CN105375006B - 一锅原位固相法制备锂‑硒电池正极材料SeSx/NCPAN - Google Patents

一锅原位固相法制备锂‑硒电池正极材料SeSx/NCPAN Download PDF

Info

Publication number
CN105375006B
CN105375006B CN201510713231.1A CN201510713231A CN105375006B CN 105375006 B CN105375006 B CN 105375006B CN 201510713231 A CN201510713231 A CN 201510713231A CN 105375006 B CN105375006 B CN 105375006B
Authority
CN
China
Prior art keywords
ses
ncpan
positive electrode
pan
quartz ampoule
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201510713231.1A
Other languages
English (en)
Other versions
CN105375006A (zh
Inventor
李晨星
迟洋
郭胜平
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yangzhou University
Original Assignee
Yangzhou University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yangzhou University filed Critical Yangzhou University
Priority to CN201510713231.1A priority Critical patent/CN105375006B/zh
Publication of CN105375006A publication Critical patent/CN105375006A/zh
Application granted granted Critical
Publication of CN105375006B publication Critical patent/CN105375006B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/581Chalcogenides or intercalation compounds thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/60Selection of substances as active materials, active masses, active liquids of organic compounds
    • H01M4/602Polymers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Composite Materials (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

本发明公开了一种一锅原位固相法制备SeSx/NCPAN复合材料的方法,称取一定质量配比的Se,S和PAN,混合后研磨均匀,压片;将所得的压片真空密封于石英管中,将石英管放入马弗炉中加热反应即目标产物SeSx/NCPAN。通过SEM表征发现本发明制备的SeSx/CPAN复合材料具有多孔网络状,这种多孔网络状结构可以有效缓冲电池在充放电过程中的体积膨胀,是一种很有潜力的锂离子电池正极材料。本发明的操作步骤简单,设备要求简单,制备周期短,为原位制备Se/C,S/C或SeSx/C复合电极材料提供了新思路。

