CN105347382A - 一种花环状氧化铜纳米材料的制备方法 - Google Patents

一种花环状氧化铜纳米材料的制备方法 Download PDF

Info

Publication number
CN105347382A
CN105347382A CN201510908151.1A CN201510908151A CN105347382A CN 105347382 A CN105347382 A CN 105347382A CN 201510908151 A CN201510908151 A CN 201510908151A CN 105347382 A CN105347382 A CN 105347382A
Authority
CN
China
Prior art keywords
solution
copper oxide
garland
preparation
drying
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201510908151.1A
Other languages
English (en)
Other versions
CN105347382B (zh
Inventor
吉佳文
刘宗明
李金凯
段广彬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Jinan
Original Assignee
University of Jinan
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Jinan filed Critical University of Jinan
Priority to CN201510908151.1A priority Critical patent/CN105347382B/zh
Publication of CN105347382A publication Critical patent/CN105347382A/zh
Application granted granted Critical
Publication of CN105347382B publication Critical patent/CN105347382B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G3/00Compounds of copper
    • C01G3/02Oxides; Hydroxides
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/72Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/03Particle morphology depicted by an image obtained by SEM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/20Particle morphology extending in two dimensions, e.g. plate-like
    • C01P2004/24Nanoplates, i.e. plate-like particles with a thickness from 1-100 nanometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/30Particle morphology extending in three dimensions
    • C01P2004/45Aggregated particles or particles with an intergrown morphology

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Catalysts (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

本发明公开了一种花环状氧化铜纳米材料的制备方法,主要包括如下步骤:采用缓慢滴加工业氨水作为沉淀剂的方式来调节乙酸铜、聚乙烯吡咯烷酮所组成混合溶液的PH值,当达到某一值后停止滴加,将调节PH值后的混合溶液搅拌均匀,然后,将上述混合溶液转移至水热反应釜中在一定温度下加热一定时间,对所得沉淀物进行离心、洗涤、干燥即可得到花环状氧化铜纳米颗粒。本发明原料简单,成本低,工艺设备要求较低,制备过程中不会引入大量杂质元素,降低了环境污染程度,提高了产物的纯净度,所制备的花环状纳米氧化铜粒度较小且较为均匀,片状纳米颗粒厚度在20~60nm,在新型半导体材料、特殊催化等领域具有较高的应用价值。

