CN105244415A - 量子点杂化还原氧化石墨烯纳米薄膜光敏传感器制备工艺 - Google Patents

量子点杂化还原氧化石墨烯纳米薄膜光敏传感器制备工艺 Download PDF

Info

Publication number
CN105244415A
CN105244415A CN201510679123.7A CN201510679123A CN105244415A CN 105244415 A CN105244415 A CN 105244415A CN 201510679123 A CN201510679123 A CN 201510679123A CN 105244415 A CN105244415 A CN 105244415A
Authority
CN
China
Prior art keywords
quantum dot
graphene nano
film
stannic oxide
hydridization
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201510679123.7A
Other languages
English (en)
Inventor
贺显聪
巴志新
皮锦红
陆大伟
潘烁
邹高鹏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nanjing Institute of Technology
Original Assignee
Nanjing Institute of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanjing Institute of Technology filed Critical Nanjing Institute of Technology
Priority to CN201510679123.7A priority Critical patent/CN105244415A/zh
Publication of CN105244415A publication Critical patent/CN105244415A/zh
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/1804Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof comprising only elements of Group IV of the Periodic Table
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/028Inorganic materials including, apart from doping material or other impurities, only elements of Group IV of the Periodic Table
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0352Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions
    • H01L31/035209Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions comprising a quantum structures
    • H01L31/035218Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions comprising a quantum structures the quantum structure being quantum dots
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by potential barriers, e.g. phototransistors
    • H01L31/101Devices sensitive to infrared, visible or ultraviolet radiation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

本发明公开了一种基于量子点杂化还原氧化石墨烯纳米薄膜光敏传感器的制备工艺,通过将氧化石墨烯纳米片分散液旋涂在SiO2衬底上,再用量子点杂化氧化石墨烯纳米薄膜,然后在保护气氛中进行量子点杂化氧化石墨烯纳米薄膜光化学还原,最后制作电极,从而获得量子点杂化还原氧化石墨烯纳米薄膜光敏传感器。用此方法制备出的量子点杂化还原氧化石墨烯纳米薄膜光敏传感器具有工艺简单、易于操作、制造设备要求低等优点,而且制备出来的石墨烯纳米薄膜光敏传感器的光电性能非常优异,适合应用于对光敏性要求较高的器件。

