CN105301071A - 一种新型工业废气检测装置及其制作方法 - Google Patents

一种新型工业废气检测装置及其制作方法 Download PDF

Info

Publication number
CN105301071A
CN105301071A CN201510714202.7A CN201510714202A CN105301071A CN 105301071 A CN105301071 A CN 105301071A CN 201510714202 A CN201510714202 A CN 201510714202A CN 105301071 A CN105301071 A CN 105301071A
Authority
CN
China
Prior art keywords
ysz
sensitive electrode
electrode
substrate
platinum
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201510714202.7A
Other languages
English (en)
Inventor
周丽娜
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to CN201510714202.7A priority Critical patent/CN105301071A/zh
Publication of CN105301071A publication Critical patent/CN105301071A/zh
Pending legal-status Critical Current

Links

Abstract

本发明公开了一种新型工业废气检测装置及其制作方法,该废气检测装置由信号读取系统和信号处理系统组成,信号读取系统是基于固体电解质型气体传感器,其对于废气的检测达到了出乎意料的灵敏度和超快的响应恢复速度,能及时地发现所要检测环境中的中特定气体种类及含量,具有很大的市场前景。

Description

一种新型工业废气检测装置及其制作方法
技术领域
本发明涉及环境领域,具体涉及一种新型工业废气检测装置及其制作方法。
背景技术
随着我国工业化的推进,目前,工业废气的排放已经对环境造成很大的污染。工业废气是指企业厂区内燃烧和生产过程中产生的各种排入空气的含有污染物气体的总称。包括有二氧化碳、硫化物、氮化物等。
工业废气的危害主要有对人体、对植物和对环境的危害,对工业废气的检测能够最大程度上减小其对人体等的危害。
发明内容
本发明针对背景技术存在的问题,提供一种新型工业废气检测装置及其制作方法。
本发明提供了以下的技术方案:
一种新型工业废气检测装置,该废气检测装置由信号读取系统和信号处理系统组成,信号读取系统是基于固体电解质型气体传感器,固体电解质型气体传感器包括加热板、布置在加热板上的钇稳定氧化锆(YSZ)基板(1)和布置在YSZ基板上的铂(Pt)参考电极(4)、敏感电极A(3)和敏感电极B(5),其中敏感电极A和敏感电极B分别布置在Pt参考电极的两侧,敏感电极A的材质为氧化钨纳米颗粒掺杂纳米氧化镍粉,敏感电极B的材质为纳米SnO2粉。
优选的,所述YSZ基板为掺杂8mol%Y2O3,其物理大小为6mm*4mm*0.2mm,采用电化学方法腐蚀出两个1*2mm区域的纳米多孔结构,该结构分别用来放置敏感电极A和敏感电极B;在YSZ基板的纳米多孔区域上制作直径0.1-0.3mm的铂金圆点作为YSZ基板与电极的连结;敏感电极A和敏感电极B的厚度均为0.5mm,敏感电极B中SnO2纳米粉的粒径为15-22nm。
一种新型工业废气检测装置的制作方法,该废气检测装置由信号读取系统和信号处理系统组成,信号读取系统是基于固体电解质型气体传感器,固体电解质型气体传感器包括多孔钇稳定氧化锆(YSZ)基板,和布置在YSZ基板上的铂(Pt)参考电极、敏感电极A和敏感电极B,其中敏感电极A和敏感电极B分别布置在Pt参考电极的两侧;其中,
a.取YSZ基板先后用水和无水乙醇多次超声清洗,烘干后待用;
b.取铂浆,在清洗过后的YSZ基板的中间制作1*2mm大小的细条状铂浆带,在YSZ的多孔区域分别制作一个小的铂浆圆点,大批量生产时,可以采用丝网印刷工艺;
c.取三段铂丝分别粘在YSZ片子的刚涂好铂浆的区域,然后将YSZ基板放置在红外灯下烘烤数小时;
d.取适量敏感电极材料A、B,分别放入玛瑙研钵中充分研磨后加入少量去离子水,调配成粘稠状浆料A、B,分别将浆料A、B于基板多孔结构处涂上形成传感器的两个敏感电极A、B,厚度为0.5mm;
e.将上步骤得到的基板放入马弗炉高温800℃烧结两小时;
f.在“几”形Pt加热板印有Pt电极的一面均匀涂上一层无机胶,然后将加热板与上步骤中得到的基板粘在一起,放入马弗炉中200℃烧结20分钟,取出,即得传感器原型器件。
优选的,
(1)多孔钇稳定氧化锆(YSZ)(2)制备:
采用双槽电化学腐蚀法制备多孔结构YSZ;
a.取YSZ平板(8mol%Y2O3掺杂,6mm*4mm*0.2mm),先后用水和无水乙醇多次超声清洗,烘干;
b.配制预处理溶液:按照质量份数,1-1.8%茶皂素,2%苹果酸,其余为纯净水,然后将YSZ平板投入其中,完全浸没,在50-58℃条件下处理20-28min,随后用微波处理2min,洗净自然干燥备用;
所述微波处理的参数为:2450MHz、65W,辐照2-5s,间隔10min,一共照射3-5次;
c.配制腐蚀溶液,取HF(体积份数40%)和去离子水按体积比1:5,适量添加高锰酸钾混合,放入双电槽电化学装置,腐蚀槽与夹具均为耐腐蚀的聚四氟乙烯材料,电极为柱状金属Pt,夹具将腐蚀槽分为两个互不连通区域,夹具中央具有两个1*2mm特定形状的孔洞;