Description

一锅原位固相法制备锂-硒电池正极材料SeSx/NCPAN
技术领域
本发明属于能源存储领域,特别是一种多孔网络状SeSx/NCPAN(含氮碳化聚丙烯腈)锂离子电池正极材料的制备方法。
背景技术
目前锂离子电池的能量密度在很大程度上受限于正极材料,已经商业化的锂钴氧化物材料由于容量不够高等原因已经无法满足现代社会对锂离子电池的进一步要求。由于硫拥有 1672mAh/g的高理论容量,被考虑作为新一代的高能锂离子电池的正极材料,制备各种形态的S用作锂电池的正极材料是当前开发动力锂电池的主攻方向,已有大量的文献报道相关方面的工作。然而硫的导电性差限制了其应用。而作为S的同族元素,Se具有与S相似的化学性质。在电化学性质方面,Se的体积容量为3253Ah/L,接近于S的3467Ah/L,但Se的电导率远高于S,因此,研究Se材料用作Li-Se电池的正极材料在近几年正成为一个新的研究热点。此外,PAN(聚丙烯腈)基碳纤维的结构类似于石墨,所以我们可以合成一种兼具三种材料优点的新型复合正极材料。文献报道PAN在300℃会与硫反应形成稳定的导电杂环化合物,从而限制硫元素并稳定多硫化合物。而当热处理温度升高到600℃时,PAN碳化后得到的含N碳环会起到限制硫化锂产物的作用,进一步提高循环稳定性和电导性。因此,结合 S与Se各自的优点,制备SeSx/NCPAN复合正极材料是一项非常有意义的工作。目前,已有一些研究团队开始这方面的研究工作。
在Se电极材料的制备方法上,文献常采用液相方法来制备,且常用Se原料和各种形式的碳材料或碳材料的前驱体来制备。这些方法虽然在Se材料均匀分布在碳材料上比较有利,但步骤多,操作复杂且Se与C的结合并不紧密。结合当前Li-Se电池的研究现状,我们开发出一种新颖的一锅原位固相制备方法来制备SeSx/NCPAN复合正极材料。该方法简单,快捷,在设备的要求上更接近于工业化应用的需求。
发明内容
本发明的目的在于提出一种一锅原位固相法制备SeSx/NCPAN复合材料的方法,该方法简单,快捷,在设备的要求上更接近于工业化应用的需求,设备要求简单。
本发明提供的技术方案是:
一锅原位固相法制备锂-硒电池正极材料SeSx/NCPAN(NCPAN:含氮碳化聚丙烯腈),包含如下步骤:
(1)称取一定质量配比的Se,S和PAN(聚丙烯腈),混合后研磨均匀,压片;
(2)将步骤(1)中所得的压片真空密封于石英管中,随后将石英管放入马弗炉中加热反应,反应温度500–650度,反应时间50–70小时,反应结束后即得目标产物SeSx/NCPAN。
其中,硒、硫的投料摩尔比为1:3–3:1。
其中,硒、硫的总质量与PAN的质量比在1:2和2:1之间。
其中,步骤(2)中采用氢氧焰和真空系统将样品真空密封于石英管中。
其中,步骤(2)中的热处理程序温和,缓慢升温,在加热过程中设置多个保温时间段。
本发明工艺的优点是:操作步骤简单,设备要求简单,制备周期短,且本发明为原位制备Se/C,S/C或SeSx/C复合电极材料提供了新思路。
获得的SeSx/NCPAN为无定型,结构均一,PAN热处理后形成了大的含N的碳网络基体, SeSx颗粒均匀分布在碳网络孔隙或表面上。整个SeSx/NCPAN复合材料疏松的网络结构,有利于较大的缓解电池充放电过程中的体积膨胀问题,进而提高电池的循环稳定性,同时也可以大大加强电极材料与电解液的浸润程度,提高电池容量。
所述Se/S/PAN原料混合后需使用玛瑙研钵研磨10min或以上,以确保三种反应原料充分混合均匀,同时使得颗粒状PAN原料研磨至足够细。研磨均匀后将样品压成片,使得Se、 S与PAN,以及Se与S的接触更致密,有助于Se与S,以及SeSx与NCPAN的结合,促进固相反应更彻底。
所述硒单质和硫单质的投料摩尔比为1:3–3:1,在此摩尔比下,硒与硫在热处理温度下能够安全地进行固相反应,形成硒硫化合物。超过这个范围,石英管在反应过程中会爆炸(注:该爆炸对马弗炉没有伤害,对操作人员更没有危险)。
所述Se和S的总质量与PAN质量比为1:2和2:1,此配比有利于PAN有足够的量在高温退火后形成含N的碳网络结构,保证更多更均一的疏松孔道结构,同时又不至于降低活性材料的质量。通过一系列实验条件摸索,PAN量过多或过少都不利于形成网络结构。
所述使用真空系统对待反应样品进行真空封管处理,是为了确保反应在无水无氧的高真空环境下进行,相对惰性气氛保护更加有效,更能避免S或Se在高温下的逸出,从而得不到目标产物。
所述马弗炉热处理程序足够温和,缓慢升温,并在反应温度500–650℃时停留较长时间, 主要考虑点在于原料升华硫在高温下易升华引发炸管现象,导致反应失败或造成硫元素的大量损失。而反应温度确定为500–650℃是因为PAN在该温度范围内发生碳化,得到的含N碳环会起到限制硫化锂产物的作用,进一步提高循环稳定性和电导性。
附图说明
图1和图2分别为采用本发明方法一锅原位固相方法得到产物的SEM图。
图3为本发明实施例1产物SeS0.1/NCPAN和NCPN的XRD对比图。
图4为本发明实施例1产物SeS0.1/NCPAN的EDS分析。
图5和图6分别为SeS0.1/NCPAN用作锂硒电池正极材料的充放电测试数据。
具体实施方式
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合实施例对本发明进行详细地说明。
实施例1
称取总质量0.5g且Se/S摩尔比为1:1的Se单质、S单质。称取0.5g PAN,充分研磨至较细粉末。将称量好的Se/S加入研磨好的PAN粉末中,研磨至混合均匀。使用压片机将反应原料压片,随后进行真空封管处理。将封好管的样品依次编码并放入马弗炉中,设置好热处理程序,运行程序。待固相反应结束后打开石英管挑出产物,研磨好备用。
实施例2
称取总质量0.5g且Se/S摩尔比为1:1的Se单质、S单质。称取0.3g PAN,充分研磨至较细粉末。将称量好的Se/S加入研磨好的PAN粉末中,研磨至混合均匀。使用压片机将反应原料压片,进行真空封管处理。将封好管的样品依次编码并放入马弗炉中,设置好热处理程序,运行程序。待固相反应结束后打开石英管挑出产物,研磨好备用。
二、产物特性:
图1是采用本发明方法对应实施例1中固相反应产物的SEM图。PAN碳化后形成含N的碳网络结构,SeS0.1较为均匀的分布在碳基体表面和填充在碳网络孔隙中。
图2是采用本发明方法对应实施例2中固相反应产物的SEM图。PAN碳化后形成含N的碳网络结构,SeS0.1较为均匀的分布在碳基体表面和填充在碳网络间隙中,由于PAN含量减小,含氮的碳网络基体孔径明显减小,分布范围变窄。
图3是实施例1固相反应后产物的XRD图。反应得到的SeS0.1/CPAN复合物为无定型,且与CPAN的XRD图基本一致,说明硒硫化合物是均匀的分布在CPAN的基体上,从而使复合物整体呈现出含N碳基体的晶型,即无定型。
图4是EDS分析。通过不同元素面分布的分析可知SeS0.1较均一的分布在了含氮的碳网络基体表面及孔隙间,与上述SEM分析结果一致。
图5和图6分别是SeS0.1/NCPAN用作锂硒电池正极材料时的电化学数据。可以看出,通过本发明方法合成的3-D网络结构复合材料SeS0.1/NCPAN,当其用作锂硒电池正极材料时,在0.05C电流密度下具有高达1387mAh/g的初始放电比容量,且首次充电比容量达到954mAh/g。该电池第二次、第三次放电比容量分别高达918mAh/g和861mAh/g,高于理论容量679mAh/g,并且在50个循环后达到414mAh/g,100个循环仍然保有276mAh/g的较高比容量。
以上所述,仅是本发明的较佳实施例,并非对本发明作任何形式上的限制,任何熟悉本专业的技术人员,在不脱离本发明技术方案范围内,依据本发明的技术实质,对以上实施例所作的任何简单的修改、等同替换与改进等,均仍属于本发明技术方案的保护范围之内。

