CN105258940A - 机械故障定量提取的标准化多小波与多小波包变换方法 - Google Patents

机械故障定量提取的标准化多小波与多小波包变换方法 Download PDF

Info

Publication number
CN105258940A
CN105258940A CN201510856762.6A CN201510856762A CN105258940A CN 105258940 A CN105258940 A CN 105258940A CN 201510856762 A CN201510856762 A CN 201510856762A CN 105258940 A CN105258940 A CN 105258940A
Authority
CN
China
Prior art keywords
wavelet
signal
fault
standardization
ultiwavelet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201510856762.6A
Other languages
English (en)
Other versions
CN105258940B (zh
Inventor
袁静
朱骏
魏颖
倪修华
翁孚达
李文杰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shanghai Radio Equipment Research Institute
Original Assignee
Shanghai Radio Equipment Research Institute
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shanghai Radio Equipment Research Institute filed Critical Shanghai Radio Equipment Research Institute
Priority to CN201510856762.6A priority Critical patent/CN105258940B/zh
Publication of CN105258940A publication Critical patent/CN105258940A/zh
Application granted granted Critical
Publication of CN105258940B publication Critical patent/CN105258940B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Other Investigation Or Analysis Of Materials By Electrical Means (AREA)
  • Complex Calculations (AREA)

Abstract

本发明涉及一种机械故障定量提取的标准化多小波与多小波包变换方法,均是通过对待测故障信号分别实施多小波变换、标准基变换、能量误差标定和标准化处理这四个步骤,实现对机械故障的定量提取与识别。本发明不仅继承了传统的多小波变换优点,兼具正交性、紧支性、对称性和高阶消失矩等多种优良性质,并拥有多个时频特性有所差异的基函数;同时能克服多小波分解失真的问题,提高计算效率与准确性,有效揭示机械故障,特别是早期损伤和复合故障的部位、种类和程度,为机械故障特征定量提取与识别提供实用手段,保障机械设备运行安全。