d.腐蚀过程在黑暗条件下进行,装置所用电源为恒流源,施加腐蚀电流密度为40mA/cm2,经过30min,在YSZ平板上形成两个1*2mm区域的多孔结构(2),制作完毕清洗后保存在无水乙醇中;
(2)敏感电极材料A制备:
a.合成氧化钨纳米颗粒:称取1.5gNa2WO4溶于45mL去离子水中,在搅拌情况下,滴加浓度为3mol/L的HCl溶液至钨酸沉淀完全;然后离心分离,将沉淀物放入小烧杯中,加入30mL去离子水,再加入75gKNO3,剧烈搅拌,形成浆糊状物,在180℃下水热反应12h,自然冷却至室温;将反应物(沉淀)用去离子水充分洗涤,再用乙醇洗涤,过滤,在80℃下脱水干燥,得到产物即氧化钨纳米颗粒;
b.氧化钨纳米颗粒掺杂氧化镍:取质量比为3:1的氧化钨纳米颗粒与纳米镍粉放入搅拌器中,使其充分混合;然后将混合材料放入真空管式炉中,加热至300℃,保温4h,使镍粉充分氧化,最后自然降温至室温;
(3)敏感电极材料B制备:
a.首先将粒径为15-22nm的SnO2纳米粉在80℃真空干燥箱中干燥12小时;
b.称取干燥的SnO2纳米粉2.0g,然后向其中加入4.0ml氯铂酸溶液,浓度为10mmol/L,浸渍完全后将其超声15min,使其混合均匀;
c.将混合物静置6h,再放入真空干燥箱中在80℃干燥12h,干燥后将混合物在500℃下烧结12h,自然降至室温,即得敏感电极B。
本发明的有益之处在于:
本发明通过基于固体电解质型气体传感器,对于工业废气的检测达到了出乎意料的灵敏度和超快的响应恢复速度,能及时地检测工业废气的有害物含量,具有很大的市场前景。
附图说明
图1为双电槽电化学装置示意图;
图2为本发明的检测装置的结构示意图;
图3为YSZ平板多孔结构示意图;
图4为本发明的气体传感器的结构示意图。
具体实施方式
本发明技术发明的设计主要出于对以下几点的考虑:
气体传感器
气体传感器主要是指能够在空气或某一特性的环境内,将目标气体的种类及浓度等按照一定的规律转化为可检测信号的一种器件或装置。检测的方式主要有测试电流、电阻、电位、热量、温度等。根据气敏传感器的工作特性,主要分为半导体式、固体电解质式等。
固体电解质
固体电解质类气体传感器一般都是电化学型传感器,主要由电解质、敏感电极和参考电极组成,电解质是其重要组成部分。根据载流子的不同,导体可以分为电子导体和离子导体,后者即电解质,除了一般的液体电解质,还有一些离子晶体也具有高的离子导电率,这类固体导电体被称作固体电解质(solidelectrolyte),包括陶瓷、玻璃、无机金属盐和一些有机高分子材料。
固体电解质中导电离子可以为阳离子也可以是阴离子,其主要是由材料本身的缺陷决定的。
钇稳定氧化锆(YSZ)
稳定氧化锆/钇稳定氧化锆(YSZ)是最有用的一种固体电解质,常温下,氧化锆(ZrO2)是一种单斜晶体,离子导电率很低,当掺杂入适量的二价或三价立方对称氧化物(Y2O3、MgO、CaO、Sc2O3)对其进行处理,可以表现出离子导电性,具有高的氧离子导电率、优异的化学稳定性、以及热稳定性和机械性,在固体氧化物燃料电池和气体传感器领域已被广泛应用。
多孔结构YSZ
多孔结构YSZ在元素组成上看依然是由原来互联的原子组成,但是具有独特的多孔疏松结构。其比表面积大,利于气体在三相界面(氧化锆、电极、气体)上发生反应,提高灵敏度。本发明采用双槽电化学腐蚀法制备YSZ的多孔区域,制作过程简单,多孔区域形貌易控制。
氧化钨气敏性质
氧化钨为n型金属氧化物半导体,是一种表面电阻控制型气敏材料。氧化钨晶体表面的原子性质活跃,容易吸附气体分子,而气体分子吸附在晶体表面时,会使其内部载流子浓度发生相应变化,表现为传感器的电阻变化。氧化钨气敏传感器气体吸脱附产生电阻变化的机理即气敏机理非常复杂,目前为止研究者们尚无统一的认识。研究表明,氧化钨对NO2、HS2、SO2等多种气体均有较好的气敏特性。然而,单纯的氧化钨薄膜的灵敏度、选择性等多有不足,本发明制备了氧化钨纳米颗粒,可以增加材料与待测气体的接触面积,提高灵敏度,此外,复合了对气体吸附具有催化作用或选择性的氧化镍颗粒,提高了敏感电极对氮氧化物气体的选择性。
SnO2气敏性质
SnO2属于n型半导体,由于氧空位或锡离子的存在,气敏效应明显,一般认为其气敏机理是表面吸附控制型机理。在洁净的空气中加热到一定的温度时,O2会在SnO2表面吸附,形成多种吸附氧物种,电子由SnO2晶粒向吸附氧转移,在SnO2晶粒表面形成耗尽层,敏感材料的电导降低,而在暴露于还原性被检测气氛(H2、CO、碳氢化合物气体)中时,被检测气体与吸附氧物种发生反应,SnO2晶粒表面或晶界处的吸附氧脱附,耗尽层变薄,从而引起电导增加,通过材料电导的变化来检测气体。本发明在SnO2纳米薄膜基础上添加Pt修饰,使其大大提高了对CO的检测灵敏度。
对于钇稳定氧化锆基NOx传感器的敏感机理,当传感器置于检测气体环境中时,三相界面(氧化锆、电极、气体)上会发生一系列化学反应,由于敏感电极与参考电极的催化速率不同,那么就会在敏感电极与参考电极之间形成一个电势差,电势差的大小反映了待测气体的浓度大小,从而达到检测气体及其浓度的目的。由此可以知道,电极材料的电化学和化学催化活性,电极微结构等是敏感电极考虑的主要因素。
图2为本发明的工业废气检测装置的结构示意图,该工业废气检测装置10由信号读取系统1和信号处理系统组成。
实施例1:
一种新型工业废气检测装置的制作方法,该废气检测装置由信号读取系统和信号处理系统组成,信号读取系统是基于固体电解质型气体传感器,固体电解质型气体传感器包括多孔钇稳定氧化锆(YSZ)基板,和布置在YSZ基板上的铂(Pt)参考电极、敏感电极A和敏感电极B,其中敏感电极A和敏感电极B分别布置在Pt参考电极的两侧;
