CN105223346A - 检测dna甲基化的方法和试剂盒 - Google Patents

检测dna甲基化的方法和试剂盒 Download PDF

Info

Publication number
CN105223346A
CN105223346A CN201410265710.7A CN201410265710A CN105223346A CN 105223346 A CN105223346 A CN 105223346A CN 201410265710 A CN201410265710 A CN 201410265710A CN 105223346 A CN105223346 A CN 105223346A
Authority
CN
China
Prior art keywords
antibody
dna
kit
methylation
relative
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201410265710.7A
Other languages
English (en)
Inventor
陈钊
莫敏俐
李晖
李隽�
丁凤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
YAKANGBO BIOLOGICAL SCIENCE AND TECHNOLOGY Co Ltd BEIJING
Beijing ACCB Biotech Ltd
Original Assignee
YAKANGBO BIOLOGICAL SCIENCE AND TECHNOLOGY Co Ltd BEIJING
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by YAKANGBO BIOLOGICAL SCIENCE AND TECHNOLOGY Co Ltd BEIJING filed Critical YAKANGBO BIOLOGICAL SCIENCE AND TECHNOLOGY Co Ltd BEIJING
Priority to CN201410265710.7A priority Critical patent/CN105223346A/zh
Priority to PCT/CN2015/000361 priority patent/WO2015192644A1/zh
Publication of CN105223346A publication Critical patent/CN105223346A/zh
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Immunology (AREA)
  • Engineering & Computer Science (AREA)
  • Molecular Biology (AREA)
  • Biomedical Technology (AREA)
  • Chemical & Material Sciences (AREA)
  • Hematology (AREA)
  • Urology & Nephrology (AREA)
  • Biotechnology (AREA)
  • Microbiology (AREA)
  • Cell Biology (AREA)
  • Food Science & Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Pathology (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

本发明涉及一种检测DNA甲基化的方法和试剂盒。具体地说,本发明的方法采用酶联免疫吸附测定(ELISA),对来源于细胞、组织、血清中DNA的整体甲基化程度进行测定,操作简单,重复性好,DNA用量少(可检测至ng级),定量计算方便,能够实现高通量检测。