Description

机械故障定量提取的标准化多小波与多小波包变换方法
技术领域
本发明涉及一种机械设备故障特征定量提取与识别方法,具体是指一种机械故障定量提取的标准化多小波与多小波包变换方法,特别适用于电力机车、连铸连轧机组、风电装备、雷达精密稳定平台等关键机械设备早期损伤和复合故障定量提取与精确诊断。
背景技术
随着机械设备不断运行,故障状态处于劣化或蜕变的渐进物理过程。常规的故障定性诊断一般是根据设备状态信息识别故障类型并确定故障部位。而实际中我们往往更期望定量识别故障程度,从而量化评估故障演变过程并准确预测剩余寿命,为制定适当预知维修策略提供可靠依据。因此,不断研究开发故障定量提取与识别的新理论和新方法,掌握故障量化演变规律,进行故障定量诊断和运行状态评估,才能保障设备运行安全。
工程实践中常用的傅里叶变换、短时傅里叶变换、经典小波变换、第二代小波变换、多小波变换等信号处理方法都是基于内积变换的特征波形基函数信号分解与特征提取的机械故障诊断原理与技术。其中,近年来兴起的多小波变换是小波理论的新发展。它不仅兼备单小波所不能同时具备的多种优良性质,同时拥有多个时频特性有所差异的基函数,使得多小波在机械故障特征提取与识别方面具有显著优势。
目前,国内外现有的机械故障诊断的多小波变换方法,大部分研究集中于多小波变换与多小波降噪。中国专利CN201210361717公开了一种利用矩阵小波变换的行星齿轮箱复合故障诊断方法,其采用提升方法构造最优矩阵小波函数,以实现复合故障的一次性分离和诊断。中国专利CN201210361690公开了一种采用多小波系数间相关性进行自适应分块阈值降噪的时域诊断方法,应用范围为齿轮箱损伤诊断。国际期刊MechanicalSystemsandSignalProcessing中记载的学术论文“AnimprovedEEMDwithmultiwaveletpacketforrotatingmachinerymulti-faultdiagnosis”,主要是将多小波包变换与EEMD相结合,分离与识别叶片转子试验台和燃气轮机的复合故障。学术论文“Constructionandselectionoflifting-basedmultiwaveletsformechanicalfaultdetection”研究的是基于提升框架的自适应多小波构造理论,并应用于电力机车、连铸连轧机组等关键设备故障识别。
在经典小波变换中,为保证分解和重构的能量守恒,特别规定尺度函数φ(t)所对应的低通滤波器{hk}满足下式:
Σ k { h k } = 1 ;
而多小波基函数的构造涉及矩阵运算,采用分形插值、样条插值等数学方法构造出GHM多小波、CL多小波、Hermite样条多小波等多小波基函数,为保证基函数正交性、紧支性、对称性等优良性质,并没有规定多尺度函数Φ(x)所对应的低通滤波器组{Hk}满足类似归一化关系式。这使得在上述现有技术的多小波变换与多小波降噪过程中,因基函数本身构造问题和误差累计传播等因素导致多小波分解信号出现信号失真现象,即经多小波技术提取的故障特征存在失真性增强或削弱,扭曲分析结果中故障特征信息。因此,上述现有技术无法反映多小波变换所提取的故障特征与真实损伤程度的对应关系,难以实现机械故障的定量提取与精确诊断。
发明内容
本发明的目的在于提供一种机械故障定量提取的标准化多小波与多小波包变换方法,其继承传统多小波变换优点,并能克服多小波分解失真的问题,有效揭示机械故障的部位、种类和程度,为机械故障特征定量提取与识别提供实用手段,保障机械设备运行安全。
为了达到上述目的,本发明提供一种机械故障定量提取的标准化多小波变换方法,其包含以下步骤:
S1、多小波变换:采用多小波基函数对待测故障信号进行多小波分解,并计算分解后各信号的多小波变换能量;
S2、标准基变换:采用标准基函数对待测故障信号进行单小波分解,并计算分解后各信号的标准基变换能量;
S3、能量误差标定:采用标准基变换能量对多小波变换能量进行类比与标定,计算标准化系数;
S4、标准化处理:根据标准化系数分别对多小波分解后的各信号进行标准化处理,以实现对机械故障的定量提取与识别。
所述的S1中,具体包含以下步骤:
S11、对待测故障信号s实施重复采样的前处理,或是实施无严格重复采样的前处理,获得故障矢量输入信号sc0
S12、采用多小波基函数对故障矢量输入信号sc0进行m层非冗余多小波分解或m层冗余多小波分解,并实施后处理,即S11中所采用的前处理的逆过程,获得多小波低频信号scm和m个多小波高频信号sdm,sdm-1,…,sd1
所述的多小波基函数包含多尺度函数Φ(x)和多小波函数Ψ(x),且具有N阶消失矩;
S13、分别计算多小波低频信号scm和m个多小波高频信号sdm,sdm-1,…,sd1的多小波变换能量
所述的S2中,具体包含以下步骤:
S21、采用标准基函数对待测故障信号s进行m层非冗余单小波分解或m层冗余单小波分解,获得标准基低频信号cm和m个标准基高频信号dm,dm-1,…,d1
所述的标准基函数采用与多小波基函数具有相同阶次消失矩的DbN小波(Daubechies小波,N表示不同小波阶次)基函数;
S22、分别计算标准基低频信号cm和m个标准基高频信号dm,dm-1,…,d1的标准基变换能量
所述的S3中,采用标准基变换能量对多小波变换能量进行类比与标定,计算多小波低频信号scm和m个多小波高频信号sdm,sdm-1,…,sd1所对应的标准化系数am,bm,…,b1
a m = E c m E sc m
b m = E c m E dc m .
.
.
.
b 1 = E c 1 E dc 1
所述的S4中,根据标准化系数am,bm,…,b1,分别对多小波低频信号scm和m个多小波高频信号sdm,sdm-1,…,sd1进行标准化处理,计算得到标准化多小波变换输出的定量分析结果sc′m,sd′m,…,sd′1