其中,固体电解质型气体传感器,其由如下方法制作而成:
(1)多孔钇稳定氧化锆(YSZ)制备:
采用双槽电化学腐蚀法制备多孔结构YSZ;
a.取YSZ平板(8mol%Y2O3掺杂,6mm*4mm*0.2mm),先后用水和无水乙醇多次超声清洗,烘干;
b.配制预处理溶液:按照质量份数,1%茶皂素,2%苹果酸,其余为纯净水,然后将YSZ平板投入其中,完全浸没,在58℃条件下处理20min,随后用微波处理2min,洗净自然干燥备用;
所述微波处理的参数为:2450MHz、65W,辐照5s,间隔10min,一共照射3次;
c.配制腐蚀溶液,取HF(体积份数40%)和去离子水按体积比1:5,适量添加高锰酸钾混合,放入双电槽电化学装置(如图1所示),腐蚀槽与夹具均为耐腐蚀的聚四弗乙烯材料,电极为柱状金属Pt,夹具将腐蚀槽分为两个互不连通区域,夹具中央具有两个1*2mm特定形状的孔洞;
d.腐蚀过程在黑暗条件下进行,装置所用电源为恒流源,施加腐蚀电流密度为40mA/cm2,经过30min,在YSZ平板上形成两个1*2mm区域的多孔结构,制作完毕清洗后保存在无水乙醇中;
(2)敏感电极材料A制备:
a.合成氧化钨纳米颗粒:称取1.5gNa2WO4溶于45mL去离子水中,在搅拌情况下,滴加浓度为3mol/L的HCl溶液至钨酸沉淀完全;然后离心分离,将沉淀物放入小烧杯中,加入30mL去离子水,再加入75gKNO3,剧烈搅拌,形成浆糊状物,在180℃下水热反应12h,自然冷却至室温;将反应物(沉淀)用去离子水充分洗涤,再用乙醇洗涤,过滤,在80℃下脱水干燥,得到产物即氧化钨纳米颗粒;
b.氧化钨纳米颗粒掺杂氧化镍:取质量比为3:1的氧化钨纳米颗粒与纳米镍粉放入搅拌器中,使其充分混合;然后将混合材料放入真空管式炉中,加热至300℃,保温4h,使镍粉充分氧化,最后自然降温至室温;
(3)敏感电极材料B制备:
a.首先将粒径为22nm的SnO2纳米粉在80℃真空干燥箱中干燥12小时;
b.称取干燥的SnO2纳米粉2.0g,然后向其中加入4.0ml氯铂酸溶液,浓度为10mmol/L,浸渍完全后将其超声15min,使其混合均匀;
c.将混合物静置6h,再放入真空干燥箱中在80℃干燥12h,干燥后将混合物在500℃下烧结12h,自然降至室温,即得敏感电极B;
(4)气体传感器制作
氮的氧化物传感器主要由两部分构成:多孔YSZ平板和Pt“几”形电极加热板,器件制作步骤如下:
a.取步骤(1)处理后的YSZ基板,先后用水和无水乙醇多次超声清洗,烘干后待用;
b.取铂浆,在清洗过后的YSZ基板的中间制作1*2mm大小的细条状铂浆带,在YSZ的多孔区域分别制作一个小的铂浆圆点,大批量生产时,可以采用丝网印刷工艺;
c.取三段铂丝分别粘在YSZ片子的刚涂好铂浆的区域,然后将YSZ基板放置在红外灯下烘烤数小时;
d.取适量敏感电极材料A、B,分别放入玛瑙研钵中充分研磨后加入少量去离子水,调配成粘稠状浆料A、B,分别将浆料A、B于基板多孔结构处涂上形成传感器的两个敏感电极A、B,厚度为0.5mm;
e.将上步骤得到的基板放入马弗炉高温800℃烧结两小时;
f.在“几”形Pt加热板印有Pt电极的一面均匀涂上一层无机胶(用水玻璃和Al2O3混合制得),然后将加热板与上步骤中得到的基板粘在一起,放入马弗炉中200℃烧结20分钟,取出,即得传感器原型器件。
该实施例器件工作温度为300℃时,对100ppm的NO2,灵敏度可达21mV/decade,响应恢复速度较快,为约18s;对200ppm的CO,灵敏度可达39mV/decade,响应恢复速度约为5s。
本实施例中,YSZ基板为掺杂8mol%Y2O3,其物理大小为6mm*4mm*0.2mm,采用电化学方法腐蚀出两个1*2mm区域的纳米多孔结构,该结构分别用来放置敏感电极A和敏感电极B;在YSZ基板的纳米多孔区域上制作直径0.1~0.3mm的铂金圆点作为YSZ基板与电极的连结;敏感电极A和敏感电极B的厚度均为0.5mm,敏感电极B中SnO2纳米粉的粒径为15-22nm。
实施例2:
一种新型工业废气检测装置的制作方法,该废气检测装置由信号读取系统和信号处理系统组成,信号读取系统是基于固体电解质型气体传感器,固体电解质型气体传感器包括多孔钇稳定氧化锆(YSZ)基板,和布置在YSZ基板上的铂(Pt)参考电极、敏感电极A和敏感电极B,其中敏感电极A和敏感电极B分别布置在Pt参考电极的两侧;
其中,固体电解质型气体传感器,其由如下方法制作而成:
(1)多孔钇稳定氧化锆(YSZ)制备:
采用双槽电化学腐蚀法制备多孔结构YSZ;
a.取YSZ平板(8mol%Y2O3掺杂,7mm*5mm*0.2mm),先后用水和无水乙醇多次超声清洗,烘干;
b.配制预处理溶液:按照质量份数,1.8%茶皂素,2%苹果酸,其余为纯净水,然后将YSZ平板投入其中,完全浸没,在50℃条件下处理28min,随后用微波处理2min,洗净自然干燥备用;
所述微波处理的参数为:2450MHz、65W,辐照2s,间隔10min,一共照射5次;
c.配制腐蚀溶液,取HF(体积份数40%)和去离子水按体积比1:5,适量添加高锰酸钾混合,放入双电槽电化学装置(如图1所示),腐蚀槽与夹具均为耐腐蚀的聚四弗乙烯材料,电极为柱状金属Pt,夹具将腐蚀槽分为两个互不连通区域,夹具中央具有两个2*2mm特定形状的孔洞;
d.腐蚀过程在黑暗条件下进行,装置所用电源为恒流源,施加腐蚀电流密度为40mA/cm2,经过30min,在YSZ平板上形成两个2*2mm区域的多孔结构,制作完毕清洗后保存在无水乙醇中;
(2)敏感电极材料A制备:
a.合成氧化钨纳米颗粒:称取1.5gNa2WO4溶于45mL去离子水中,在搅拌情况下,滴加浓度为3mol/L的HCl溶液至钨酸沉淀完全;然后离心分离,将沉淀物放入小烧杯中,加入30mL去离子水,再加入75gKNO3,剧烈搅拌,形成浆糊状物,在180℃下水热反应12h,自然冷却至室温;将反应物(沉淀)用去离子水充分洗涤,再用乙醇洗涤,过滤,在80℃下脱水干燥,得到产物即氧化钨纳米颗粒;
b.氧化钨纳米颗粒掺杂氧化镍:取质量比为3:1的氧化钨纳米颗粒与纳米镍粉放入搅拌器中,使其充分混合;然后将混合材料放入真空管式炉中,加热至300℃,保温4h,使镍粉充分氧化,最后自然降温至室温;
(3)敏感电极材料B制备:
a.首先将粒径为15nm的SnO2纳米粉在80℃真空干燥箱中干燥12小时;
b.称取干燥的SnO2纳米粉2.0g,然后向其中加入4.0ml氯铂酸溶液,浓度为10mmol/L,浸渍完全后将其超声15min,使其混合均匀;
c.将混合物静置6h,再放入真空干燥箱中在80℃干燥12h,干燥后将混合物在500℃下烧结12h,自然降至室温,即得敏感电极B;
(4)气体传感器制作
氮的氧化物传感器主要由两部分构成:多孔YSZ平板和Pt“几”形电极加热板,器件制作步骤如下:
a.取步骤(1)处理后的YSZ基板,先后用水和无水乙醇多次超声清洗,烘干后待用;
b.取铂浆,在清洗过后的YSZ基板的中间制作2*2mm大小的细条状铂浆带,在YSZ的多孔区域分别制作一个小的铂浆圆点,大批量生产时,可以采用丝网印刷工艺;
c.取三段铂丝分别粘在YSZ片子的刚涂好铂浆的区域,然后将YSZ基板放置在红外灯下烘烤数小时;
d.取适量敏感电极材料A、B,分别放入玛瑙研钵中充分研磨后加入少量去离子水,调配成粘稠状浆料A、B,分别将浆料A、B于基板多孔结构处涂上形成传感器的两个敏感电极A、B,厚度为0.5mm;
e.将上步骤得到的基板放入马弗炉高温800℃烧结两小时;
f.在“几”形Pt加热板印有Pt电极的一面均匀涂上一层无机胶(用水玻璃和Al2O3混合制得),然后将加热板与上步骤中得到的基板粘在一起,放入马弗炉中200℃烧结20分钟,取出,即得传感器原型器件。
该实施例器件工作温度为300℃时,对100ppm的NO2,灵敏度可达52mV/decade,响应恢复速度较快,为约8s;对200ppm的CO,灵敏度可达62mV/decade,响应恢复速度约为3s。
本实施例中,YSZ基板为掺杂8mol%Y2O3,其物理大小为7mm*5mm*0.2mm,采用电化学方法腐蚀出两个2*2mm区域的纳米多孔结构,该结构分别用来放置敏感电极A和敏感电极B;在YSZ基板的纳米多孔区域上制作直径0.1~0.3mm的铂金圆点作为YSZ基板与电极的连结;敏感电极A和敏感电极B的厚度均为0.5mm,敏感电极B中SnO2纳米粉的粒径为15-22nm。
通过对YSZ基板、多孔纳米结构尺寸及实验参数的调整,其对危险气体CO的检测灵敏度提高到62mV/decade,响应时间缩短为3s,得到了意想不到的结果。
实施例3:
一种新型工业废气检测装置的制作方法,该废气检测装置由信号读取系统和信号处理系统组成,信号读取系统是基于固体电解质型气体传感器,固体电解质型气体传感器包括多孔钇稳定氧化锆(YSZ)基板,和布置在YSZ基板上的铂(Pt)参考电极、敏感电极A和敏感电极B,其中敏感电极A和敏感电极B分别布置在Pt参考电极的两侧;
其中,固体电解质型气体传感器,其由如下方法制作而成:
(1)多孔钇稳定氧化锆(YSZ)制备:
采用双槽电化学腐蚀法制备多孔结构YSZ;
a.取YSZ平板(8mol%Y2O3掺杂,8mm*4mm*0.2mm),先后用水和无水乙醇多次超声清洗,烘干;
b.配制预处理溶液:按照质量份数,1.3%茶皂素,2%苹果酸,其余为纯净水,然后将YSZ平板投入其中,完全浸没,在57℃条件下处理21min,随后用微波处理2min,洗净自然干燥备用;
所述微波处理的参数为:2450MHz、65W,辐照3s,间隔10min,一共照射4
c.配制腐蚀溶液,取HF(体积份数40%)和去离子水按体积比1:5,适量添加高锰酸钾混合,放入双电槽电化学装置(如图1所示),腐蚀槽与夹具均为耐腐蚀的聚四弗乙烯材料,电极为柱状金属Pt,夹具将腐蚀槽分为两个互不连通区域,夹具中央具有两个1*2mm特定形状的孔洞;
d.腐蚀过程在黑暗条件下进行,装置所用电源为恒流源,施加腐蚀电流密度为40mA/cm2,经过30min,在YSZ平板上形成两个1*2mm区域的多孔结构,制作完毕清洗后保存在无水乙醇中;
(2)敏感电极材料A制备:
a.合成氧化钨纳米颗粒:称取1.5gNa2WO4溶于45mL去离子水中,在搅拌情况下,滴加浓度为3mol/L的HCl溶液至钨酸沉淀完全;然后离心分离,将沉淀物放入小烧杯中,加入30mL去离子水,再加入75gKNO3,剧烈搅拌,形成浆糊状物,在180℃下水热反应12h,自然冷却至室温;将反应物(沉淀)用去离子水充分洗涤,再用乙醇洗涤,过滤,在80℃下脱水干燥,得到产物即氧化钨纳米颗粒;
b.氧化钨纳米颗粒掺杂氧化镍:取质量比为3:1的氧化钨纳米颗粒与纳米镍粉放入搅拌器中,使其充分混合;然后将混合材料放入真空管式炉中,加热至300℃,保温4h,使镍粉充分氧化,最后自然降温至室温;
(3)敏感电极材料B制备:
a.首先将粒径为20nm的SnO2纳米粉在80℃真空干燥箱中干燥12小时;
b.称取干燥的SnO2纳米粉2.0g,然后向其中加入4.0ml氯铂酸溶液,浓度为10mmol/L,浸渍完全后将其超声15min,使其混合均匀;
c.将混合物静置6h,再放入真空干燥箱中在80℃干燥12h,干燥后将混合物在500℃下烧结12h,自然降至室温,即得敏感电极B;
(4)气体传感器制作
氮的氧化物传感器主要由两部分构成:多孔YSZ平板和Pt“几”形电极加热板,器件制作步骤如下:
a.取步骤(1)处理后的YSZ基板,先后用水和无水乙醇多次超声清洗,烘干后待用;