Description

量子点杂化还原氧化石墨烯纳米薄膜光敏传感器制备工艺
技术领域
本发明涉及量子点杂化还原氧化石墨烯纳米薄膜光敏传感器及其制备工艺,属于光敏传感器技术领域。
背景技术
2004年,人类通过机械剥离法第一次制备出单层的石墨烯,随后越来越多的科学家开始着手研究石墨烯,石墨烯的优异性能也被人们认知,石墨烯独特的晶格结构赋予其高强度、高导电性、高光感灵敏度等性能。传统的光传感器使用一种互补金属氧化物半导体作为基座,在光线不足情况下传感灵敏度将大幅降低。根据计算,单层石墨烯可以吸收πα≈2.3%的可见光,单层石墨烯对光的显著吸收暗示其与传统的半导体材料相比具有更低的饱和强度或更高的光载流子密度。
然而,本征石墨烯没有带隙,导致其光电性能的应用受到限制,使石墨烯在光传感器领域的应用裹足不前。还原氧化石墨烯是石墨烯的一种重要衍生物,具有特殊的原子结构,有极强的载流子迁移率,其带隙可以调节,赋予其优异的光传感特性,拥有传统材料无可比拟的优势,但是,其应用时存在光线不足情况下光敏感度的问题,亟需进行改进。
发明内容
为解决现有技术的不足,本发明的目的在于提供一种具有高效、低成本、无污染、对设备要求低的工艺制备高性能的量子点杂化还原氧化石墨烯纳米薄膜光传感器。
为了实现上述目标,本发明采用如下的技术方案:
量子点杂化还原氧化石墨烯纳米薄膜光敏传感器制备工艺,工艺步骤如下:
S1、在衬底上组装20~100nm厚的氧化石墨烯纳米薄膜;
S2、对步骤S1制得的氧化石墨烯纳米薄膜进行量子点杂化;
S3、在保护气氛下进行光化学还原,得到量子点杂化还原氧化石墨烯纳米薄膜;
S4、在步骤S3制得的量子点杂化还原氧化石墨烯纳米薄膜上制作标准电极,得到光敏传感器。
优选地,前述步骤S1中,衬底为SiO2衬底。
具体地,前述步骤S1的具体操作为:采用Hummer法制备氧化石墨烯纳米片,离心分离出二维尺寸为1~20μm的氧化石墨烯纳米片,用乙醇将氧化石墨烯纳米片分散为浓度为1mg/ml悬浮液,以3000~5000r/min、0.3滴/s的速度在SiO2衬底上旋涂组装成20~100nm厚的氧化石墨烯纳米薄膜。
更具体地,前述步骤S2的具体操作为:将50mg离心分离过的氧化石墨烯加入40ml浓硝酸超声混合30h,倒入不锈钢消解罐的特氟龙内胆内,密封加热到140~160℃保温24~48h后去离子水离心清洗至pH=8,重复上述步骤进行二次氧化和离心清洗,然后透析最终得到二维尺寸小于5nm的氧化石墨烯量子点;将量子点配制成浓度为0.1~1.0mg/ml乙醇溶液,将制备好的量子点溶液用胶头滴管旋涂于氧化石墨烯纳米薄膜上,以3000~5000r/min、0.3滴/s的速度匀速滴15滴,得到量子点杂化氧化石墨烯纳米薄膜。
再具体地,前述步骤S3中,保护气氛为氩气,光化学还原时间为0~90min,光源为紫外光,功率为200~1000W。
进一步具体地,前述步骤S4中,用直径50nm的金线作为电极材料制作标准电极,电极间距为0.5~2mm,采用银浆进行焊接,最后塑封制得量子点杂化还原氧化石墨烯纳米薄膜光敏传感器。
此外,本发明还保护了前述制备工艺制得的量子点杂化还原氧化石墨烯纳米薄膜光敏传感器。
研究表明,石墨烯量子点具有电荷尺寸效应,能够集聚电荷,石墨烯量子点和还原氧化石墨烯二者复合能够极大地产生电荷集聚,在光作用下又能快速转移电荷,可以极大地提高其光电性能,因此,本发明的量子点杂化还原氧化石墨烯薄膜能够解决传统光传感器在光线不足情况下的光敏感度低的问题。