sc′m=scm×am
sd′m=sdm×bm
.
.
.
sd′1=sd1×b1
最终从标准化多小波变换输出的定量分析结果中提取机械故障特征。
本发明还提供一种机械故障定量提取的标准化多小波包变换方法,其包含以下步骤:
S1、多小波变换:采用多小波基函数对待测故障信号进行多小波包分解,并计算分解后各信号的多小波包变换能量;
S2、标准基变换:采用标准基函数对待测故障信号进行单小波包分解,并计算分解后各信号的标准基小波包变换能量;
S3、能量误差标定:采用标准基小波包变换能量对多小波包变换能量进行类比与标定,计算标准化系数;
S4、标准化处理:根据标准化系数分别对多小波包分解后的各信号进行标准化处理,以实现对机械故障的定量提取与识别。
所述的S1中,具体包含以下步骤:
S11、对待测故障信号s实施重复采样的前处理,或是实施无严格重复采样的前处理,获得故障矢量输入信号sc0
S12、采用多小波基函数对故障矢量输入信号sc0进行m层非冗余多小波包分解或m层冗余多小波包分解,并实施后处理,即S11中所采用的前处理的逆过程,获得2m个多小波包频带分解信号
所述的多小波基函数包含多尺度函数Φ(x)和多小波函数Ψ(x),且具有N阶消失矩;
S13、分别计算2m个多小波包频带分解信号的多小波包变换能量
所述的S2中,具体包含以下步骤:
S21、采用标准基函数对待测故障信号s进行m层非冗余单小波包分解或m层冗余单小波包分解,获得2m个标准基频带分解信号
所述的标准基函数采用与多小波基函数具有相同阶次消失矩的DbN小波基函数;
S22、分别计算2m个标准基频带分解信号的标准基小波包变换能量
所述的S3中,为保证多小波分解过程的能量守恒,采用标准基小波包变换能量对多小波包变换能量进行类比与标定,计算2m个多小波包频带分解信号所对应的标准化系数
x 1 = E f 1 E ms 1
x 2 = E f 2 E ms 2 .
.
.
.
x 2 m = E f 2 m E ms 2 m
所述的S4中,根据标准化系数分别对2m个多小波包频带分解信号进行标准化处理,计算得到标准化多小波包变换输出的定量分析结果
ms′1=ms1×x1
ms′2=ms2×x2
.
.
.
ms 2 m ′ = ms 2 m × x 2 m
最终从标准化多小波包变换输出的定量分析结果中提取机械故障特征。
综上所述,本发明提供的机械故障定量提取的标准化多小波与多小波包变换方法,具有以下优点和有益效果:
1、本发明继承传统多小波变换优点,不仅同时兼具正交性、紧支性、对称性和高阶消失矩等多种优良性质,同时拥有多个时频特性有所差异的基函数,使得多小波在机械故障特征提取与识别中颇具优势;
2、本发明能够克服多小波分解失真的现象,通过与标准基函数的类比和标定,量化控制多小波变换过程中的累积误差,提出标准化多小波与多小波包变换,保证多小波变换的定量分解,提高计算效率与准确性,有效揭示机械故障特别是早期损伤和复合故障的部位、种类和程度,为机械故障特征定量提取与识别提供实用手段,保障机械设备运行安全。
附图说明
图1为本发明中的标准化多小波变换方法的流程图;
图2为本发明实施例一中的仿真信号的示意图;
图3为对图2的仿真信号采用传统GHM多小波变换的分析结果;其中,(a)为第2层分解低频信号,(b)为第2层分解高频信号,(c)为第1层分解高频信号;
图4为对图2的仿真信号采用Db2标准基变换的分析结果;其中,(a)为第2层分解低频信号,(b)为第2层分解高频信号,(c)为第1层分解高频信号;
图5为对图3的分析结果进行标准化处理后得到的最终分析结果;其中,(a)为第2层分解低频信号,(b)为第2层分解高频信号,(c)为第1层分解高频信号;
图6为本发明中的标准化多小波包变换方法的流程图;
图7为本发明实施例二中的轴承外圈早期轻微擦伤故障振动信号的示意图;
图8为对图7的故障振动信号采用传统提升自适应多小波包变换的分析结果;其中,(a)为第1频带分解信号,(b)为第2频带分解信号,(c)为第3频带分解信号,(d)为第4频带分解信号;
图9为对图7的故障振动信号采用Db1标准基变换的分析结果;其中,(a)为第1频带分解信号,(b)为第2频带分解信号,(c)为第3频带分解信号,(d)为第4频带分解信号;
图10为对图8的分析结果进行标准化处理后得到的最终分析结果;其中,(a)为第1频带分解信号,(b)为第2频带分解信号,(c)为第3频带分解信号,(d)为第4频带分解信号。
具体实施方式
以下结合附图,详细说明本发明的多个优选实施例。
本发明提供的机械故障定量提取的标准化多小波与多小波包变换方法,包含标准化多小波变换方法和标准化多小波包变换方法;其中,所述的标准化多小波包变换是对标准化多小波变换结果中的高频信号所进行的进一步细分处理,用以提高高频信号的频率分辨率,提供频带更加精细的分析方法。
如图1所示,所述的机械故障定量提取的标准化多小波变换方法,针对待测故障信号s分别实施S1、多小波变换;S2、标准基变换;S3、能量误差标定;S4、标准化处理各个步骤,最终实现对机械故障的定量提取与识别。
所述的S1中,具体包含以下步骤:
S11、对待测故障信号s实施重复采样的前处理,或是实施无严格重复采样的前处理,获得故障矢量输入信号sc0
S12、采用多小波基函数对故障矢量输入信号sc0进行m层非冗余多小波分解或m层冗余多小波分解,并实施相应的后处理(即S11中所采用的前处理的逆过程),获得多小波低频信号scm和m个多小波高频信号sdm,sdm-1,…,sd1
所述的多小波基函数包含多尺度函数Φ(x)和多小波函数Ψ(x),且具有N阶消失矩;
S13、分别计算多小波低频信号scm和m个多小波高频信号sdm,sdm-1,…,sd1的多小波变换能量
所述的S2中,具体包含以下步骤:
S21、采用标准基函数对待测故障信号s进行m层非冗余单小波分解或m层冗余单小波分解,获得标准基低频信号cm和m个标准基高频信号dm,dm-1,…,d1