b.取铂浆,在清洗过后的YSZ基板的中间制作1*2mm大小的细条状铂浆带,在YSZ的多孔区域分别制作一个小的铂浆圆点,大批量生产时,可以采用丝网印刷工艺;
c.取三段铂丝分别粘在YSZ片子的刚涂好铂浆的区域,然后将YSZ基板放置在红外灯下烘烤数小时;
d.取适量敏感电极材料A、B,分别放入玛瑙研钵中充分研磨后加入少量去离子水,调配成粘稠状浆料A、B,分别将浆料A、B于基板多孔结构处涂上形成传感器的两个敏感电极A、B,厚度为0.5mm;
e.将上步骤得到的基板放入马弗炉高温800℃烧结两小时;
f.在“几”形Pt加热板印有Pt电极的一面均匀涂上一层无机胶(用水玻璃和Al2O3混合制得),然后将加热板与上步骤中得到的基板粘在一起,放入马弗炉中200℃烧结20分钟,取出,即得传感器原型器件。
该实施例器件工作温度为300℃时,对100ppm的NO2,灵敏度可达30mV/decade,响应恢复速度较快,为约17s;对200ppm的CO,灵敏度可达45mV/decade,响应恢复速度约为4s。
所述YSZ基板为掺杂8mol%Y2O3,其物理大小为8mm*4mm*0.2mm,采用电化学方法腐蚀出两个1*2mm区域的纳米多孔结构,该结构分别用来放置敏感电极A和敏感电极B;在YSZ基板的纳米多孔区域上制作直径0.1-0.3mm的铂金圆点作为YSZ基板与电极的连结;敏感电极A和敏感电极B的厚度均为0.5mm,敏感电极B中SnO2纳米粉的粒径为15-22nm。
通过对YSZ基板、多孔纳米结构尺寸及实验参数的调整,其对危险气体NO2的检测灵敏度提高到30mV/decade,对CO的响应时间缩短到4s,得到了意想不到的结果。
实施例4:
一种新型工业废气检测装置的制作方法,该废气检测装置由信号读取系统和信号处理系统组成,信号读取系统是基于固体电解质型气体传感器,固体电解质型气体传感器包括多孔钇稳定氧化锆(YSZ)基板,和布置在YSZ基板上的铂(Pt)参考电极、敏感电极A和敏感电极B,其中敏感电极A和敏感电极B分别布置在Pt参考电极的两侧;
其中,固体电解质型气体传感器,其由如下方法制作而成:
(1)多孔钇稳定氧化锆(YSZ)制备:
采用双槽电化学腐蚀法制备多孔结构YSZ;
a.取YSZ平板(8mol%Y2O3掺杂,9mm*5mm*0.2mm),先后用水和无水乙醇多次超声清洗,烘干;
b.配制预处理溶液:按照质量份数,1.7%茶皂素,2%苹果酸,其余为纯净水,然后将YSZ平板投入其中,完全浸没,在51℃条件下处理27min,随后用微波处理2min,洗净自然干燥备用;
所述微波处理的参数为:2450MHz、65W,辐照4s,间隔10min,一共照射3次;
c.配制腐蚀溶液,取HF(体积份数40%)和去离子水按体积比1:5,适量添加高锰酸钾混合,放入双电槽电化学装置(如图1所示),腐蚀槽与夹具均为耐腐蚀的聚四弗乙烯材料,电极为柱状金属Pt,夹具将腐蚀槽分为两个互不连通区域,夹具中央具有两个3*2mm特定形状的孔洞;
d.腐蚀过程在黑暗条件下进行,装置所用电源为恒流源,施加腐蚀电流密度为40mA/cm2,经过30min,在YSZ平板上形成两个3*2mm区域的多孔结构,制作完毕清洗后保存在无水乙醇中;
(2)敏感电极材料A制备:
a.合成氧化钨纳米颗粒:称取1.5gNa2WO4溶于45mL去离子水中,在搅拌情况下,滴加浓度为3mol/L的HCl溶液至钨酸沉淀完全;然后离心分离,将沉淀物放入小烧杯中,加入30mL去离子水,再加入75gKNO3,剧烈搅拌,形成浆糊状物,在180℃下水热反应12h,自然冷却至室温;将反应物(沉淀)用去离子水充分洗涤,再用乙醇洗涤,过滤,在80℃下脱水干燥,得到产物即氧化钨纳米颗粒;
b.氧化钨纳米颗粒掺杂氧化镍:取质量比为3:1的氧化钨纳米颗粒与纳米镍粉放入搅拌器中,使其充分混合;然后将混合材料放入真空管式炉中,加热至300℃,保温4h,使镍粉充分氧化,最后自然降温至室温;
(3)敏感电极材料B制备:
a.首先将粒径为16nm的SnO2纳米粉在80℃真空干燥箱中干燥12小时;
b.称取干燥的SnO2纳米粉2.0g,然后向其中加入4.0ml氯铂酸溶液,浓度为10mmol/L,浸渍完全后将其超声15min,使其混合均匀;
c.将混合物静置6h,再放入真空干燥箱中在80℃干燥12h,干燥后将混合物在500℃下烧结12h,自然降至室温,即得敏感电极B;
(4)气体传感器制作
氮的氧化物传感器主要由两部分构成:多孔YSZ平板和Pt“几”形电极加热板,器件制作步骤如下:
a.取步骤(1)处理后的YSZ基板,先后用水和无水乙醇多次超声清洗,烘干后待用;
b.取铂浆,在清洗过后的YSZ基板的中间制作3*2mm大小的细条状铂浆带,在YSZ的多孔区域分别制作一个小的铂浆圆点,大批量生产时,可以采用丝网印刷工艺;
c.取三段铂丝分别粘在YSZ片子的刚涂好铂浆的区域,然后将YSZ基板放置在红外灯下烘烤数小时;
d.取适量敏感电极材料A、B,分别放入玛瑙研钵中充分研磨后加入少量去离子水,调配成粘稠状浆料A、B,分别将浆料A、B于基板多孔结构处涂上形成传感器的两个敏感电极A、B,厚度为0.5mm;
e.将上步骤得到的基板放入马弗炉高温800℃烧结两小时;
f.在“几”形Pt加热板印有Pt电极的一面均匀涂上一层无机胶(用水玻璃和Al2O3混合制得),然后将加热板与上步骤中得到的基板粘在一起,放入马弗炉中200℃烧结20分钟,取出,即得传感器原型器件。
该实施例器件工作温度为300℃时,对100ppm的NO2,灵敏度可达40mV/decade,响应恢复速度较快,为约10s;对200ppm的CO,灵敏度可达53mV/decade,响应恢复速度约为5s。