本发明的有益之处在于:本发明的量子点杂化还原氧化石墨烯纳米薄膜光敏传感器制备工艺高效低成本且无污染,由该工艺制得的光敏传感器光电流大,响应速度为毫秒级别,相比相同条件下普通还原氧化石墨烯薄膜的光电流增大了约4倍。
附图说明
图1是本发明的量子点杂化还原氧化石墨烯纳米薄膜光敏传感器制备工艺中所用到的光化学还原装置的结构示意图;
图2是实施例1制得的光敏传感器在光照和暗态下I-V曲线图;
图3是实施例1制得的光敏传感器在偏压为1V时的光响应曲线图(插图为普通还原氧化石墨烯薄膜的光响应曲线图)。
具体实施方式
以下结合附图和具体实施例对本发明作具体的介绍。
实施例1
采用Hummer法制备氧化石墨烯纳米片,离心分离出尺寸为15μm左右的氧化石墨烯纳米片,将氧化石墨烯纳米片溶于乙醇,在45kHz的频率下超声处理60min,形成浓度为1mg/ml的氧化石墨烯的乙醇悬浮液,转速为5000r/min、以0.3滴/s匀速地用胶头滴管将氧化石墨烯悬浮液旋涂于洁净SiO2衬底(5mm×5mm)上,滴约100滴,组装成约60nm厚的氧化石墨烯纳米薄膜。
将50mg离心分离过的氧化石墨烯加入40ml浓硝酸超声混合30h,倒入不锈钢消解罐的特氟龙内胆内,密封加热到140~160℃保温24~48h后去离子水离心清洗至pH=8,重复上述步骤进行二次氧化和离心清洗,然后透析最终得到二维尺寸小于5nm的氧化石墨烯量子点;将量子点配制成浓度为0.5mg/ml乙醇溶液,将制备好的量子点溶液用胶头滴管旋涂于氧化石墨烯纳米薄膜上,以5000r/min、0.3滴/s的速度匀速滴15滴,得到量子点杂化氧化石墨烯纳米薄膜。
将量子点杂化氧化石墨烯纳米薄膜放入图1所示的石英管装置中,通入氩气进行光化学还原,在紫外光照射下光化学还原时间为60min,功率为400W,底部通冷却水,获得量子点杂化还原氧化石墨烯纳米薄膜。
在量子点杂化还原氧化石墨烯纳米薄膜上用银浆和直径φ50nm金线制作标准电极,电极间距为1mm,塑封成量子点杂化还原氧化石墨烯纳米薄膜光敏传感器。
对该实施例的光敏传感器进行性能检测,测得其光电性能如图2和图3所示,从图中可以看出:本发明的方法制得的量子点杂化还原氧化石墨烯纳米薄膜光敏传感器光电流大,且响应速度为毫秒级别,相比相同条件下普通的还原氧化石墨烯薄膜的光电流增大了约4倍。
实施例2
采用Hummer法制备氧化石墨烯纳米片,离心分离出尺寸为10μm左右的氧化石墨烯纳米片,将氧化石墨烯纳米片溶于乙醇,在45kHz的频率下超声处理40min,形成浓度为1mg/ml的氧化石墨烯的乙醇悬浮液,转速为5000r/min、以0.3滴/s匀速地用胶头滴管将氧化石墨烯悬浮液旋涂于洁净SiO2衬底(5mm×5mm)上,滴约150滴,组装成约100nm厚的氧化石墨烯纳米薄膜。
采用同实施例1的方法将量子点配制成浓度为0.1mg/ml乙醇溶液。将制备好的量子点溶液用胶头滴管旋涂于氧化石墨烯纳米薄膜上(转速仍为5000r/min,以0.3滴/s匀速滴15滴),得到量子点杂化氧化石墨烯纳米薄膜。
将量子点杂化氧化石墨烯纳米薄膜放入石英管装置中通入氩气进行光化学还原,光化学还原时间为40min,功率为800W,获得量子点杂化还原氧化石墨烯纳米薄膜。
在量子点杂化还原氧化石墨烯纳米薄膜上用银浆和φ50nm金线制作标准电极,电极间距为1mm,塑封成量子点杂化还原氧化石墨烯纳米薄膜光敏传感器。
实施例3