所述的标准基函数采用与多小波基函数具有相同阶次消失矩的DbN小波(Daubechies小波,N表示不同小波阶次)基函数;
S22、分别计算标准基低频信号cm和m个标准基高频信号dm,dm-1,…,d1的标准基变换能量
所述的S3中,为保证多小波分解过程的能量守恒,采用标准基变换能量对多小波变换能量进行类比与标定,计算多小波低频信号scm和m个多小波高频信号sdm,sdm-1,…,sd1所对应的标准化系数am,bm,…,b1
a m = E c m E sc m
b m = E c m E dc m .
.
.
.
b 1 = E c 1 E dc 1
所述的S4中,根据标准化系数am,bm,…,b1,分别对多小波低频信号scm和m个多小波高频信号sdm,sdm-1,…,sd1进行标准化处理,计算得到标准化多小波变换输出的定量分析结果sc′m,sd′m,…,sd′1
sc′m=scm×am
sd′m=sdm×bm
.
.
.
sd′1=sd1×b1
最终从标准化多小波变换输出的定量分析结果中提取机械故障特征。
在本发明所提供的机械故障定量提取的标准化多小波变换方法中,由于DbN小波能保证分解和重构的能量守恒,因此本发明采用DbN小波的优势来弥补多小波的劣势,将DbN小波基函数作为标准基函数,通过与同阶次DbN小波分解结果的类比和标定,确定不同基函数的多小波累积误差量化关系,采用能量守恒原理实现多小波分解误差控制与标准化变换,定量提取与识别机械故障特征,准确揭示机械故障部位、种类和损伤程度,为机械故障特别是早期损伤和复合故障特征定量提取和故障定量识别提供实用可靠手段。
实施例一
以下以仿真实施案例来详细描述机械故障定量提取的标准化多小波变换方法。构造满足均匀分布的随机信号,以采样频率fs=1024Hz以及点数n=5120进行采样仿真,构造的仿真信号s如图2所示。该仿真信号s的总能量Es为335.7747。以下按照图1所示的流程对仿真信号s进行分析。
首先,采用GHM多小波基函数对仿真信号s进行2层多小波分解,得到多小波低频信号sc2和2个多小波高频信号sd2,sd1,分别如图3中的(a),(b),(c)所示;再计算得到各个分解信号的多小波变换能量为: E sd 2 = 53.8869 , E sd 1 = 23.1684.
此时,我们不难发现,在仅仅进行了GHM多小波分解后得到的多小波变换总能量为188.5068,其远小于上述的仿真信号s的总能量Es。对于均匀分布的随机信号,其多小波分解后的变换能量应该呈现二分特征,即理论上分解后的变换能量应该为83.9437、83.9437和167.8874。两相比较可见,如果仅采用传统的GHM多小波基函数进行分析的话,其变换能量出现明显失真,特别是图3中(c)显示的第1层分解高频信号sd1的幅值明显缩小,导致模拟特征信息存在失真性削弱。
接着,由于GHM多小波基函数具有2阶消失矩,因此选用与其消失矩相同的Db2小波基函数作为标准基函数;并采用该标准基函数对仿真信号s进行2层单小波分解,分别得到标准基低频信号cm和2个标准基高频信号d2,d1,分别如图4中的(a),(b),(c)所示;再计算得到各个分解信号的标准基变换能量为: E c 1 = 82.3685 , E d 2 = 85.3263 , E d 1 = 168.0800 , 其结果与上述理论上的分解后的变换能量已经基本一致。
然后,为了保证多小波分解过程的能量守恒,采用标准基变换能量对多小波变换能量进行类比与标定,计算得到标准化系数a2=0.8597,b2=1.2583,b1=2.6935。
最后,采用该标准化系数对图3中的GHM多小波分解后的各个信号进行标准化处理,获得如图5所示的本发明标准化多小波变换的最终分析结果。其与图3和图4所显示的分解信号相比,进行了标准化处理后的多小波变换结果的幅值正常,没有出现失真性增强或削弱,有利于对仿真特征的定量提取与识别。
如图6所示,所述的机械故障定量提取的标准化多小波包变换方法,针对待测故障信号s分别实施S1、多小波变换;S2、标准基变换;S3、能量误差标定;S4、标准化处理各个步骤,最终实现对机械故障的定量提取与识别。
所述的S1中,具体包含以下步骤:
S11、对待测故障信号s实施重复采样的前处理,或是实施无严格重复采样的前处理,获得故障矢量输入信号sc0
S12、采用多小波基函数对故障矢量输入信号sc0进行m层非冗余多小波包分解或m层冗余多小波包分解,并实施相应的后处理(即S11中所采用的前处理的逆过程),获得2m个多小波包频带分解信号
所述的多小波基函数包含多尺度函数Φ(x)和多小波函数Ψ(x),且具有N阶消失矩;
S13、分别计算2m个多小波包频带分解信号的多小波包变换能量
所述的S2中,具体包含以下步骤:
S21、采用标准基函数对待测故障信号s进行m层非冗余单小波包分解或m层冗余单小波包分解,获得2m个标准基频带分解信号
所述的标准基函数采用与多小波基函数具有相同阶次消失矩的DbN小波(Daubechies小波,N表示不同小波阶次)基函数;
S22、分别计算2m个标准基频带分解信号的标准基小波包变换能量
所述的S3中,为保证多小波分解过程的能量守恒,采用标准基小波包变换能量对多小波包变换能量进行类比与标定,计算2m个多小波包频带分解信号所对应的标准化系数
x 1 = E f 1 E ms 1
x 2 = E f 2 E ms 2 .
.
.
.
x 2 m = E f 2 m E ms 2 m
所述的S4中,根据标准化系数分别对2m个多小波包频带分解信号进行标准化处理,计算得到标准化多小波包变换输出的定量分析结果
ms′1=ms1×x1
ms′2=ms2×x2
.
.
.
ms 2 m ′ = ms 2 m × x 2 m
最终从标准化多小波包变换输出的定量分析结果中提取机械故障特征。