本实施例中,YSZ基板为掺杂8mol%Y2O3,其物理大小为9mm*5mm*0.2mm,采用电化学方法腐蚀出两个3*2mm区域的纳米多孔结构,该结构分别用来放置敏感电极A和敏感电极B;在YSZ基板的纳米多孔区域上制作直径0.1~0.3mm的铂金圆点作为YSZ基板与电极的连结;敏感电极A和敏感电极B的厚度均为0.5mm,敏感电极B中SnO2纳米粉的粒径为15-22nm。
通过对YSZ基板、多孔纳米结构尺寸及实验参数的调整,其对危险气体CO的检测灵敏度提高到53mV/decade,响应时间缩短到5s,得到了意想不到的结果。
实施例5对比例:
一种新型工业废气检测装置的制作方法,该废气检测装置由信号读取系统和信号处理系统组成,信号读取系统是基于固体电解质型气体传感器,固体电解质型气体传感器包括多孔钇稳定氧化锆(YSZ)基板,和布置在YSZ基板上的铂(Pt)参考电极、敏感电极A和敏感电极B,其中敏感电极A和敏感电极B分别布置在Pt参考电极的两侧;
其中,固体电解质型气体传感器,其由如下方法制作而成:
(1)多孔钇稳定氧化锆(YSZ)制备:
采用双槽电化学腐蚀法制备多孔结构YSZ;
a.取YSZ平板(8mol%Y2O3掺杂,10mm*5mm*0.2mm),先后用水和无水乙醇多次超声清洗,烘干;
b.配制预处理溶液:纯净水浸泡10min,洗净自然干燥备用;
所述微波处理的参数为:2450MHz、65W,辐照2s,间隔10min,一共照射5次;
b.配制腐蚀溶液,取HF(体积份数40%)和去离子水按体积比1:5,适量添加高锰酸钾混合,放入双电槽电化学装置(如图1所示),腐蚀槽与夹具均为耐腐蚀的聚四弗乙烯材料,电极为柱状金属Pt,夹具将腐蚀槽分为两个互不连通区域,夹具中央具有两个2*4mm特定形状的孔洞;
c.腐蚀过程在黑暗条件下进行,装置所用电源为恒流源,施加腐蚀电流密度为40mA/cm2,经过30min,在YSZ平板上形成两个2*4mm区域的多孔结构,制作完毕清洗后保存在无水乙醇中;
(2)敏感电极材料A制备:
a.合成氧化钨纳米颗粒:称取1.5gNa2WO4溶于45mL去离子水中,在搅拌情况下,滴加浓度为3mol/L的HCl溶液至钨酸沉淀完全;然后离心分离,将沉淀物放入小烧杯中,加入30mL去离子水,再加入75gKNO3,剧烈搅拌,形成浆糊状物,在180℃下水热反应12h,自然冷却至室温;将反应物(沉淀)用去离子水充分洗涤,再用乙醇洗涤,过滤,在80℃下脱水干燥,得到产物即氧化钨纳米颗粒;
b.氧化钨纳米颗粒掺杂氧化镍:取质量比为3:1的氧化钨纳米颗粒与纳米镍粉放入搅拌器中,使其充分混合;然后将混合材料放入真空管式炉中,加热至300℃,保温4h,使镍粉充分氧化,最后自然降温至室温;
(3)敏感电极材料B制备:
a.首先将粒径为5nm的SnO2纳米粉在80℃真空干燥箱中干燥12小时;
b.称取干燥的SnO2纳米粉2.0g,然后向其中加入4.0ml氯铂酸溶液,浓度为10mmol/L,浸渍完全后将其超声15min,使其混合均匀;
c.将混合物静置6h,再放入真空干燥箱中在80℃干燥12h,干燥后将混合物在500℃下烧结12h,自然降至室温,即得敏感电极B;
(4)气体传感器制作
氮的氧化物传感器主要由两部分构成:多孔YSZ平板和Pt“几”形电极加热板,器件制作步骤如下:
a.取步骤(1)处理后的YSZ基板,先后用水和无水乙醇多次超声清洗,烘干后待用;
b.取铂浆,在清洗过后的YSZ基板的中间制作2*4mm大小的细条状铂浆带,在YSZ的多孔区域分别制作一个小的铂浆圆点,大批量生产时,可以采用丝网印刷工艺;
c.取三段铂丝分别粘在YSZ片子的刚涂好铂浆的区域,然后将YSZ基板放置在红外灯下烘烤数小时;
d.取适量敏感电极材料A、B,分别放入玛瑙研钵中充分研磨后加入少量去离子水,调配成粘稠状浆料A、B,分别将浆料A、B于基板多孔结构处涂上形成传感器的两个敏感电极A、B,厚度为0.5mm;
e.将上步骤得到的基板放入马弗炉高温800℃烧结两小时;
f.在“几”形Pt加热板印有Pt电极的一面均匀涂上一层无机胶(用水玻璃和Al2O3混合制得),然后将加热板与上步骤中得到的基板粘在一起,放入马弗炉中200℃烧结20分钟,取出,即得传感器原型器件。
该实施例器件工作温度为300℃时,对100ppm的NO2,灵敏度可达50mV/decade,响应恢复速度较快,为约15s;对200ppm的CO,灵敏度可达60mV/decade,响应恢复速度约为3s。
器件工作温度为300℃时,对100ppm的NO2,灵敏度可达79mV/decade,响应恢复速度较快,为约20s;对200ppm的CO,灵敏度可达125mV/decade,响应恢复速度约为9s。
本实施例中,YSZ基板为掺杂8mol%Y2O3,其物理大小为10mm*5mm*0.2mm,采用电化学方法腐蚀出两个2*4mm区域的纳米多孔结构,该结构分别用来放置敏感电极A和敏感电极B;在YSZ基板的纳米多孔区域上制作直径0.1~0.3mm的铂金圆点作为YSZ基板与电极的连结;敏感电极A和敏感电极B的厚度均为0.5mm,敏感电极B中SnO2纳米粉的粒径为15-22nm。
通过对YSZ基板、多孔纳米结构尺寸及实验参数的调整,其对危险气体CO和NO2的检测灵敏度分别提高到125mV/decade和79mV/decade,响应时间分别缩短到9s、20s,得到了意想不到的结果。
由此可见,本发明通过基于固体电解质型气体传感器,通过对不同实验工艺参数条件下传感器性能的对比,得到了最佳灵敏度与响应时间,得到了意料不到的效果,使其能及时地检测工业废气中有害物的含量,具有很大的市场前景。
以上所述,仅为本发明较佳的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,根据本发明的技术发明及其发明构思加以等同替换或改变,都应涵盖在本发明的保护范围之内。