Description

检测DNA甲基化的方法和试剂盒
技术领域
本发明涉及检测DNA甲基化的方法和试剂盒。具体地说,本发明涉及用酶联免疫吸附测定(ELISA)方法检测DNA甲基化的方法和试剂盒。
背景技术
DNA甲基化发生在CpG二核苷酸中胞嘧啶的5’碳原子上,在人类癌症中广泛存在,是表观遗传学的重要研究对象[1]。DNA甲基转移酶(DNMT)负责胞嘧啶的甲基共价修饰[2]。在DNMT家族中,DNMT1主要负责维持DNA甲基化程度,例如在DNA复制时,对新生DNA链进行甲基化修饰[3];DNMT3a和DNMT3b主要负责从无到有的对DNA进行甲基化修饰[4,5]。DNA甲基化的信息在细胞分裂过程中能够稳定的传递,对于器官的发育和行使功能、Z染色体的失活、基因组印记(imprinting)、转座子等的沉默以及基因的适度表达等发挥重要作用[6]。
在癌细胞中,基因组整体表现出甲基化程度降低的现象[7];而在特定的区域表现出甲基化程度升高,同一些基因的转录沉默相关[8]。DNA甲基化程度已成为新一代的肿瘤标志物,原则上可以用于癌症的早期检测、预后评估、疗效监测等方面[9]。
在用于研究DNA整体甲基化程度的方法中,高效液相色谱(HPLC)是一种经典的方法[10],能够进行定量分析,可重复性强。然而这一方法所需的基因组DNA用量比较大,对DNA的质量要求也比较高,不适宜用于高通量分析。也有以亚硫酸氢钠处理为基础的方法,检测重复序列(例如Alu元件或LINE)的含量[11,12]。但是这类方法的操作步骤比较繁琐。
发明内容
本发明采用酶联免疫吸附测定(ELISA)方法,对来源于细胞、组织、血清中DNA的整体甲基化程度进行测定,操作简单,重复性好,DNA用量少(可检测至ng级),定量计算方便,能够实现高通量检测。
具体的说,本发明涉及一种检测DNA甲基化的方法,其包括:
(1)提取、限制性内切酶处理、纯化基因组DNA;
(2)将DNA变性后加入封闭液;
(3)用抗甲基胞嘧啶抗体包被ELISA实验板;
(4)弃去包被抗体,在实验板的每个孔中加入封闭液;
(5)弃去封闭液,加入预混的封闭液与DNA样品;
(6)用PBS溶液清洗,干燥后加入抗单链DNA抗体;
(7)用PBS溶液清洗,干燥后加入二抗;
(8)用PBS溶液清洗,干燥后加入TMB底物;
(9)加入硫酸溶液后用酶标仪读数;
(10)根据用基因组DNA标准品制得的标准曲线,计算出样本的相对DNA甲基化程度。
优选地,在本发明的方法中,所述限制性内切酶是MseI;所述封闭液是PBS+3%BSA+0.05%TritonX-100;所述抗甲基胞嘧啶抗体是SantaCruz#sc-56615,其浓度是1~10μg/mL,优选5μg/mL;所述抗单链DNA抗体是IBLcode#18731,其浓度是0.1~1μg/mL,优选0.5μg/mL;所述二抗是偶联辣根过氧化物酶(horseradishperoxidase,HRP)的抗兔源IgG的抗体;所述TMB底物是PIERCE#34028。
本发明还涉及一种检测DNA甲基化的试剂盒,其包括:
(1)封闭液;
(2)抗甲基胞嘧啶抗体;
(3)抗单链DNA抗体;
(4)二抗;
(5)TMB底物;
(6)2M硫酸;以及
(7)PBS溶液。
优选地,在本发明的试剂盒中,所述封闭液是PBS+3%BSA+0.05%TritonX-100;所述抗甲基胞嘧啶抗体是SantaCruz#sc-56615,其浓度是1~10μg/mL,优选5μg/mL;所述抗单链DNA抗体是IBLcode#18731,其浓度是0.1~1μg/mL,优选0.5μg/mL;所述二抗是偶联辣根过氧化物酶(horseradishperoxidase,HRP)的抗兔源IgG的抗体;所述TMB底物是PIERCE#34028。进一步优选地,本发明的试剂盒用于对癌组织进行化疗疗效预测,并且优选用于对血清进行检测。
附图说明
图1显示在来源于不同样本的DNA中,DNA相对甲基化程度与DNA浓度无显著相关性。
图2显示经甲基转移酶抑制剂处理后DNA相对甲基化程度显著降低。
图3显示相对甲基化程度测定的饱和曲线。