Claims (3)

1.多孔网络状SeS x /NCPAN锂-硒电池正极材料的制备方法,其特征在于:包含如下步骤:
(1)称取一定质量配比的Se,S和PAN,混合后研磨均匀,压片;
(2)将步骤(1)中所得的压片真空密封于石英管中,随后将石英管放入马弗炉中加热反应,反应温度500–650度,反应时间50–70小时,反应结束后即得目标产物SeS x /NCPAN;
步骤(1)中混合后使用玛瑙研钵研磨10 min或以上;
步骤(2)中采用氢氧焰和真空系统将样品真空密封于石英管中;步骤(2)中的热处理程序温和,缓慢升温,在加热过程中设置多个保温时间段。
2.如权利要求1所述的多孔网络状SeS x /NCPAN锂-硒电池正极材料的制备方法,其特征在于:硒、硫的投料摩尔比为1:3–3:1。
3.如权利要求1所述的多孔网络状SeS x /NCPAN锂-硒电池正极材料的制备方法,其特征在于:硒、硫的总质量与PAN的质量比在1:2和2:1之间。
CN201510713231.1A 2015-10-28 2015-10-28 一锅原位固相法制备锂‑硒电池正极材料SeSx/NCPAN Expired - Fee Related CN105375006B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201510713231.1A CN105375006B (zh) 2015-10-28 2015-10-28 一锅原位固相法制备锂‑硒电池正极材料SeSx/NCPAN

