CN105174355A - 一种利用粘土矿物去除酸性废水中金属离子的方法 - Google Patents

一种利用粘土矿物去除酸性废水中金属离子的方法 Download PDF

Info

Publication number
CN105174355A
CN105174355A CN201510681918.1A CN201510681918A CN105174355A CN 105174355 A CN105174355 A CN 105174355A CN 201510681918 A CN201510681918 A CN 201510681918A CN 105174355 A CN105174355 A CN 105174355A
Authority
CN
China
Prior art keywords
waste water
acid waste
clay mineral
metal ion
clay
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201510681918.1A
Other languages
English (en)
Other versions
CN105174355B (zh
Inventor
韩桂洪
黄艳芳
刘炯天
柴文翠
范桂侠
杨淑珍
张多
武宏阳
王文娟
邢龙杰
刘路路
严龙飞
杨桐桐
曹宁
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zhengzhou University
Original Assignee
Zhengzhou University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhengzhou University filed Critical Zhengzhou University
Priority to CN201510681918.1A priority Critical patent/CN105174355B/zh
Publication of CN105174355A publication Critical patent/CN105174355A/zh
Application granted granted Critical
Publication of CN105174355B publication Critical patent/CN105174355B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Water Treatment By Sorption (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)

Abstract

本发明公开了一种利用粘土矿物去除酸性废水中金属离子的方法。本方法以粘土矿物膨润土或高岭土为吸附剂,吸附脱除酸性废水中高浓度的铝、铜、铅、锌等金属离子。其技术方案是:天然粘土(膨润土或高岭土)在200-500℃下加热活化1-2小时,细磨;改性粘土加入到50-100mg/L的金属离子废水中,粘土用量为0.8-12g/L,体系温度20-55℃,反应时间1-2小时;混合液在5000-10000转/分下离心分离5-10min,金属离子去除率达80-95%。本发明充分利用了天然膨润土的层状结构、高比表面积特点,有效的去除了酸性废水中的金属离子,最大限度地降低了废水对环境的污染。