在本发明所提供的机械故障定量提取的标准化多小波包变换方法中,由于DbN小波能保证分解和重构的能量守恒,因此本发明采用DbN小波的优势来弥补多小波的劣势,将DbN小波基函数作为标准基函数,通过与同阶次DbN小波分解结果的类比和标定,确定不同基函数的多小波累积误差量化关系,采用能量守恒原理实现多小波分解误差控制与标准化变换,定量提取与识别机械故障特征,准确揭示机械故障部位、种类和损伤程度,为机械故障特别是早期损伤和复合故障特征定量提取和故障定量识别提供实用可靠手段。
实施例二
以下以轴承故障实施案例来详细描述机械故障定量提取的标准化多小波包变换方法。在电力机车轴承试验台上对外圈早期轻微擦伤的故障轴承进行试验。试验中,采样频率设定为12.8kHz,转速为650r/min,计算得到轴承外圈故障特征频率为78.169Hz。如图7所示,为本实施例中的轴承外圈早期轻微擦伤故障振动信号,该轴承故障信号的总能量为Ef为317.5900。以下按照图6所示的流程对轴承故障信号进行分析。
首先,采用基于提升自适应多小波基函数对轴承故障信号进行2层多小波包分解,得到4个多小波包频带分解信号ms1,ms2,ms3,ms4,分别如图8中的(a),(b),(c),(d)所示;再计算各频带分解信号的多小波包变换能量为: E ms 2 = 1210 , E ms 3 = 3690 , E ms 4 = 874220.
此时,我们不难发现,在仅仅进行了提升自适应多小波包分解后得到的多小波包变换总能量为879130,其远大于上述的轴承故障信号的总能量Ef。尤其是,图8中(a)显示的第1频带分解信号ms1的幅值明显失真性缩小,而图8中(b)、(c)、(d)显示的第2、3、4频带分解信号ms2,ms3,ms4的幅值明显失真性放大,导致第1频带分解信号ms1所提取的轴承外圈故障特征(图8中(a)的周期性冲击序列)削弱,使得所提取的故障特征量值与真实轴承外圈故障损伤程度的对应比例减弱,难以实现故障特征的定量提取与识别。
接着,由于提升自适应多小波基函数具有1阶消失矩,因此选用与其消失矩相同的Db1小波基函数作为标准基函数;并采用该标准基函数对轴承故障信号进行2层单小波分解,得到4个标准基频带分解信号f1,f2,f3,f4,分别如图9中的(a),(b),(c),(d)所示;再计算各频带分解信号的标准基小波包变换能量为: E f 1 = 21.6779 , E f 2 = 47.7952 , E f 3 = 184.2487 , E f 4 = 63.8682 3.
此时,我们不难发现,在进行了Db1小波标准基变换后得到的标准基小波包变换总能量为总能量317.5900,已经与上述的轴承故障信号的总能量Ef一致。但是,将图9中的(a)显示的信号与图8中的(a)显示的信号对比后,由于多小波的优良性质,多小波可以有效提取轴承外圈故障特征,而Db小波无法提取该轴承外圈故障征兆。
然后,为了保证多小波分解过程的能量守恒,采用标准基小波包变换能量对多小波包变换能量进行类比与标定,计算得到标准化系数x1=1.4343,x2=0.1986,x3=0.2236,x4=0.0085。
最后,采用该标准化系数对图8中的提升自适应多小波包分解后的各个频带分解信号进行标准化处理,获得如图10所示的本发明标准化多小波包变换的最终分析结果。其与图8和图9所显示的频带分解信号相比,进行了标准化处理后的多小波包变换结果的幅值正常,没有出现失真性增强或削弱,有利于轴承故障特征的定量提取与识别。
为了进一步验证本发明所定量提取轴承故障特征的效果,采用冲击脉冲法对轴承外圈故障进行定量识别。该方法中根据冲击脉冲值B的如下值判断轴承运行状态:
0≤B<21dB,正常状态,轴承工作状态良好;
21≤B<35dB,轻微故障,轴承有早期损伤;
35≤B<60dB,严重故障,轴承已有明显损伤。
如果根据图8中的(a)所示的外圈故障特征信息,计算得到冲击脉冲值为Bms=11.6378dB,说明轴承处于正常状态,且工况良好,这与轴承实际已经处于故障状态并不符合,也说明传统方法存在较大的失真。而如果根据图10中的(a)所示的外圈故障特征信息,计算得到冲击脉冲值为Bf=26.4697dB,说明轴承存在早期轻微损伤,这与该轴承外圈实际已经存在早期轻微擦伤的实际损伤状态吻合,也验证了本发明在故障定量提取方面的有效性与实用性。
在本发明所提供的机械故障定量提取的标准化多小波与多小波包变换方法中,由于DbN小波能保证分解和重构的能量守恒,因此本发明采用DbN小波的优势来弥补多小波的劣势,将DbN小波基函数作为标准基函数,通过与同阶次DbN小波分解结果的类比和标定,确定不同基函数的多小波累积误差量化关系,采用能量守恒原理实现多小波分解误差控制与标准化变换,定量提取与识别机械故障特征,准确揭示机械故障部位、种类和损伤程度,为机械故障特别是早期损伤和复合故障特征定量提取和故障定量识别提供实用可靠手段。
综上所述,本发明提供的机械故障定量提取的标准化多小波与多小波包变换方法,具有以下优点和有益效果:
1、本发明继承传统多小波变换优点,不仅同时兼具正交性、紧支性、对称性和高阶消失矩等多种优良性质,同时拥有多个时频特性有所差异的基函数,使得多小波在机械故障特征提取与识别中颇具优势;
2、本发明能够克服多小波分解失真的现象,通过与标准基函数的类比和标定,量化控制多小波变换过程中的累积误差,提出标准化多小波与多小波包变换,保证多小波变换的定量分解,提高计算效率与准确性,有效揭示机械故障特别是早期损伤和复合故障的部位、种类和程度,为机械故障特征定量提取与识别提供实用手段,保障机械设备运行安全。
尽管本发明的内容已经通过上述优选实施例作了详细介绍,但应当认识到上述的描述不应被认为是对本发明的限制。在本领域技术人员阅读了上述内容后,对于本发明的多种修改和替代都将是显而易见的。因此,本发明的保护范围应由所附的权利要求来限定。