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201510713231.1A CN105375006B (zh) 2015-10-28 2015-10-28 一锅原位固相法制备锂‑硒电池正极材料SeSx/NCPAN

Publications (2)

Publication Number Publication Date
CN105375006A CN105375006A (zh) 2016-03-02
CN105375006B true CN105375006B (zh) 2018-03-13

Family

ID=55376975

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201510713231.1A Expired - Fee Related CN105375006B (zh) 2015-10-28 2015-10-28 一锅原位固相法制备锂‑硒电池正极材料SeSx/NCPAN

Country Status (1)

Country Link
CN (1) CN105375006B (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108539196B (zh) * 2018-05-15 2020-12-29 华中科技大学 一种高性能硫基复合正极材料及其制备方法
CN109755519A (zh) * 2018-12-29 2019-05-14 湖南中科星城石墨有限公司 一种以延展性碳材料包覆的锂电池阳极材料及其制备方法
CN115084509A (zh) * 2022-06-27 2022-09-20 山东大学 钾离子电池用硒硫化铟/碳负极材料的制备方法及应用

Also Published As

Publication number Publication date
CN105375006A (zh) 2016-03-02

Similar Documents

Publication Publication Date Title
Wang et al. High-conductivity argyrodite Li6PS5Cl solid electrolytes prepared via optimized sintering processes for all-solid-state lithium–sulfur batteries
Xu et al. Structure distortion induced monoclinic nickel hexacyanoferrate as high‐performance cathode for Na‐ion batteries
Jiang et al. Prussian blue@ C composite as an ultrahigh‐rate and long‐life sodium‐ion battery cathode
Okada et al. Fluoride phosphate Li2CoPO4F as a high-voltage cathode in Li-ion batteries
Pei et al. Understanding the phase transitions in spinel-layered-rock salt system: Criterion for the rational design of LLO/spinel nanocomposites
Zhang et al. One-step in situ preparation of polymeric selenium sulfide composite as a cathode material for enhanced sodium/potassium storage
CN105514356A (zh) 一种用于钠电池的复合负极材料及其制备方法
CN103972510B (zh) 一种锂二次电池用硫化聚丙烯腈正极材料的制备方法
CN105845974A (zh) 一种钠离子电池正极材料NaFePO4/C的制备方法
CN103730638A (zh) 一种氮掺杂碳材料的制备方法
CN105460917A (zh) 一种具有分级结构的氮掺杂碳纳米管及制备方法
CN105633483A (zh) 一种钠离子电池负极用SnSe/Graphene复合电极材料的制备方法
CN105375006B (zh) 一锅原位固相法制备锂‑硒电池正极材料SeSx/NCPAN
CN105680024A (zh) 锂离子电池负极材料FeS/CPAN的制备方法
CN106129375A (zh) 一种复合锂盐改性电极材料的方法
Zhang et al. Se-decorated SnO2/rGO composite spheres and their sodium storage performances
Sottmann et al. Playing with the redox potentials in ludwigite oxyborates: Fe3BO5 and Cu2MBO5 (M= Fe, Mn, and Cr)
CN105938905B (zh) 一种富氮掺杂改性多孔碳材料的制备方法
Sun et al. Hierarchical porous and sandwich-like sulfur-doped carbon nanosheets as high-performance anodes for sodium-ion batteries
Zhang et al. Four‐in‐one strategy to boost the performance of Nax [Ni, Mn] O2
JP2019532891A (ja) Liti2(ps4)3のイオン伝導率を焼結により増大させる方法
Wu et al. Molybdenum carbide nanoparticles encapsulated in N-doped carbon nanotubes as a sulfur host for advanced Li-S battery
Shirota et al. Molybdenum polysulfide electrode with high capacity for all-solid-state sodium battery
Lv et al. Enhanced Air and Electrochemical Stability of Li7P2. 9Ge0. 05S10. 75O0. 1 Electrolytes with High Ionic Conductivity for Thiophosphate-Based All-Solid-State Batteries
Zhang et al. Influence Mechanism of Precursor Crystallinity on Electrochemical Performance of LiFePO4/C Cathode Material

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20180313