Description

一种利用粘土矿物去除酸性废水中金属离子的方法
技术领域
本发明属于环保领域,具体涉及一种利用粘土矿物去除酸性废水中金属离子的方法。
背景技术
有色金属行业在金属矿山开采、选矿、冶炼等过程中会产生pH较低且含有金属离子的酸性废水,如不经处理,会腐蚀下水管道、水工构筑物等基础设施,且其中的金属会严重污染地表水、地下水或土壤,影响动植物的生长繁殖和农作物生长,对环境质量和人体健康造成巨大的危害。此类废水已引起各国研究者的广泛关注。
吸附法作为传统的含金属酸性废水处理方法之一,具有操作简便、效率高、能耗低、无二次污染、投资费用低等优点,被认为是去除水中金属离子最有应用前景的方法。吸附剂吸附的金属离子容易通过解吸回收和利用,实现污染治理和废物资源化并举,符合循环经济和可持续发展的要求。吸附法的关键是需要高吸附性能的吸附剂。传统吸附剂是活性炭和磺化煤等,近年开发出新材料包括凹凸棒、硅藻土、浮石、麦饭石、三聚氰胺-甲醛-DTPA螯合树脂等。国内针对粘土矿物的作为吸附剂材料应用于水中金属离子去除方面开展了大量的研究。例如,吴平霄等在“一种烷基胺改性无机粘土矿物吸附材料及其制法和用途”(CN103055801A)中,采用烷基胺对无机粘土矿物进行活化改性后用做吸附材料,实现了对水中铯、锶等放射性元素的高效、快速去除;吴平霄等在“一种二巯基丙醇改性粘土矿物材料及其制备方法与应用”(CN104549166A)中,采用二巯基丙醇对粘土矿物材料活化改性后,制备成吸附材料可用于重金属废水治理,实现了对汞的有效去除;蔡利山等在“一种废水净化剂及其制备方法和应用”(CN1611450)中,制备了一种含粘土矿物、硅质助滤剂和高价金属盐的废水净化剂,实现了对pH为5-8废水中主要指标的有效去除,其中对重金属离子总铬、总汞、总砷的去除率分别达到90%、87%、83%;康群等在“一种去除沼液中重金属的工艺及设备”(CN103172134A)中,采用“粘土矿物JK-1吸附-陶粒吸附-改性沸石吸附”作为三级吸附工艺,实现了对沼液废水中Cu、Cd、Pb、Cr、Zn、As、Hg等七种重金属离子的去除;李存军等在“一种纳米混层组装粘土矿物材料的制备方法及其应用”(CN103949205A)中制备的层状粘土矿物材料具有阴阳离子吸附性能,对废水中Pb2+吸附率可达93%;诸如此类的相关专利还包括“一种吸附Cr(VI)的分级镁铝水滑石的制备方法”(CN103551104A)、“改性水滑石的制备方法及其在重金属吸附中的应用”(CN103043691A)等。另有文献报道蒙脱石也是一种性能良好的粘土矿物吸附剂,铝锆柱撑蒙脱石在酸性条件下对Cr6+的去除率达到99%,出水中Cr6+含量低于国家排放标准,具有实际应用前景。
吸附法处理重金属虽然具有操作简便、投资少等优点,但对于复杂的金属废水,吸附法往往处理效率低。现有报道的吸附材料或方法普遍存在价格昂贵,制备或者获取复杂;选择性差;难以再生,化学和生物性质不稳定;吸附容量小、吸附平衡时间长。今后,吸附法在处理含金属废水方面的研究应主要侧重于提高吸附剂的吸附性能。膨润土或高岭土具有强的吸湿性和膨胀性,有较强的阳离子交换能力,对各种金属离子有一定的吸附能力,最大吸附量可达5倍于自身的重量。因此,开发膨润土或高岭土型吸附剂处理酸性金属离子废水具有广阔的前景。
发明内容
本发明的目的在于提供一种利用粘土矿物去除酸性废水中金属离子的方法。
基于上述目的,本发明采取了如下技术方案:
一种利用粘土矿物去除酸性废水中金属离子的方法,以粘土矿物膨润土或高岭土为吸附剂,在200-500℃下加热活化1-2小时,然后细磨至粒度小于45微米,得到活化粘土;将活化粘土加入到的酸性废水中使酸性废水中活化粘土浓度为0.8-12g/L,反应1-2小时;混合液离心分离得到上清液,上清液中金属离子去除率达80-95%。
进一步地,所述酸性废水中金属离子浓度为50-100mg/L,pH为3-6。
所述活化粘土和酸性废水的反应温度为20-55℃,反应结束后,以5000-10000转/分的转速离心分离5-10min。
所述金属离子为Al3+、Cu2+、Pb2+或Zn2+
所述膨润土或高岭土纯度大于90%,吸水率大于350%,膨胀容大于10mL/g,比表面积大于20m2/g。
本发明的方法充分利用了天然膨润土的层状结构、高比表面积特点,有效的去除了酸性废水中的金属离子,最大限度地降低了废水对环境的污染。
附图说明
图1是本发明的工艺流程图。
具体实施方式
下面结合具体实施例对本发明作进一步说明。需要说明的是,这些实施例仅为了更好的理解本发明,本发明不限于这些实施例。
[具体实施例1]
一种利用粘土矿物去除酸性废水中金属离子的方法,酸性废水中铝离子(Al3+)浓度为50mg/L,pH为3.0。
实验所用膨润土纯度为95%,化学组成如表1所示。
表1膨润土的化学组成(wt%)
具体步骤如下:膨润土在450℃下加热活化2小时,细磨至粒度小于45微米;活化膨润土加入到50mg/L的含铝的酸性废水中,使含铝的酸性废水中膨润土浓度为1g/L,在35℃反应2小时;反应结束后,混合液在5000转/分下离心分离10min,取上清液,上清液中Al3+浓度为2.5mg/L,去除率达95%。
应用本发明前后的指标对比如表2所示。
表2应用本实施例前后的指标对比
[具体实施例2]
一种利用粘土矿物去除酸性废水中金属离子的方法,酸性废水中铜离子(Cu2+)浓度为100mg/L,pH为4.0。
实验所用膨润土纯度为92%,化学组成如表3所示。
表3膨润土的化学组成(wt%)
具体步骤如下:膨润土在500℃下加热活化1小时,细磨至粒度小于45微米;活化膨润土加入到100mg/L的含铜的酸性废水中,使含铜的酸性废水中膨润土浓度为5g/L,在25℃反应2小时;反应结束后,混合液在10000转/分下离心分离5min,取上清液,上清液中Cu2+浓度为11mg/L,去除率达89%。应用本实施例前后的指标对比如表4所示。
表4应用本实施例前后的指标对比
[具体实施例3]
一种利用粘土矿物去除酸性废水中金属离子的方法,酸性废水中铅离子(Pb2+)浓度为80mg/L,pH为5.0。
实验所用高岭土纯度为98%,化学组成如表5所示。
表5高岭土的化学组成(wt%)
具体步骤如下:高岭土在400℃下加热活化2小时,细磨至粒度小于45微米;活化高岭土加入到80mg/L的含铅废水中,使含铅废水中高岭土浓度为10g/L,在25℃反应2小时;反应结束后,混合液在5000转/分下离心分离10min,取上清液,上清液中Pb2+浓度为6.4mg/L,去除率达92%。应用本发明前后的指标对比如表6所示。
表6应用本实施例前后的指标对比
[具体实施例4]
一种利用粘土矿物去除酸性废水中金属离子的方法,酸性废水中锌离子(Zn2+)浓度为100mg/L,pH为6.0。
实验所用高岭土纯度为95%,化学组成如表7所示。
表7高岭土的化学组成(wt%)
具体步骤如下:高岭土在450℃下加热活化1.5小时,细磨至粒度小于45微米;活化高岭土加入到100mg/L的含锌的酸性废水中,使含锌的酸性废水中高岭土浓度为12g/L,在40℃反应2小时;反应结束后,混合液在10000转/分下离心分离5min,取上清液,上清液中Zn2+浓度为14mg/L,去除率达86%。应用本实施例前后的指标对比如表8所示。
表8应用本实施例前后的指标对比