Claims (4)

1.一种新型工业废气检测装置,其特征在于,该废气检测装置由信号读取系统和信号处理系统组成,信号读取系统是基于固体电解质型气体传感器,固体电解质型气体传感器包括加热板、布置在加热板上的钇稳定氧化锆(YSZ)基板和布置在YSZ基板上的铂(Pt)参考电极、敏感电极A和敏感电极B,其中敏感电极A和敏感电极B分别布置在Pt参考电极的两侧,敏感电极A的材质为氧化钨纳米颗粒掺杂纳米氧化镍粉,敏感电极B的材质为纳米SnO2粉。
2.根据权利要求1中所述的废气检测装置,其特征在于,所述YSZ基板为掺杂8mol%Y2O3,其物理大小为6mm*4mm*0.2mm,采用电化学方法腐蚀出两个1*2mm区域的纳米多孔结构,该结构分别用来放置敏感电极A和敏感电极B;在YSZ基板的纳米多孔区域上制作直径0.1~0.3mm的铂金圆点,作为YSZ基板与电极的连结;敏感电极A和敏感电极B的厚度均为0.5mm,敏感电极B中SnO2纳米粉的粒径为15-22nm。
3.一种新型工业废气检测装置,其特征在于,该废气检测装置由信号读取系统和信号处理系统组成,信号读取系统是基于固体电解质型气体传感器,固体电解质型气体传感器包括多孔钇稳定氧化锆(YSZ)基板,和布置在YSZ基板上的铂(Pt)参考电极、敏感电极A和敏感电极B,其中敏感电极A和敏感电极B分别布置在Pt参考电极的两侧;其中,
a.取YSZ基板先后用水和无水乙醇多次超声清洗,烘干后待用;
b.取铂浆,在清洗过后的YSZ基板的中间制作1*2mm大小的细条状铂浆带,在YSZ的多孔区域分别制作一个直径0.1~0.3mm的铂浆圆点,大批量生产时,可以采用丝网印刷工艺;
c.取三段铂丝分别粘在YSZ片子的刚涂好铂浆的区域,然后将YSZ基板放置在红外灯下烘烤数小时;
d.取适量敏感电极材料A、B,分别放入玛瑙研钵中充分研磨后加入少量去离子水,调配成粘稠状浆料A、B,分别将浆料A、B于基板多孔结构处涂上形成传感器的两个敏感电极A、B,厚度为0.5mm;
e.将上步骤得到的基板放入马弗炉高温800℃烧结两小时;
f.在“几”形Pt加热板印有Pt电极的一面均匀涂上一层无机胶,然后将加热板与上步骤中得到的基板粘在一起,放入马弗炉中200℃烧结20分钟,取出,即得传感器原型器件。
4.权利要求3所述的实现方法,其特征在于,
(1)多孔钇稳定氧化锆(YSZ)制备:
采用双槽电化学腐蚀法制备多孔结构YSZ;
a.取YSZ平板(8mol%Y2O3掺杂,6mm*4mm*0.2mm),先后用水和无水乙醇多次超声清洗,烘干;
b.配制预处理溶液:按照质量份数,1-1.8%茶皂素,2%苹果酸,其余为纯净水,然后将YSZ平板投入其中,完全浸没,在50-58℃条件下处理20-28min,随后用微波处理2min,洗净自然干燥备用;
所述微波处理的参数为:2450MHz、65W,辐照2-5s,间隔10min,一共照射3-5次;
c.配制腐蚀溶液,取HF(体积份数40%)和去离子水按体积比1:5,适量添加高锰酸钾混合,放入双电槽电化学装置,腐蚀槽与夹具均为耐腐蚀的聚四氟乙烯材料,电极为柱状金属Pt,夹具将腐蚀槽分为两个互不连通区域,夹具中央具有两个1*2mm特定形状的孔洞;
d.腐蚀过程在黑暗条件下进行,装置所用电源为恒流源,施加腐蚀电流密度为40mA/cm2,经过30min,在YSZ平板上形成两个1*2mm区域的多孔结构,制作完毕清洗后保存在无水乙醇中;
(2)敏感电极材料A制备:
a.合成氧化钨纳米颗粒:称取1.5gNa2WO4溶于45mL去离子水中,在搅拌情况下,滴加浓度为3mol/L的HCl溶液至钨酸沉淀完全;然后离心分离,将沉淀物放入小烧杯中,加入30mL去离子水,再加入75gKNO3,剧烈搅拌,形成浆糊状物,在180℃下水热反应12h,自然冷却至室温;将反应物(沉淀)用去离子水充分洗涤,再用乙醇洗涤,过滤,在80℃下脱水干燥,得到产物即氧化钨纳米颗粒;
b.氧化钨纳米颗粒掺杂氧化镍:取质量比为3:1的氧化钨纳米颗粒与纳米镍粉放入搅拌器中,使其充分混合;然后将混合材料放入真空管式炉中,加热至300℃,保温4h,使镍粉充分氧化,最后自然降温至室温;
(3)敏感电极材料B制备:
a.首先将粒径为15-22nm的SnO2纳米粉在80℃真空干燥箱中干燥12小时;
b.称取干燥的SnO2纳米粉2.0g,然后向其中加入4.0ml氯铂酸溶液,浓度为10mmol/L,浸渍完全后将其超声15min,使其混合均匀;
c.将混合物静置6h,再放入真空干燥箱中在80℃干燥12h,干燥后将混合物在500℃下烧结12h,自然降至室温,即得敏感电极B。
CN201510714202.7A 2015-10-28 2015-10-28 一种新型工业废气检测装置及其制作方法 Pending CN105301071A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201510714202.7A CN105301071A (zh) 2015-10-28 2015-10-28 一种新型工业废气检测装置及其制作方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201510714202.7A CN105301071A (zh) 2015-10-28 2015-10-28 一种新型工业废气检测装置及其制作方法