采用Hummer法制备氧化石墨烯纳米片,离心分离出尺寸为5μm左右的氧化石墨烯纳米片,将氧化石墨烯纳米片溶于乙醇,在45kHz的频率下超声处理50min,形成浓度为1mg/ml的氧化石墨烯的乙醇悬浮液,转速为5000r/min、以0.3滴/s匀速地用胶头滴管将氧化石墨烯悬浮液旋涂于洁净SiO2衬底(5mm×5mm)上,滴约120滴,组装成约70nm厚的氧化石墨烯纳米薄膜。
采用同实施例1的方法将量子点配制成浓度为1mg/ml乙醇溶液。将制备好的量子点溶液用胶头滴管旋涂于氧化石墨烯纳米薄膜上(转速仍为5000r/min,以0.3滴/s匀速滴15滴),得到量子点杂化氧化石墨烯纳米薄膜。
将量子点杂化氧化石墨烯纳米薄膜放入石英管装置中通入氩气进行光化学还原,光化学还原时间为90min,功率为1000W,获得量子点杂化还原氧化石墨烯纳米薄膜。
在量子点杂化还原氧化石墨烯纳米薄膜上用银浆和φ50nm金线制作标准电极,电极间距为1mm,塑封成量子点杂化还原氧化石墨烯纳米薄膜光敏传感器。
实施例4
采用Hummer法制备氧化石墨烯纳米片,离心分离出尺寸为20μm左右的氧化石墨烯纳米片,将氧化石墨烯纳米片溶于乙醇,在45kHz的频率下超声处理30min,形成浓度为1mg/ml的氧化石墨烯的乙醇悬浮液,转速为5000r/min、以0.3滴/s匀速地用胶头滴管将氧化石墨烯悬浮液旋涂于洁净SiO2衬底(5mm×5mm)上,滴约50滴,组装成约20nm厚的氧化石墨烯纳米薄膜。
采用同实施例1的方法将量子点配制成浓度为0.5mg/ml乙醇溶液。将制备好的量子点溶液用胶头滴管旋涂于氧化石墨烯纳米薄膜上(转速仍为5000r/min,以0.3滴/s匀速滴15滴),得到量子点杂化氧化石墨烯纳米薄膜。
将量子点杂化氧化石墨烯纳米薄膜放入石英管装置中,通入氩气进行光化学还原,光化学还原时间为50min,功率为200W,获得量子点杂化还原氧化石墨烯纳米薄膜。
在量子点杂化还原氧化石墨烯纳米薄膜上用银浆和φ50nm金线制作标准电极,电极间距为1mm,塑封成量子点杂化还原氧化石墨烯纳米薄膜光敏传感器。
实施例5
采用Hummer法制备氧化石墨烯纳米片,离心分离出尺寸为15μm左右的氧化石墨烯纳米片,将氧化石墨烯纳米片溶于乙醇,在45kHz的频率下超声处理60min,形成浓度为1mg/ml的氧化石墨烯的乙醇悬浮液,转速为5000r/min、以0.3滴/s匀速地用胶头滴管将氧化石墨烯悬浮液旋涂于洁净SiO2衬底(5mm×5mm)上,滴约100滴,组装成约60nm厚的氧化石墨烯纳米薄膜。
采用同实施例1的方法将量子点配制成浓度为0.5mg/ml乙醇溶液。将制备好的量子点溶液用胶头滴管旋涂于氧化石墨烯纳米薄膜上(转速仍为5000r/min,以0.3滴/s匀速滴15滴),得到量子点杂化氧化石墨烯纳米薄膜。
将量子点杂化氧化石墨烯纳米薄膜放入石英管装置中通入氩气进行光化学还原,光化学还原时间为20min,功率为1000W,获得量子点杂化还原氧化石墨烯纳米薄膜。
在量子点杂化还原氧化石墨烯纳米薄膜上用银浆和φ50nm金线制作标准电极,电极间距为1mm,塑封成量子点杂化还原氧化石墨烯纳米薄膜光敏传感器。
综上,本发明的方法制备出的量子点杂化氧化石墨烯纳米薄膜光敏传感器具有工艺简单、易于操作、制造设备要求低等优点,而且制备出来的石墨烯纳米薄膜光敏传感器的光电性能非常优异,适合应用于对光敏性要求较高的器件。
以上显示和描述了本发明的基本原理、主要特征和优点。本行业的技术人员应该了解,上述实施例不以任何形式限制本发明,凡采用等同替换或等效变换的方式所获得的技术方案,均落在本发明的保护范围内。