Description

一种花环状氧化铜纳米材料的制备方法
技术领域
本发明属于纳米材料制备技术领域,涉及一种花环状氧化铜纳米材料的制备方法。
背景技术
纳米金属氧化物作为新型半导体材料在近些年来得到人们越来越多的关注。由于纳米金属氧化物颗粒的粒径极小、比表面积非常大,因而在声学、光学、电学、磁学、热力学等性能方面表现出了其特有的新的小尺寸效应,使得纳米金属氧化物成为功能化元件发展的基础,同时也促使了其在光学、电子学、传感器、特殊催化、染料敏化太阳能电池等重要领域的发展应用。
氧化铜是一种具有较窄能带间隙的p型半导体材料,其能带间隙大约在1.3eV,并且具有广泛的应用前景,比如:高温超导体,紫外照射条件下作为催化剂降解甲基蓝,将含有一氧碳的氮氧化物分解为氮气和二氧化碳,烯烃环氧化反应,高氯酸铵热分解,作为氨、酒精、一氧化碳和二氧化氮的传感材料以及作为锂离子电池的阳极材料。
目前,制备氧化铜纳米材料的方法有很多,大体可以分为三类:固相法、液相法和纯化学法,研究者们已通过各种制备方法制备出了多种形貌与结构的纳米氧化铜,包括氧化铜纳米颗粒、纳米棒、纳米管和纳米线等。但是,这些制备方法中往往都会引入大量的杂质元素,有时甚至产生有害副产品,使其制造成本提高、纯度降低以及环境污染等问题。
因此,目前特别需要可以制备出氧化铜纳米材料的一种新方法,以降低其生产成本,提高其纯度,减少对环境带来的污染问题。
发明内容
本发明的目的在于提供一种制备花环状氧化铜纳米颗粒的方法。该方法不需要任何催化剂,方法简单可行,采用水热合成法制备出了花环状氧化铜纳米颗粒,花环由若干个片状氧化铜纳米颗粒组成,纳米颗粒的厚度为20~60nm。
本发明的花环状氧化铜纳米颗粒的制备方法包括以下步骤:
(1)以醋酸铜(Cu(CH3COO)2·H2O)作为铜源,称取所需质量倒入烧杯中,配制成0.01mol/L的乙酸铜水溶液,然后加入适量的聚乙烯吡咯烷酮(PVP),在磁力搅拌器上搅拌均匀直至醋酸铜晶体完全溶解,得到铜的前驱体;
(2)将配置好的氨水溶液缓慢滴加到盛有铜前驱体的烧杯中,铜的前驱体溶液由浅蓝色逐渐变成紫色,并伴有稍许浑浊出现,采用PH电极测定混合后溶液的PH值,直至达到一定的酸碱度后,停止滴加氨水溶液。混合溶液放在磁力搅拌器上继续搅拌,直到混合溶液中的浑浊消失;
(3)将上述配置好的混合溶液倒入含有聚四氟乙烯内衬的反应釜中,把反应釜放入预先加热到所需反应温度的加热烘箱中进行加热,并保温一定的时间后,取出反应釜,在室温条件下冷却,当冷却到室温时将反应釜中的溶液及沉淀物倒出。将倒出的溶液进行离心,得到胶凝态物质,然后分别用去离子水和酒精超声清洗几次,再进行离心得到纯净的胶凝态纳米氧化铜,放入干燥烘箱中在一定温度下进行烘干,得到黑色氧化铜纳米颗粒。
附图说明
图1为采用本发明方法制备的花环状氧化铜纳米颗粒的扫描电子显微镜(SEM)图。
图2为一个花环状形貌氧化铜纳米颗粒的扫描电子显微镜(SEM)图。
图3为组成花环状纳米氧化铜的若干个片状纳米氧化铜颗粒扫描电子显微镜(SEM)图。
图4为采用本发明方法制备的氧化铜纳米颗粒的X射线衍射(XRD)图。
具体实施方式
以下对本发明的原理和特征进行描述,所举实例只用于解释本发明,并非用于限定本发明的范围。
一种花环状氧化铜纳米颗粒的制备方法,实施例1
(1)量取50ml的去离子水倒入盛有0.5mmol乙酸铜的烧杯中,放在磁力搅拌器上搅拌,直至乙酸铜完全溶解形成0.01mol/L的乙酸铜水溶液;
(2)称取0.125g聚乙烯吡咯烷酮倒入盛有乙酸铜水溶液的烧杯,放在磁力搅拌器上继续搅拌直至聚乙烯吡咯烷酮完全溶解形成A溶液;
(3)继续搅拌A溶液,将工业氨水缓慢逐滴加入到A溶液的同时随时用PH计检测溶液的酸碱度,直至A溶液PH值达到10.5停止滴加氨水,可以看到溶液逐渐由浅蓝色变成紫色,并伴有少许浑浊沉淀出现,继续搅拌,直到溶液完全澄清形成B溶液;
(4)将B溶液倒入内衬为100ml的聚四氟乙烯高压反应釜中进行水热反应,控制反应温度为90℃,反应时间12h后取出室温自然冷却,得到反应后的C溶液;
(5)将C溶液离心后分别用去离子水和无水乙醇清洗3~4次,然后放入干燥烘箱内,控制烘箱内温度为80℃,干燥时间5小时取出室温自然冷却,即得到一种花环状氧化铜纳米颗粒。
一种花环状氧化铜纳米颗粒的制备方法,实施例2:
(1)量取100ml的去离子水倒入盛有1mmol乙酸铜的烧杯中,放在磁力搅拌器上搅拌,直至乙酸铜完全溶解形成0.01mol/L的乙酸铜水溶液;
(2)称取0.25g聚乙烯吡咯烷酮倒入盛有乙酸铜水溶液的烧杯,放在磁力搅拌器上继续搅拌直至聚乙烯吡咯烷酮完全溶解形成A溶液;
(3)继续搅拌A溶液,将工业氨水缓慢逐滴加入到A溶液的同时随时用PH计检测溶液的酸碱度,直至A溶液PH值达到10.5停止滴加氨水,可以看到溶液逐渐由浅蓝色变成紫色,并伴有少许浑浊沉淀出现,继续搅拌,直到溶液完全澄清形成B溶液;
(4)将B溶液倒入内衬为200ml的聚四氟乙烯高压反应釜中进行水热反应,控制反应温度为90℃,反应时间12h后取出室温自然冷却,得到反应后的C溶液;
(5)将C溶液离心后分别用去离子水和无水乙醇清洗3~4次,然后放入干燥烘箱内,控制烘箱内温度为80℃,干燥时间5小时取出室温自然冷却,即得到一种花环状氧化铜纳米颗粒。
以上所述内容仅为本发明的最佳实施方案,并不是用以限制本发明,凡在本发明的基本原理及操作步骤之内所作的任何的修改、改进等,均应包含在本发明的保护范围之内。

