electrodeposition
CN108676149A (zh) 一种钌配合物薄膜的高效电化学聚合制备和应用
Long et al. Probing dye-correlated interplay of energetics and kinetics in mesoscopic titania solar cells with 4-tert-butylpyridine
Sun et al. Influence of 4-N, N-dimethylaminopyridine on the photovoltaic performance of dye-sensitized solar cells with poly (ethyleneoxide)/oligo (ethylene glycol) blend electrolytes
CN104086754B (zh) 一种聚双噻吩吡咯及其制备方法及利用其制备的聚双噻吩吡咯/阵列式TiO2纳米管

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20170922

Termination date: 20201008