Claims (5)

1.一种利用粘土矿物去除酸性废水中金属离子的方法,其特征在于,以粘土矿物膨润土或高岭土为吸附剂,在200-500℃下加热活化1-2小时,然后细磨至粒度小于45微米,得到活化粘土;将活化粘土加入到的酸性废水中使酸性废水中活化粘土浓度为0.8-12g/L,反应1-2小时;混合液离心分离得到上清液,上清液中金属离子去除率达80-95%。
2.根据权利要求1所述的利用粘土矿物去除酸性废水中金属离子的方法,其特征在于,所述酸性废水中金属离子浓度为50-100mg/L,pH为3-6。
3.根据权利要求1所述的利用粘土矿物去除酸性废水中金属离子的方法,其特征在于,所述活化粘土和酸性废水的反应温度为20-55℃,反应结束后,以5000-10000转/分的转速离心分离5-10min。
4.根据权利要求1至3任一所述的利用粘土矿物去除酸性废水中金属离子的方法,其特征在于,所述金属离子为Al3+、Cu2+、Pb2+或Zn2+
5.根据权利要求1所述的利用粘土矿物去除酸性废水中金属离子的方法,其特征在于,所述膨润土或高岭土纯度大于90%,吸水率大于350%,膨胀容大于10mL/g,比表面积大于20m2/g。
CN201510681918.1A 2015-10-21 2015-10-21 一种利用粘土矿物去除酸性废水中金属离子的方法 Active CN105174355B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201510681918.1A CN105174355B (zh) 2015-10-21 2015-10-21 一种利用粘土矿物去除酸性废水中金属离子的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201510681918.1A CN105174355B (zh) 2015-10-21 2015-10-21 一种利用粘土矿物去除酸性废水中金属离子的方法

Publications (2)

Publication Number Publication Date
CN105174355A true CN105174355A (zh) 2015-12-23
CN105174355B CN105174355B (zh) 2017-08-25