Publications (1)

Publication Number Publication Date
CN105301071A true CN105301071A (zh) 2016-02-03

Family

ID=55198579

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201510714202.7A Pending CN105301071A (zh) 2015-10-28 2015-10-28 一种新型工业废气检测装置及其制作方法

Country Status (1)

Country Link
CN (1) CN105301071A (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107817197A (zh) * 2016-09-12 2018-03-20 现代自动车株式会社 颗粒物质传感器装置及检测装置的制造方法
CN110988083A (zh) * 2019-12-11 2020-04-10 吉林大学 以ZnGa2O4和Pt为电极的YSZ基混成电位型SO2传感器及其制备方法

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1403807A (zh) * 2002-11-05 2003-03-19 北京科技大学 一种用于CO2-NOx气体监测的薄膜型传感器
WO2008001806A1 (fr) * 2006-06-30 2008-01-03 National Institute Of Advanced Industrial Science And Technology Détecteur de gaz d'un système de cellule électrochimique
CN201141848Y (zh) * 2008-01-14 2008-10-29 吉林大学 一体化双功能nasicon固体电解质气体传感器
CN101318703A (zh) * 2008-07-08 2008-12-10 清华大学 一种氧化钨纳米线及氧化钨纳米线氨敏传感器的制备方法
CN101889201A (zh) * 2007-10-09 2010-11-17 佛罗里达大学研究基金公司 具有集成温度控制和温度传感器的多功能电位测量型气体传感器阵列
CN103424435A (zh) * 2013-08-20 2013-12-04 天津大学 多孔硅基三氧化钨纳米棒复合结构气敏传感器元件的制备方法
CN103954670A (zh) * 2014-05-08 2014-07-30 吉林大学 具有高效三相界面的ysz基混成电位型no2传感器及其制备方法
JP2014173890A (ja) * 2013-03-06 2014-09-22 Ngk Spark Plug Co Ltd ガスセンサ及び断線検知方法
CN104820068A (zh) * 2015-04-22 2015-08-05 上海纳米技术及应用国家工程研究中心有限公司 氧化锡氧化铝基低浓度丙酮气体传感器及其制备方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1403807A (zh) * 2002-11-05 2003-03-19 北京科技大学 一种用于CO2-NOx气体监测的薄膜型传感器
WO2008001806A1 (fr) * 2006-06-30 2008-01-03 National Institute Of Advanced Industrial Science And Technology Détecteur de gaz d'un système de cellule électrochimique
CN101889201A (zh) * 2007-10-09 2010-11-17 佛罗里达大学研究基金公司 具有集成温度控制和温度传感器的多功能电位测量型气体传感器阵列
CN201141848Y (zh) * 2008-01-14 2008-10-29 吉林大学 一体化双功能nasicon固体电解质气体传感器
CN101318703A (zh) * 2008-07-08 2008-12-10 清华大学 一种氧化钨纳米线及氧化钨纳米线氨敏传感器的制备方法
JP2014173890A (ja) * 2013-03-06 2014-09-22 Ngk Spark Plug Co Ltd ガスセンサ及び断線検知方法
CN103424435A (zh) * 2013-08-20 2013-12-04 天津大学 多孔硅基三氧化钨纳米棒复合结构气敏传感器元件的制备方法
CN103954670A (zh) * 2014-05-08 2014-07-30 吉林大学 具有高效三相界面的ysz基混成电位型no2传感器及其制备方法
CN104820068A (zh) * 2015-04-22 2015-08-05 上海纳米技术及应用国家工程研究中心有限公司 氧化锡氧化铝基低浓度丙酮气体传感器及其制备方法

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107817197A (zh) * 2016-09-12 2018-03-20 现代自动车株式会社 颗粒物质传感器装置及检测装置的制造方法
US10962466B2 (en) 2016-09-12 2021-03-30 Hyundai Motor Company Particulate matters sensor device and manufacturing method of sensor unit provided in this
CN107817197B (zh) * 2016-09-12 2021-08-24 现代自动车株式会社 颗粒物质传感器装置及检测装置的制造方法
CN110988083A (zh) * 2019-12-11 2020-04-10 吉林大学 以ZnGa2O4和Pt为电极的YSZ基混成电位型SO2传感器及其制备方法

Similar Documents

Publication Publication Date Title
Thirumalairajan et al. Surface morphology-dependent room-temperature LaFeO3 nanostructure thin films as selective NO2 gas sensor prepared by radio frequency magnetron sputtering
CN103543184B (zh) 一种基于四氧化三钴纳米针的气敏传感器及其制备方法
Tan et al. Automated room temperature optical absorbance CO sensor based on In-doped ZnO nanorod
CN104359959B (zh) 以Ni3V2O8为敏感电极的YSZ基混成电位型NH3传感器及制备方法
Ma et al. Preparation of three-dimensional Ce-doped Sn3O4 hierarchical microsphere and its application on formaldehyde gas sensor
CN104597095B (zh) 基于Co3V2O8敏感电极和三维三相界面的YSZ基混成电位型NO2传感器及制备方法
Zhang et al. Integrated sensing array of the perovskite-type LnFeO3 (Ln˭ La, Pr, Nd, Sm) to discriminate detection of volatile sulfur compounds
CN108007977B (zh) 基于β-Ga2O3/CuGa2O4/[HONH3]PbI3异质结的气敏传感器
Cao et al. LaNiTiO3-SE-based stabilized zirconium oxide mixed potentiometric SO2 gas sensor
Li et al. Xanthate sensing properties of Pt-functionalized WO3 microspheres synthesized by one-pot hydrothermal method
CN105322246A (zh) 一种蓄电池模块及其制作方法
CN105301071A (zh) 一种新型工业废气检测装置及其制作方法
Chang et al. Cr-doped ZnO based NO2 sensors with high sensitivity at low operating temperature
Kim et al. Sensitivity enhancement for CO gas detection using a SnO2–CeO2–PdOx system
CN105259237A (zh) 一种新型废气检测装置及其制作方法
CN105319251A (zh) 一种发动机尾气处理装置及其制作方法
Mun et al. Resistive-type lanthanum ferrite oxygen sensor based on nanoparticle-assimilated nanofiber architecture
CN105372317A (zh) 一种高压真空配电柜及其制作方法
CN105403608A (zh) 一种加油站及其实施方法
CN105372312A (zh) 一种真空环网柜及其制作方法
CN105223246A (zh) 一种印染装置及其制作方法
CN105372314A (zh) 一种机器人及其制作方法
CN105241934A (zh) 一种发电厂及其实施方法
CN105241933A (zh) 一种家庭煤气管道及其制作方法
CN105372316A (zh) 一种继电保护器及其制作方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20160203