图4显示相对甲基化程度测定的标准曲线。
图5显示肺癌组织相对于癌旁正常组织的DNA相对甲基化程度显著下降(非成对检验)。
图6显示肺癌组织相对于癌旁正常组织的DNA相对甲基化程度显著下降(成对检验)。
图7显示肺癌患者癌组织相对甲基化程度随年龄增高而下降。
图8显示肺癌患者癌组织相对甲基化程度在吸烟患者中有下降趋势。
图9显示肺癌患者癌组织相对甲基化程度随癌症分期升高而显著下降。
图10显示肺癌患者(II、III、IV期)癌组织相对于正常肺组织的相对甲基化程度的受试者作业特征曲线(ROC)分析。
图11显示在接受化疗的肺癌患者中,癌组织的相对甲基化程度对患者总体生存率的影响。
图12显示在甲基化程度高的肺癌患者中,接受化疗与否对患者总体生存率的影响。
图13显示癌症患者相对于健康对照的血清中DNA相对甲基化程度显著升高。
图14显示癌症患者血清中DNA相对甲基化程度与年龄无显著相关性。
图15显示癌症患者血清中DNA相对甲基化程度与性别无显著相关性。
图16显示健康对照与癌症患者血清中DNA相对甲基化程度比较。
图17显示癌症患者血清中DNA相对甲基化程度随癌症分期升高而显著上升。
图18显示癌症患者相对于健康对照的血清中DNA相对甲基化程度的受试者作业特征曲线(ROC)分析。
图19显示男性癌症患者相对于男性健康对照的血清中DNA相对甲基化程度的受试者作业特征曲线(ROC)分析。
图20显示女性癌症患者相对于女性健康对照的血清中DNA相对甲基化程度的受试者作业特征曲线(ROC)分析。
具体实施方式
实验步骤
样品处理:组织基因组DNA提取使用QIAampDNAMiniKit(Qiagen)。测定浓度后,使用MseI限制性内切酶处理(37℃放置2小时)后使用DNA纯化试剂盒(天根生化科技有限公司,北京)纯化DNA。测定DNA浓度后,将DNA稀释至10~50ng/μL,95℃变性10分钟,立即冰上放置。取1μL与49μL1×封闭液(PBS+3%BSA+0.05%TritonX-100)混合,冰上放置。
血清/血浆(200μL)基因组DNA提取使用QIAampDNABloodKit(Qiagen),用45μL水洗脱。95℃变性10分钟,立即冰上放置。加入5μL10×封闭液混合,冰上放置。
夹心法酶联免疫吸附测定(ELISA)实验步骤:用抗甲基胞嘧啶抗体(SantaCruz#sc-56615,5μg/mL)包被ELISA实验板,每孔加入50μL。覆盖平板,4℃过夜放置。次日弃去包被抗体,用PBS溶液(0.2g/LKH2PO4,2.16g/LNa2HPO4·7H2O,0.2g/LKCl,8.0g/LNaCl)洗两遍,每次每孔使用200μL,拍干。每孔中加入200μL封闭液,室温放置2小时。随后弃去封闭液。每孔加入预混的49μL封闭液与1μLDNA样品。4℃放置至少2小时。使用PBS洗两遍,拍干。将抗单链DNA抗体(IBLcode#18731,0.5μg/mL)加入96孔ELISA实验板的孔中,每孔加入100μL。覆盖平板,室温放置2小时。使用PBS洗四遍,拍干。将二抗(1:4000稀释)加入96孔ELISA实验板的孔中,每孔加入100μL。覆盖平板,室温放置1至2小时。使用PBS洗四遍,拍干。每孔加入100μLTMB底物溶液(PIERCE#34028)。3~10分钟后,加入2M硫酸溶液,混匀后用酶标仪读数(波长选择为450nm)。
相对甲基化程度计算:提取人非小细胞肺癌细胞系A549的基因组DNA,MseI酶切处理、纯化后测定DNA浓度,稀释为5、10、20、40ng/μL标准品,再按上述步骤进行后续实验。ELISA实验读数后,将标准品和样本吸光度(OD)数据减去不合任何DNA样品的实验孔数据(即去本底),利用标准品去本底数据作出标准曲线(DNA含量为横坐标,去本底OD值为纵坐标),将样本的去本底数据代入标准曲线的线性拟合公式中,计算出每个样本中相对DNA甲基化程度。对于组织样本,还需将该数值除以加样DNA含量,计算出每ng组织DNA中的相对甲基化程度。
实验数据:
1.选取多个不同的组织样本,测定其DNA浓度,之后测定等体积样本的相对甲基化程度,Pearson相关性系数r为0.1853,P值为0.6084>0.05,说明不同样本DNA的相对甲基化程度与其DNA浓度/含量无显著相关性(见图1)。
2.使用1μM甲基化酶抑制剂5-氮杂(aza)-2’-脱氧胞苷(DAC)或等体积溶剂二甲基亚砜(DMSO)处理A549细胞2天后,提取细胞DNA测定DNA相对甲基化程度/ng。DAC处理后细胞相对于DMSO处理后细胞的相对甲基化程度显著降低(P=0.0206)(见图2)。
3.将A549细胞基因组DNA稀释为不同浓度,加入实验体系中,使最终含量分别为0、4、8、16、32、64、80、120、160、200ng,将DNA含量作为横坐标,测得的相对甲基化程度作为纵坐标作图显示:曲线在100ng前后呈现饱和,而低至4ng依然可以检测出(见图3)。
4.将A549细胞基因组DNA稀释为不同浓度,加入实验体系中,使最终含量分别为0、4、8、16、32、64、80ng,将DNA含量作为横坐标,测得的相对甲基化程度作为纵坐标,作直线拟合,得到标准曲线。R2=0.9929,表明拟合直线的线性关系良好(见图4)。
5.检测46例肺癌组织样本和46例癌旁正常组织样本DNA的相对甲基化程度/ng,非成对数据检验结果显示癌组织相对于癌旁正常组织DNA相对甲基化程度显著下降(P=0.0263)(见图5)。
6.检测46例肺癌组织样本和各自对应的癌旁正常组织样本DNA的相对甲基化程度/ng,成对数据检验结果显示癌组织相对于癌旁正常组织DNA相对甲基化程度显著下降(P=0.0013)(见图6)。
7.肺癌患者癌组织相对甲基化程度与年龄无显著相关性(P=0.629);在低年龄组(60岁以下)与中年龄组(60~74岁)之间无显著性差异(P=0.1082>0.05),在中年龄组与高年龄组(74岁以上)之间有显著性差异(P=0.0271)(见图7)。
8.肺癌患者癌组织相对甲基化程度在吸烟患者中相对于不吸烟患者无显著性差异,但有下降趋势,其中男性中P=0.0581,女性中P=0.4329(见图8)。
9.I期肺癌患者癌组织相对甲基化程度相对正常肺组织无显著性差异(P=0.4033);II、III、IV期肺癌患者癌组织相对甲基化程度相对正常肺组织显著降低(P=0.0162);III、IV期肺癌患者癌组织相对甲基化程度相对正常肺组织显著降低(P=0.0316)(见图9)。
10.由于I期肺癌患者癌组织相对于正常肺组织的相对甲基化程度无显著差异,因此分析了非I期(II、III、IV期)肺癌患者癌组织相对于正常肺组织的相对甲基化程度的受试者作业特征曲线(ROC),曲线下面积(AUC)为0.7093,P=0.0323,在临界值下,灵敏度和特异性度可分别达到58.7%和80%,表明通过肺组织的相对甲基化程度区分非I期癌症患者和正常的诊断效力较高(见图10)。
11.按照相对甲基化程度数值分为甲基化程度低(小于1.31)、高(大于或等于1.31)两组,在接受化疗的肺癌患者中,甲基化程度高和低两组总体生存率存在显著性差异(P=0.0403<0.05),且在同一时间点,甲基化程度低的患者组相对于甲基化程度高的患者组,其总体生存率较高(见图11)。
12.按照相对甲基化程度数值分为甲基化程度低(小于1.31)、高(大于或等于1.31)两组,在甲基化程度高的肺癌患者中,接受和不接受化疗两组总体生存率存在显著性差异(P=0.0377<0.05),且在同一时间点,未接受化疗患者组相对于接受化疗患者组,其总体生存率较高(见图12)。
13.检测103例癌症患者、89例健康对照的血清中(200μL)DNA相对甲基化程度,癌症患者相对于健康对照的血清中DNA相对甲基化程度显著升高(P<0.0001)(见图13)。
14.癌症患者血清中(200μL)DNA相对甲基化程度在低年龄组(60岁以下)与高年龄组(60岁以上)之间无显著性差异(P=0.1443),而不论低年龄组还是高年龄组,癌症患者相对于健康对照的血清中DNA相对甲基化程度均显著升高,P分别为0.0002和0.0003(见图14)。