Claims (10)

1.一种机械故障定量提取的标准化多小波变换方法,其特征在于,包含以下步骤:
S1、多小波变换:采用多小波基函数对待测故障信号进行多小波分解,并计算分解后各信号的多小波变换能量;
S2、标准基变换:采用标准基函数对待测故障信号进行单小波分解,并计算分解后各信号的标准基变换能量;
S3、能量误差标定:采用标准基变换能量对多小波变换能量进行类比与标定,计算标准化系数;
S4、标准化处理:根据标准化系数分别对多小波分解后的各信号进行标准化处理,以实现对机械故障的定量提取与识别。
2.如权利要求1所述的机械故障定量提取的标准化多小波变换方法,其特征在于,所述的S1中,具体包含以下步骤:
S11、对待测故障信号s实施重复采样的前处理,或是实施无严格重复采样的前处理,获得故障矢量输入信号sc0
S12、采用多小波基函数对故障矢量输入信号sc0进行m层非冗余多小波分解或m层冗余多小波分解,并实施后处理,即S11中所采用的前处理的逆过程,获得多小波低频信号scm和m个多小波高频信号sdm,sdm-1,…,sd1
所述的多小波基函数包含多尺度函数Φ(x)和多小波函数Ψ(x),且具有N阶消失矩;
S13、分别计算多小波低频信号scm和m个多小波高频信号sdm,sdm-1,…,sd1的多小波变换能量
3.如权利要求2所述的机械故障定量提取的标准化多小波变换方法,其特征在于,所述的S2中,具体包含以下步骤:
S21、采用标准基函数对待测故障信号s进行m层非冗余单小波分解或m层冗余单小波分解,获得标准基低频信号cm和m个标准基高频信号dm,dm-1,…,d1
所述的标准基函数采用与多小波基函数具有相同阶次消失矩的DbN小波基函数;
S22、分别计算标准基低频信号cm和m个标准基高频信号dm,dm-1,…,d1的标准基变换能量
4.如权利要求3所述的机械故障定量提取的标准化多小波变换方法,其特征在于,所述的S3中,采用标准基变换能量对多小波变换能量进行类比与标定,计算多小波低频信号scm和m个多小波高频信号sdm,sdm-1,…,sd1所对应的标准化系数am,bm,…,b1
a m = E c m E sc m b m = E c m E dc m . . . b 1 = E c 1 E dc 1 .
5.如权利要求4所述的机械故障定量提取的标准化多小波变换方法,其特征在于,所述的S4中,根据标准化系数am,bm,…,b1,分别对多小波低频信号scm和m个多小波高频信号sdm,sdm-1,…,sd1进行标准化处理,计算得到标准化多小波变换输出的定量分析结果sc′m,sd′m,…,sd′1
sc′m=scm×am
sd′m=sdm×bm
·
·
·
sd′1=sd1×b1
并从标准化多小波变换输出的定量分析结果中提取机械故障特征。
6.一种机械故障定量提取的标准化多小波包变换方法,其特征在于,包含以下步骤:
S1、多小波变换:采用多小波基函数对待测故障信号进行多小波包分解,并计算分解后各信号的多小波包变换能量;
S2、标准基变换:采用标准基函数对待测故障信号进行单小波包分解,并计算分解后各信号的标准基小波包变换能量;
S3、能量误差标定:采用标准基小波包变换能量对多小波包变换能量进行类比与标定,计算标准化系数;
S4、标准化处理:根据标准化系数分别对多小波包分解后的各信号进行标准化处理,以实现对机械故障的定量提取与识别。
7.如权利要求6所述的机械故障定量提取的标准化多小波包变换方法,其特征在于,所述的S1中,具体包含以下步骤:
S11、对待测故障信号s实施重复采样的前处理,或是实施无严格重复采样的前处理,获得故障矢量输入信号sc0
S12、采用多小波基函数对故障矢量输入信号sc0进行m层非冗余多小波包分解或m层冗余多小波包分解,并实施后处理,即S11中所采用的前处理的逆过程,获得2m个多小波包频带分解信号
所述的多小波基函数包含多尺度函数Φ(x)和多小波函数Ψ(x),且具有N阶消失矩;
S13、分别计算2m个多小波包频带分解信号的多小波包变换能量
8.如权利要求7所述的机械故障定量提取的标准化多小波包变换方法,其特征在于,所述的S2中,具体包含以下步骤:
S21、采用标准基函数对待测故障信号s进行m层非冗余单小波包分解或m层冗余单小波包分解,获得2m个标准基频带分解信号
所述的标准基函数采用与多小波基函数具有相同阶次消失矩的DbN小波基函数;
S22、分别计算2m个标准基频带分解信号的标准基小波包变换能量
9.如权利要求8所述的机械故障定量提取的标准化多小波包变换方法,其特征在于,所述的S3中,为保证多小波分解过程的能量守恒,采用标准基小波包变换能量对多小波包变换能量进行类比与标定,计算2m个多小波包频带分解信号所对应的标准化系数
x 1 = E f 1 E ms 1 x 2 = E f 2 E ms 2 . . . x 2 m = E f 2 m E ms 2 m .
10.如权利要求9所述的机械故障定量提取的标准化多小波包变换方法,其特征在于,所述的S4中,根据标准化系数分别对2m个多小波包频带分解信号进行标准化处理,计算得到标准化多小波包变换输出的定量分析结果
ms′1=ms1×x1
ms′2=ms2×x2
·
·
·
ms 2 m ′ = ms 2 m × x 2 m
并从标准化多小波包变换输出的定量分析结果中提取机械故障特征。
CN201510856762.6A 2015-11-30 2015-11-30 机械故障定量提取的标准化多小波与多小波包变换方法 Expired - Fee Related CN105258940B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201510856762.6A CN105258940B (zh) 2015-11-30 2015-11-30 机械故障定量提取的标准化多小波与多小波包变换方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201510856762.6A CN105258940B (zh) 2015-11-30 2015-11-30 机械故障定量提取的标准化多小波与多小波包变换方法