Claims (7)

1.一种花环状纳米氧化铜材料的制备方法,其特征是包括以下步骤:
(1)采用乙酸铜作为铜源配制成合适浓度的乙酸铜水溶液;
(2)称取适量的聚乙烯吡咯烷酮作为表面活性剂加入到预先配制好的乙酸铜水溶液,放在磁力搅拌器上搅拌均匀形成A溶液;
(3)量取适量工业氨水作为沉淀剂缓慢的滴加到A溶液中,直到溶液达到一定的PH值后停止滴加,搅拌均匀后形成B溶液;
(4)将B溶液倒入大小适中的带有聚四氟乙烯内衬的反应釜中,然后将反应釜放入预先加热到所需反应温度的干燥烘箱内加热并保温一段时间;
(5)待一段时间以后,将反应釜取出,室温自然冷却,然后将内衬里的反应液倒出并进行离心得到胶凝态物质,用去离子水和酒精分别对离心产物清洗3~4次得到纯净物质C;
(6)将得到的C物质放入到预先加热到一定温度的干燥烘箱内干燥,一定时间后取出室温自然冷却,即得到纯净的花环状氧化铜纳米颗粒。
2.根据权利要求1所述的制备方法,其特征在于:步骤(1)中,配置的乙酸铜水溶液的浓度为0.01~0.1mol/L,优选为0.01mol/L。
3.根据权利要求1所述的制备方法,其特征在于:步骤(2)中,乙酸铜水溶液中聚乙烯吡咯烷酮的加入量为每一百毫升溶液加入0.2~0.3g,优选为0.25g。
4.根据权利要求1所述的制备方法,其特征在于:步骤(3)中,氨水的滴加量为溶液PH值达到10~11,优选为PH=10.5。
5.根据权利要求1所述的制备方法,其特征在于:步骤(4)中,B溶液的反应温度应控制在80~100℃,反应时间在8~15h,优选反应温度为90℃,反应时间为15h。
6.根据权利要求1所述的制备方法,其特征在于:步骤(6)中,C物质的干燥温度为60~90℃,干燥时间为3~6h,优选的干燥温度为80℃,干燥时间为5h。
7.根据权利要求1~6所述的制备方法,其特征是:所得花环状纳米氧化铜是由若干个片状氧化铜纳米颗粒组成,片状氧化铜纳米颗粒的厚度为20~60nm。
CN201510908151.1A 2015-12-10 2015-12-10 一种花环状氧化铜纳米材料的制备方法 Expired - Fee Related CN105347382B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201510908151.1A CN105347382B (zh) 2015-12-10 2015-12-10 一种花环状氧化铜纳米材料的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201510908151.1A CN105347382B (zh) 2015-12-10 2015-12-10 一种花环状氧化铜纳米材料的制备方法

Publications (2)

Publication Number Publication Date
CN105347382A true CN105347382A (zh) 2016-02-24
CN105347382B CN105347382B (zh) 2017-06-23

Family

ID=55323480

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201510908151.1A Expired - Fee Related CN105347382B (zh) 2015-12-10 2015-12-10 一种花环状氧化铜纳米材料的制备方法

Country Status (1)