15.癌症患者血清中(200μL)DNA相对甲基化程度在男性与女性之间无显著性差异(P=0.0564),而不论男性还是女性,癌症患者相对于健康对照的血清中DNA相对甲基化程度均显著升高,P分别为<0.0001和0.0023(见图15)。
16.多种癌症患者相对于健康对照的血清中(200μL)DNA相对甲基化程度显著升高,例如乳腺癌(P=0.0465)、食道癌(P=0.0002)、肝癌(P<0.0001)、肺癌(P<0.0001)、胃癌(P=0.0002)、消化系统癌症(P<0.0001)等(见图16)。
17.I、II期癌症患者相对健康对照的血清中(200μL)相对甲基化程度显著升高(P=0.0197);III期癌症患者相对健康对照的血清中(200μL)相对甲基化程度显著升高(P=0.0006);IV期癌症患者相对健康对照的血清中(200μL)相对甲基化程度显著升高(P<0.0001)(见图17)。
18.图18曲线下面积(AUC)为0.7224,P<0.0001,在临界值下,灵敏度和特异性度可分别达到70.9%和65.2%,表明通过血清中DNA相对甲基化程度区分癌症和正常的诊断效力较高。
19.图19曲线下面积(AUC)为0.7740,P<0.0001,在临界值下,灵敏度和特异性度可分别达到79.2%和67.5%,表明通过血清中DNA相对甲基化程度在男性中区分癌症和正常的诊断效力较高。
20.图20曲线下面积(AUC)为0.6766,P=0.0022,在临界值下,灵敏度和特异性度可分别达到63.5%和65.3%,表明通过血清中DNA相对甲基化程度在女性中区分癌症和正常的诊断效力较高。
参考文献
[1]RobertsonK.D.(2005),DNA甲基化和人类疾病,NatRevGenet6,597-610。
[2]McCabeM.T.,BrandesJ.C.和VertinoP.M.(2009),癌症DNA甲基化:分子机理和临床意义,ClinCancerRes15,3927-3937。
[3]BestorT.H.(2000),哺乳动物的DNA甲基转移酶,HumMolGenet9,2395-2402。
[4]OkanoM.,BellD.W.,HaberD.A.和LiE.(1999),DNA甲基转移酶Dnmt3aandDnmt3b对于重新(denovo)甲基化和哺乳动物发育是必需的,Cell99,247-257。
[5]KanaiY.(2009),癌症前期和癌症中的基因组宽度DNA甲基化图谱,CancerSci.。
[6]SuzukiM.M.和BirdA.(2008),DNA甲基化图景:由表观基因组学引发的见解,NatRevGenet9,465-476。
[7]FeinbergA.P.和TyckoB.(2004),癌症渐成说的历史,NatRevCancer4,143-153。
[8]JonesPA和BaylinSB(2007),癌症的表观基因组学,Cell128,683-692。
[9]LairdPW(2003),DNA甲基化标记物的能力和前景,NatRevCancer3,253-266。
[10]EhrlichM.,Gama-SosaM.A.,HuangL.H.,MidgettR.M.,KuoK.C.,McCuneR.A.和GehrkeC.(1982),来自不同类型组织的细胞的人类DNA中5-甲基胞嘧啶的数量和分布,NucleicAcidsRes10,2709-2721。
[11]YangA.S.,EstecioM.R.,DoshiK.,KondoY.,TajaraE.H.,和IssaJ.P.(2004),一种采用重复性DNA单元的亚硫酸氢盐PCR来评估全局性DNA甲基化的简单方法,NucleicAcidsRes32,e38。
[12]WeisenbergerD.J.,CampanM.,LongT.I.,KimM.,WoodsC.,FialaE.,EhrlichM.和LairdP.W.(2005),用MethyLight进行重复性DNA单元甲基化的分析,NucleicAcidsRes33,6823-6836。