Publications (2)

Publication Number Publication Date
CN105258940A true CN105258940A (zh) 2016-01-20
CN105258940B CN105258940B (zh) 2018-02-09

Family

ID=55098717

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201510856762.6A Expired - Fee Related CN105258940B (zh) 2015-11-30 2015-11-30 机械故障定量提取的标准化多小波与多小波包变换方法

Country Status (1)

Country Link
CN (1) CN105258940B (zh)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106096201A (zh) * 2016-06-29 2016-11-09 潍坊学院 一种旋转机械的eemd和三次样条平滑包络分析方法
CN106596111A (zh) * 2016-12-10 2017-04-26 国网福建省电力有限公司 基于多小波的水电机组故障特征自适应提取方法
CN107229269A (zh) * 2017-05-26 2017-10-03 重庆工商大学 一种深度信念网络的风力发电机齿轮箱故障诊断方法
CN107966287A (zh) * 2017-11-22 2018-04-27 桂林电子科技大学 一种自适应机电装备微弱故障特征提取方法
CN109297699A (zh) * 2018-12-07 2019-02-01 中南大学 一种混合分解与提取的智能旋转机械故障诊断方法
CN113109043A (zh) * 2021-04-08 2021-07-13 重庆理工大学 一种主动式汽车传动系统故障模型数据库的建立方法
CN115106499A (zh) * 2022-06-30 2022-09-27 北京科技大学 一种结晶器液面异常波动判别方法及系统

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107525671B (zh) * 2017-07-28 2020-12-18 中国科学院电工研究所 一种风电机组传动链复合故障特征分离与辨识方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6182018B1 (en) * 1998-08-25 2001-01-30 Ford Global Technologies, Inc. Method and apparatus for identifying sound in a composite sound signal
JP3673689B2 (ja) * 2000-02-29 2005-07-20 独立行政法人科学技術振興機構 歯車動的性能の評価システム及び評価方法
CN101162838A (zh) * 2007-11-29 2008-04-16 昆明理工大学 一种利用小波包分解和相关分析的小电流接地系统故障选线方法
CN102778354A (zh) * 2012-05-08 2012-11-14 南京工业大学 基于小波分析的风电回转支承故障诊断方法
CN102879195A (zh) * 2012-09-25 2013-01-16 西安交通大学 齿轮箱损伤的多小波自适应分块阈值降噪时域诊断方法
CN102879196A (zh) * 2012-09-25 2013-01-16 西安交通大学 利用矩阵小波变换的行星齿轮箱复合故障诊断方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6182018B1 (en) * 1998-08-25 2001-01-30 Ford Global Technologies, Inc. Method and apparatus for identifying sound in a composite sound signal
JP3673689B2 (ja) * 2000-02-29 2005-07-20 独立行政法人科学技術振興機構 歯車動的性能の評価システム及び評価方法
CN101162838A (zh) * 2007-11-29 2008-04-16 昆明理工大学 一种利用小波包分解和相关分析的小电流接地系统故障选线方法
CN102778354A (zh) * 2012-05-08 2012-11-14 南京工业大学 基于小波分析的风电回转支承故障诊断方法
CN102879195A (zh) * 2012-09-25 2013-01-16 西安交通大学 齿轮箱损伤的多小波自适应分块阈值降噪时域诊断方法
CN102879196A (zh) * 2012-09-25 2013-01-16 西安交通大学 利用矩阵小波变换的行星齿轮箱复合故障诊断方法