Claims (7)

1.量子点杂化还原氧化石墨烯纳米薄膜光敏传感器制备工艺,其特征在于,工艺步骤如下:
S1、在衬底上组装20~100nm厚的氧化石墨烯纳米薄膜;
S2、对步骤S1制得的氧化石墨烯纳米薄膜进行量子点杂化;
S3、在保护气氛下进行光化学还原,得到量子点杂化还原氧化石墨烯纳米薄膜;
S4、在步骤S3制得的量子点杂化还原氧化石墨烯纳米薄膜上制作标准电极,得到光敏传感器。
2.根据权利要求1所述的量子点杂化还原氧化石墨烯纳米薄膜光敏传感器制备工艺,其特征在于,所述步骤S1中,衬底为SiO2衬底。
3.根据权利要求1所述的量子点杂化还原氧化石墨烯纳米薄膜光敏传感器制备工艺,其特征在于,所述步骤S1的具体操作为:采用Hummer法制备氧化石墨烯纳米片,离心分离出二维尺寸为1~20μm的氧化石墨烯纳米片,用乙醇将氧化石墨烯纳米片分散为浓度为1mg/ml悬浮液,以3000~5000r/min、0.3滴/s的速度在SiO2衬底上旋涂组装成20~100nm厚的氧化石墨烯纳米薄膜。
4.根据权利要求1所述的量子点杂化还原氧化石墨烯纳米薄膜光敏传感器制备工艺,其特征在于,所述步骤S2的具体操作为:将50mg离心分离过的氧化石墨烯加入40ml浓硝酸超声混合30h,倒入不锈钢消解罐的特氟龙内胆内,密封加热到140~160℃保温24~48h后去离子水离心清洗至pH=8,重复上述步骤进行二次氧化和离心清洗,然后透析最终得到二维尺寸小于5nm的氧化石墨烯量子点;将量子点配制成浓度为0.1~1.0mg/ml乙醇溶液,将制备好的量子点溶液用胶头滴管旋涂于氧化石墨烯纳米薄膜上,以3000~5000r/min、0.3滴/s的速度匀速滴15滴,得到量子点杂化氧化石墨烯纳米薄膜。
5.根据权利要求1所述的量子点杂化还原氧化石墨烯纳米薄膜光敏传感器制备工艺,其特征在于,所述步骤S3中,保护气氛为氩气,光化学还原时间为0~90min,光源为紫外光,功率为200~1000W。
6.根据权利要求1所述的量子点杂化还原氧化石墨烯纳米薄膜光敏传感器制备工艺,其特征在于,所述步骤S4中,用直径50nm的金线作为电极材料制作标准电极,电极间距为0.5~2mm,采用银浆进行焊接,最后塑封制得量子点杂化还原氧化石墨烯纳米薄膜光敏传感器。
7.一种量子点杂化还原氧化石墨烯纳米薄膜光敏传感器,其特征在于,由权利要求1-6任一项所述的制备工艺制得。
CN201510679123.7A 2015-10-19 2015-10-19 量子点杂化还原氧化石墨烯纳米薄膜光敏传感器制备工艺 Pending CN105244415A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201510679123.7A CN105244415A (zh) 2015-10-19 2015-10-19 量子点杂化还原氧化石墨烯纳米薄膜光敏传感器制备工艺

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201510679123.7A CN105244415A (zh) 2015-10-19 2015-10-19 量子点杂化还原氧化石墨烯纳米薄膜光敏传感器制备工艺

Publications (1)

Publication Number Publication Date
CN105244415A true CN105244415A (zh) 2016-01-13

Family

ID=55041981

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201510679123.7A Pending CN105244415A (zh) 2015-10-19 2015-10-19 量子点杂化还原氧化石墨烯纳米薄膜光敏传感器制备工艺

Country Status (1)

Country Link
CN (1) CN105244415A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106960896A (zh) * 2017-03-24 2017-07-18 深圳市华星光电技术有限公司 一种光掩膜版以及石墨烯发光显示器件的制备方法

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101844761A (zh) * 2010-05-28 2010-09-29 上海师范大学 激光照射法制备还原氧化石墨烯
CN102208755A (zh) * 2011-04-29 2011-10-05 上海交通大学 紫外光刻蚀干法制备石墨烯量子点的方法
CN102633257A (zh) * 2012-05-04 2012-08-15 东南大学 小于10nm单层石墨烯量子点生物成像剂的合成方法
US20130081678A1 (en) * 2011-09-30 2013-04-04 Katsuyuki Naito Conductive material
CN103441186A (zh) * 2013-08-29 2013-12-11 江苏大学 一种紫外探测器件的制备方法
CN103964424A (zh) * 2014-05-13 2014-08-06 桂林理工大学 一种光照还原氧化石墨烯薄膜的制备方法
CN104024146A (zh) * 2011-08-02 2014-09-03 光子科学研究所 具有碳系导体和量子点的光电平台以及包含此种平台的晶体管
JP2014227304A (ja) * 2013-05-17 2014-12-08 国立大学法人大阪大学 グラフェン薄膜の製造方法、並びにグラフェン薄膜を備えた電子素子、センサー、アレイ素子およびセンシング方法
CN104810426A (zh) * 2014-01-26 2015-07-29 中国科学院苏州纳米技术与纳米仿生研究所 自驱动光探测器及其制备方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101844761A (zh) * 2010-05-28 2010-09-29 上海师范大学 激光照射法制备还原氧化石墨烯
CN102208755A (zh) * 2011-04-29 2011-10-05 上海交通大学 紫外光刻蚀干法制备石墨烯量子点的方法
CN104024146A (zh) * 2011-08-02 2014-09-03 光子科学研究所 具有碳系导体和量子点的光电平台以及包含此种平台的晶体管
US20130081678A1 (en) * 2011-09-30 2013-04-04 Katsuyuki Naito Conductive material
CN102633257A (zh) * 2012-05-04 2012-08-15 东南大学 小于10nm单层石墨烯量子点生物成像剂的合成方法
JP2014227304A (ja) * 2013-05-17 2014-12-08 国立大学法人大阪大学 グラフェン薄膜の製造方法、並びにグラフェン薄膜を備えた電子素子、センサー、アレイ素子およびセンシング方法
CN103441186A (zh) * 2013-08-29 2013-12-11 江苏大学 一种紫外探测器件的制备方法
CN104810426A (zh) * 2014-01-26 2015-07-29 中国科学院苏州纳米技术与纳米仿生研究所 自驱动光探测器及其制备方法
CN103964424A (zh) * 2014-05-13 2014-08-06 桂林理工大学 一种光照还原氧化石墨烯薄膜的制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
TRAN VAN TAM ET AL.: "Ultraviolet light sensor based on graphene quantum dots/reduced graphene oxide hybrid film", 《SENSORS AND ACTUATORS A:PHYSICAL》 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106960896A (zh) * 2017-03-24 2017-07-18 深圳市华星光电技术有限公司 一种光掩膜版以及石墨烯发光显示器件的制备方法
WO2018171080A1 (zh) * 2017-03-24 2018-09-27 深圳市华星光电技术有限公司 一种石墨烯发光显示器及其制备方法
US10270005B2 (en) 2017-03-24 2019-04-23 Shenzhen China Star Optoelectronics Technology Co., Ltd. Graphene light emitting display and method of manufacturing the same
CN106960896B (zh) * 2017-03-24 2019-06-25 深圳市华星光电技术有限公司 一种光掩膜版以及石墨烯发光显示器件的制备方法