Claims (23)

1.一种检测DNA甲基化的方法,其包括:
(1)提取、限制性内切酶处理、纯化基因组DNA;
(2)将DNA变性后加入封闭液;
(3)用抗甲基胞嘧啶抗体包被ELISA实验板;
(4)弃去包被抗体,在实验板的每个孔中加入封闭液;
(5)弃去封闭液,加入预混的封闭液与DNA样品;
(6)用PBS溶液清洗,干燥后加入抗单链DNA抗体;
(7)用PBS溶液清洗,干燥后加入二抗;
(8)用PBS溶液清洗,干燥后加入TMB底物;
(9)加入硫酸溶液后用酶标仪读数;
(10)根据用基因组DNA标准品制得的标准曲线,计算出样本的相对DNA甲基化程度。
2.权利要求1的方法,其中所述限制性内切酶是MseI。
3.权利要求1的方法,其中所述封闭液是PBS+3%BSA+0.05%TritonX-100。
4.权利要求1的方法,其中所述抗甲基胞嘧啶抗体是SantaCruz#sc-56615。
5.权利要求4的方法,其中所述抗甲基胞嘧啶抗体的浓度是1~10μg/mL。
6.权利要求5的方法,其中所述抗甲基胞嘧啶抗体的浓度是5μg/mL。
7.权利要求1的方法,其中所述抗单链DNA抗体是IBLcode#18731。
8.权利要求7的方法,其中所述抗单链DNA抗体的浓度是0.1~1μg/mL。
9.权利要求8的方法,其中所述抗单链DNA抗体的浓度是0.5μg/mL。
10.权利要求1的方法,其中所述二抗是偶联辣根过氧化物酶的抗兔源IgG的抗体。
11.权利要求1的方法,其中所述TMB底物是PIERCE#34028。
12.一种检测DNA甲基化的试剂盒,其包括:
(1)封闭液;
(2)抗甲基胞嘧啶抗体;
(3)抗单链DNA抗体;
(4)二抗;
(5)TMB底物;
(6)2M硫酸;以及
(7)PBS溶液。
13.权利要求12的试剂盒,其中所述封闭液是PBS+3%BSA+0.05%TritonX-100。
14.权利要求12的试剂盒,其中所述抗甲基胞嘧啶抗体是SantaCruz#sc-56615。
15.权利要求14的试剂盒,其中所述抗甲基胞嘧啶抗体的浓度是1~10μg/mL。
16.权利要求15的试剂盒,其中所述抗甲基胞嘧啶抗体的浓度是5μg/mL。
17.权利要求12的试剂盒,其中所述抗单链DNA抗体是IBLcode#18731。
18.权利要求17的试剂盒,其中所述抗单链DNA抗体的浓度是0.1~1μg/mL。
19.权利要求18的试剂盒,其中所述抗单链DNA抗体的浓度是0.5μg/mL。
20.权利要求12的试剂盒,其中所述二抗是偶联辣根过氧化物酶的抗兔源IgG的抗体。
21.权利要求12的试剂盒,其中所述TMB底物是PIERCE#34028。
22.权利要求12的试剂盒,其用于对癌组织进行化疗疗效预测。
23.权利要求12的试剂盒,其用于对血清进行检测。
CN201410265710.7A 2014-06-16 2014-06-16 检测dna甲基化的方法和试剂盒 Pending CN105223346A (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201410265710.7A CN105223346A (zh) 2014-06-16 2014-06-16 检测dna甲基化的方法和试剂盒
PCT/CN2015/000361 WO2015192644A1 (zh) 2014-06-16 2015-05-27 检测dna甲基化的方法和试剂盒