Country Link
CN (1) CN105347382B (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109110797A (zh) * 2018-09-20 2019-01-01 西安凯立新材料股份有限公司 一种扇形多层级氧化铜粉末的制备方法
WO2022099455A1 (zh) * 2020-11-10 2022-05-19 南通市台盈新材料科技有限公司 一种CuO/腐植酸复合材料的制备方法
CN115650278A (zh) * 2022-10-26 2023-01-31 杭州豪腾科技有限公司 一种纳米氢氧化铜及其制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101332999A (zh) * 2008-07-30 2008-12-31 江南大学 一种水相软模板法制备粒径可控Cu2O或CuO中空亚微球的方法
CN101696027A (zh) * 2009-10-27 2010-04-21 中南民族大学 立方体氧化铜纳米粒子及其合成方法和用途
CN102641736A (zh) * 2012-03-19 2012-08-22 中国科学院过程工程研究所 一种海胆状氧化铜催化剂、其制备方法及其用途
CN104692446A (zh) * 2015-03-18 2015-06-10 合肥工业大学 一种高纯低氯高活性氧化铜的制备方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101332999A (zh) * 2008-07-30 2008-12-31 江南大学 一种水相软模板法制备粒径可控Cu2O或CuO中空亚微球的方法
CN101696027A (zh) * 2009-10-27 2010-04-21 中南民族大学 立方体氧化铜纳米粒子及其合成方法和用途
CN102641736A (zh) * 2012-03-19 2012-08-22 中国科学院过程工程研究所 一种海胆状氧化铜催化剂、其制备方法及其用途
CN104692446A (zh) * 2015-03-18 2015-06-10 合肥工业大学 一种高纯低氯高活性氧化铜的制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
SAMBANDAM ANANDAN ET AL.: ""Sonochemical synthesis of CuO nanostructures with different morphology"", 《ULTRASONICS SONOCHEMISTRY》 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109110797A (zh) * 2018-09-20 2019-01-01 西安凯立新材料股份有限公司 一种扇形多层级氧化铜粉末的制备方法
CN109110797B (zh) * 2018-09-20 2020-09-01 西安凯立新材料股份有限公司 一种扇形多层级氧化铜粉末的制备方法
WO2022099455A1 (zh) * 2020-11-10 2022-05-19 南通市台盈新材料科技有限公司 一种CuO/腐植酸复合材料的制备方法
CN115650278A (zh) * 2022-10-26 2023-01-31 杭州豪腾科技有限公司 一种纳米氢氧化铜及其制备方法
CN115650278B (zh) * 2022-10-26 2024-03-26 杭州豪腾科技有限公司 一种纳米氢氧化铜及其制备方法

Also Published As

Publication number Publication date
CN105347382B (zh) 2017-06-23

Similar Documents

Publication Publication Date Title
Ren et al. Enhanced visible-light-driven photocatalytic activity for antibiotic degradation using magnetic NiFe2O4/Bi2O3 heterostructures
Gan et al. Preparation of core-shell structured CoFe2O4 incorporated Ag3PO4 nanocomposites for photocatalytic degradation of organic dyes
Sui et al. Construction of three-dimensional flower-like α-MoO3 with hierarchical structure for highly selective triethylamine sensor
Chen et al. Template-free synthesis of single-crystalline-like CeO2 hollow nanocubes
Yang et al. Synthesis and microwave modification of CuO nanoparticles: Crystallinity and morphological variations, catalysis, and gas sensing
Li et al. Nature of catalytic activities of CoO nanocrystals in thermal decomposition of ammonium perchlorate
Yang et al. Fabrication of monodisperse CeO2 hollow spheres assembled by nano-octahedra
Cheng et al. Soft-template synthesis and characterization of ZnO2 and ZnO hollow spheres
Firooz et al. Highly sensitive CO and ethanol nanoflower-like SnO2 sensor among various morphologies obtained by using single and mixed ionic surfactant templates
CN102649589B (zh) 一种丝蛋白调控的α型三氧化二铁纳米材料及其制备方法
Arshadi-Rastabi et al. Synthesis, characterization and stability of Cu2O nanoparticles produced via supersaturation method considering operational parameters effect
CN101434418A (zh) 磁场作用下水热法制备Co3O4纳米材料的方法
Devaraju et al. Eu3+: Y2O3 microspheres and microcubes: A supercritical synthesis and characterization
Lu et al. Facile hydrothermal synthesis of carbon dots (CDs) doped ZnFe2O4/TiO2 hybrid materials with high photocatalytic activity
Rajesh Kumar et al. A facile one step synthesis of SnO 2/CuO and CuO/SnO 2 nanocomposites: photocatalytic application
CN102602924A (zh) 微波辐射法制备双色石墨烯量子点的方法
Shahmiri et al. Effect of pH on the synthesis of CuO nanosheets by quick precipitation method
CN105731517B (zh) 一种氧化铜花状纳米结构材料及其制备方法
CN101311360A (zh) 一维单晶氧化铋纳米材料的合成方法
CN102515243A (zh) 热氧化反应制备Cu2O及Au/Cu2O核壳异质结纳米立方体的方法
CN104003433A (zh) 一种纳米氧化铜材料的制备方法
CN104045113A (zh) 一种八面体Mn3O4纳米颗粒的制备方法
Shobeiri et al. Facile mechanical milling synthesis of NiCr 2 O 4 using novel organometallic precursors and investigation of its photocatalytic activity
CN105347382A (zh) 一种花环状氧化铜纳米材料的制备方法
CN101857265A (zh) 金属硫化物纳米晶的制备方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20170623

Termination date: 20191210

CF01 Termination of patent right due to non-payment of annual fee