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
何正嘉: "自适应多小波基函数构造与机械故障诊断应用研究", 《中国工程科学》 *
卢娜: "基于多小波的水电机组振动特征提取及故障诊断方法研究", 《中国博士学位论文全文数据库》 *
李翔: "基于小波分析的测量信号处理技术研究", 《中国博士学位论文全文数据库》 *
钟宏宇: "dbN小波变换在超短期风功率预测中的应用研究", 《沈阳工程学院学报(自然科学版)》 *

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106096201A (zh) * 2016-06-29 2016-11-09 潍坊学院 一种旋转机械的eemd和三次样条平滑包络分析方法
CN106096201B (zh) * 2016-06-29 2019-02-22 潍坊学院 一种旋转机械的eemd和三次样条平滑包络分析方法
CN106596111A (zh) * 2016-12-10 2017-04-26 国网福建省电力有限公司 基于多小波的水电机组故障特征自适应提取方法
CN107229269A (zh) * 2017-05-26 2017-10-03 重庆工商大学 一种深度信念网络的风力发电机齿轮箱故障诊断方法
CN107966287A (zh) * 2017-11-22 2018-04-27 桂林电子科技大学 一种自适应机电装备微弱故障特征提取方法
CN109297699A (zh) * 2018-12-07 2019-02-01 中南大学 一种混合分解与提取的智能旋转机械故障诊断方法
CN113109043A (zh) * 2021-04-08 2021-07-13 重庆理工大学 一种主动式汽车传动系统故障模型数据库的建立方法
CN115106499A (zh) * 2022-06-30 2022-09-27 北京科技大学 一种结晶器液面异常波动判别方法及系统
CN115106499B (zh) * 2022-06-30 2024-02-20 北京科技大学 一种结晶器液面异常波动判别方法及系统

Also Published As

Publication number Publication date
CN105258940B (zh) 2018-02-09

Similar Documents

Publication Publication Date Title
CN105258940A (zh) 机械故障定量提取的标准化多小波与多小波包变换方法
Li et al. A fault diagnosis scheme for planetary gearboxes using adaptive multi-scale morphology filter and modified hierarchical permutation entropy
Qin et al. M-band flexible wavelet transform and its application to the fault diagnosis of planetary gear transmission systems
Cui et al. Double-dictionary matching pursuit for fault extent evaluation of rolling bearing based on the Lempel-Ziv complexity
CN102721545B (zh) 一种基于多特征参量的滚动轴承故障诊断方法
Li et al. Research on test bench bearing fault diagnosis of improved EEMD based on improved adaptive resonance technology
Li et al. Health condition identification of planetary gearboxes based on variational mode decomposition and generalized composite multi-scale symbolic dynamic entropy
Ou et al. A new rolling bearing fault diagnosis method based on GFT impulse component extraction
CN103439110B (zh) 滚动轴承早期微弱故障诊断方法
Li et al. Intelligent fault identification of rotary machinery using refined composite multi-scale Lempel–Ziv complexity
CN107192554A (zh) 一种风电机组滚动轴承的振动故障诊断方法
CN102879196B (zh) 利用矩阵小波变换的行星齿轮箱复合故障诊断方法
CN103471848A (zh) 基于独立分量分析和倒频谱理论的滚动轴承故障特征提取方法
CN105928702B (zh) 基于形态分量分析的变工况齿轮箱轴承故障诊断方法
CN104165925B (zh) 随机共振的离心式压缩机半开式叶轮裂纹故障检测方法
CN102998118B (zh) 一种基于形态学滤波和复杂度测度的轴承定量诊断方法
CN102866027A (zh) 基于lmd和局域时频熵的旋转机械故障特征提取方法
Chen et al. Fault feature extraction and diagnosis of gearbox based on EEMD and deep briefs network
CN105699072A (zh) 一种基于级联经验模态分解齿轮故障诊断方法
CN104330258A (zh) 一种基于特征参量的滚动轴承故障灰色关联度辨识方法
CN101451338A (zh) 桥梁结构状态历史信息的分离方法
Zhang et al. Detection for weak fault in planetary gear trains based on an improved maximum correlation kurtosis deconvolution
CN106771598A (zh) 一种自适应谱峭度信号处理方法
CN106404386A (zh) 一种用于采集、提取及诊断齿轮箱早期故障特征信号的方法
CN107505127B (zh) 一种列车万向轴动不平衡特征谱线提取方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20180209

Termination date: 20211130