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201410265710.7A CN105223346A (zh) 2014-06-16 2014-06-16 检测dna甲基化的方法和试剂盒

Publications (1)

Publication Number Publication Date
CN105223346A true CN105223346A (zh) 2016-01-06

Family

ID=54934828

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201410265710.7A Pending CN105223346A (zh) 2014-06-16 2014-06-16 检测dna甲基化的方法和试剂盒

Country Status (2)

Country Link
CN (1) CN105223346A (zh)
WO (1) WO2015192644A1 (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107490573A (zh) * 2017-10-02 2017-12-19 黄海霞 1到10度酒酒精度简便快速测定方法
CN107576627A (zh) * 2017-10-02 2018-01-12 黄种山 60到70度酒酒精度简便快速测定方法
CN107655843A (zh) * 2017-10-02 2018-02-02 黄种山 40到50度酒酒精度简便快速测定方法
CN107677669A (zh) * 2017-10-02 2018-02-09 黄海霞 20到30度酒酒精度简便快速测定方法
CN107727588A (zh) * 2017-10-02 2018-02-23 黄海霞 30到40度酒酒精度简便快速测定方法

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102105586A (zh) * 2008-06-11 2011-06-22 住友化学株式会社 定量或检测dna的方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003125766A (ja) * 2001-10-24 2003-05-07 Toray Res Center:Kk 抗5−メチル−2’−デオキシシチジン抗体および5−メチル−2’−デオキシシチジンの測定法
CA2733181A1 (en) * 2008-08-04 2010-02-11 Synmed Research Gmbh Method for characterizing, in particular for quantifying, molecular markers that are intracellularly absorbed from tissues by blood macrophages that are recirculated from the tissues into the circulatory system
JP5698471B2 (ja) * 2009-06-30 2015-04-08 シスメックス株式会社 マイクロアレイを用いた核酸の検出方法およびマイクロアレイデータ解析用プログラム
JP5916058B2 (ja) * 2011-08-26 2016-05-11 国立大学法人東北大学 細胞ストレス状態のバイオマーカー

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102105586A (zh) * 2008-06-11 2011-06-22 住友化学株式会社 定量或检测dna的方法

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107490573A (zh) * 2017-10-02 2017-12-19 黄海霞 1到10度酒酒精度简便快速测定方法
CN107576627A (zh) * 2017-10-02 2018-01-12 黄种山 60到70度酒酒精度简便快速测定方法
CN107655843A (zh) * 2017-10-02 2018-02-02 黄种山 40到50度酒酒精度简便快速测定方法
CN107677669A (zh) * 2017-10-02 2018-02-09 黄海霞 20到30度酒酒精度简便快速测定方法
CN107727588A (zh) * 2017-10-02 2018-02-23 黄海霞 30到40度酒酒精度简便快速测定方法

Also Published As

Publication number Publication date
WO2015192644A1 (zh) 2015-12-23

Similar Documents

Publication Publication Date Title
Chen et al. Epigenetic modification of nucleic acids: from basic studies to medical applications
Campanella et al. Exhaled breath condensate biomarkers for lung cancer
Delpu et al. DNA methylation and cancer diagnosis
Ebert et al. Aristaless-like homeobox-4 gene methylation is a potential marker for colorectal adenocarcinomas
Sanyal et al. Hypomethylation of mitochondrial D-loop and ND6 with increased mitochondrial DNA copy number in the arsenic-exposed population
Chiam et al. Epigenetic biomarkers in prostate cancer: Current and future uses
CN105223346A (zh) 检测dna甲基化的方法和试剂盒
Konishi et al. Rare CpG Island Methylator Phenotype in Ulcerative Colitis–Associated Neoplasias
Wang et al. Advances in epigenetic biomarker research in colorectal cancer
CN102311953B (zh) 尿液诊断膀胱癌的方法和试剂盒
Ireland et al. Clinical significance of p53 mutations in adenocarcinoma of the esophagus and cardia
Jensen et al. Influence of the OGG1 Ser326Cys polymorphism on oxidatively damaged DNA and repair activity
CN104141009B (zh) 早期膀胱癌的多靶标检测方法
WO2022022386A1 (zh) 早期结直肠癌和腺瘤的dna甲基化标志物、检测其的方法及其应用
KR101636596B1 (ko) 검사 표지로서 표적 유전자의 메틸화율을 검출하는 방법
Lee et al. Assessment of oxidative stress-induced DNA damage by immunoflourescent analysis of 8-oxodG
EP4163386A1 (en) Genetic marker combination and application thereof
Sanyal et al. Epigenetic alteration of mitochondrial biogenesis regulatory genes in arsenic exposed individuals (with and without skin lesions) and in skin cancer tissues: A case control study
Perdomo et al. MiRNAs as regulators of the response to inhaled environmental toxins and airway carcinogenesis
CN104513851B (zh) 侦测膀胱癌的新颖表基因生物标记及其方法
CN103320504A (zh) 检测排泄物中microRNAs作为肺癌、结直肠癌和膀胱癌早期诊断生物标志
CN109456968A (zh) 基于甲基化修饰的肿瘤标记物stamp-ep5
Laqqan et al. Cigarette heavy smoking alters DNA methylation patterns and gene transcription levels in humans spermatozoa
Khalaj-Kondori et al. Aberrant hypermethylation of OGDHL gene promoter in sporadic colorectal cancer
WO2019149093A1 (zh) 一种用于检测食管癌的基因标志物及其用途和检测方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20160106

RJ01 Rejection of invention patent application after publication