Similar Documents

Publication Publication Date Title
Rao et al. Two‐dimensional heterostructure promoted infrared photodetection devices
Hou et al. TiO2 nanotubes for dye‐sensitized solar cells—A review
CN105469996B (zh) 一种基于金属纳米粒子界面修饰的钙钛矿太阳能电池及其制备方法
Tang et al. Micrometer‐and nanometer‐sized organic single‐crystalline transistors
CN107946470B (zh) 一种异质结太阳能电池及其制备方法
CN107946471B (zh) 一种基于硅纳米线阵列的异质结光伏电池及其制备方法
Ko et al. Fabrication and optimization of vertically aligned ZnO nanorod array-based UV photodetectors via selective hydrothermal synthesis
CN107352627A (zh) 水净化复合材料及其制备方法和应用
CN102709399B (zh) 一种纳米天线太阳能电池的制作方法
CN107994119A (zh) 一种有机无机杂化太阳能电池及其制备方法
CN113097334B (zh) 一种SiC基二硫化钨紫外-可见光电探测器及其制备方法和应用
CN105895729A (zh) 石墨烯光电探测器
CN108435212B (zh) 二硫化钼基的高效光催化分解水产氢的纳米材料及制备方法
CN105633190B (zh) 一种基于石墨烯包覆SiC纳米线的紫外探测器
CN101587916A (zh) 基于Si纳米线阵列太阳能电池及其制造方法
CN114823931A (zh) 一种碳纳米管/银纳米线复合薄膜及其砷化镓基异质结太阳电池和制备方法
CN106876595A (zh) 一种n型硅异质结太阳能电池及其制备方法
CN105244415A (zh) 量子点杂化还原氧化石墨烯纳米薄膜光敏传感器制备工艺
CN108023021A (zh) 一种硅—Spiro-OMeTAD异质结光伏电池及其制备方法
CN110165011A (zh) 一种无损转移碳纳米管薄膜制备异质结太阳能电池的方法
CN105655423B (zh) 一种基于硫属亚铜化合物的纳米异质结太阳能电池及其制备方法
CN112071940A (zh) 一种基于透明电极的α-硒化铟二维光电探测器
CN104064619B (zh) 一种微晶硅非晶硅径向双结纳米线太阳能电池
Sun et al. ZnS: Mn2+ nanoparticles as compact layer to enhance the conversion efficiency of CdS QD-sensitized solar cells
CN205680693U (zh) 一种基于复合衬底的石墨烯光电探测器

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20160113