Family

ID=54896895

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201510681918.1A Active CN105174355B (zh) 2015-10-21 2015-10-21 一种利用粘土矿物去除酸性废水中金属离子的方法

Country Status (1)

Country Link
CN (1) CN105174355B (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105645540A (zh) * 2016-01-28 2016-06-08 肇庆市新荣昌工业环保有限公司 一种含铜废液的处理方法
CN106076249A (zh) * 2016-06-13 2016-11-09 环境保护部南京环境科学研究所 一种改性膨润土制备重金属颗粒吸附剂的方法
CN108956587A (zh) * 2018-07-11 2018-12-07 安徽理工大学 一种基于微悬臂梁传感技术监测离子吸附的方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4280925A (en) * 1980-06-30 1981-07-28 Eastman Kodak Company Filter for sorption of heavy metals
CN101327976A (zh) * 2008-07-15 2008-12-24 南通立源水处理技术有限公司 高效水处理絮凝剂

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4280925A (en) * 1980-06-30 1981-07-28 Eastman Kodak Company Filter for sorption of heavy metals
CN101327976A (zh) * 2008-07-15 2008-12-24 南通立源水处理技术有限公司 高效水处理絮凝剂

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
施惠生等: "膨润土对重金属离子Pb2+,Zn2+,Cr(VI),Cd2+的吸附性能", 《建筑材料学报》 *
李虎杰: "膨润土对重金属离子的吸附作用", 《中国矿业》 *
王丽涛等: "三种吸附剂对饮用水中铝离子去除率的对比试验", 《工业安全与环保》 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105645540A (zh) * 2016-01-28 2016-06-08 肇庆市新荣昌工业环保有限公司 一种含铜废液的处理方法
CN106076249A (zh) * 2016-06-13 2016-11-09 环境保护部南京环境科学研究所 一种改性膨润土制备重金属颗粒吸附剂的方法
CN106076249B (zh) * 2016-06-13 2019-03-29 环境保护部南京环境科学研究所 一种改性膨润土制备重金属颗粒吸附剂的方法
CN108956587A (zh) * 2018-07-11 2018-12-07 安徽理工大学 一种基于微悬臂梁传感技术监测离子吸附的方法

Also Published As

Publication number Publication date
CN105174355B (zh) 2017-08-25

Similar Documents

Publication Publication Date Title
CN102190345B (zh) 一种可循环再生的氢氧化镁吸附剂富集水中低浓度重金属的方法
Chiban et al. Application of low-cost adsorbents for arsenic removal: A review
CN102151546B (zh) 一种改性沸石及其制备方法和应用
Cao et al. Preparation and characteristics of bentonite–zeolite adsorbent and its application in swine wastewater
CN101386424B (zh) 改性成型的镁铝水滑石的制备方法及应用
CN105381780A (zh) 一种吸附-超导磁分离除砷锑的磁性吸附剂及其制备方法
CN103274509A (zh) 一种吸附重金属离子的复合絮凝剂的制备方法及其产品
CN103223327B (zh) 一种氮磷同步吸附剂的制备方法和应用
Waghmare et al. Fluoride removal by clays, geomaterials, minerals, low cost materials and zeolites by adsorption: a review
CN103071451A (zh) 净化废水中重金属离子改性凹凸棒石粘土及制备方法
CN110479226B (zh) 一种粘土矿物/农林废弃生物质复合污水处理剂、其制备方法及应用
CN103752286B (zh) 一种去除重金属离子的复合吸附材料及其制备方法和应用
Uddin et al. A study on the potential applications of rice husk derivatives as useful adsorptive material
CN102580666B (zh) 用于净化重金属污水的改性浮石及其制备方法和用途
CN105174355A (zh) 一种利用粘土矿物去除酸性废水中金属离子的方法
CN102190343B (zh) 一种利用蛋壳吸附污水中磷的方法
CN102826642A (zh) 一种利用胶状黄铁矿回收废水中铜的方法
CN106582509A (zh) 一种重金属离子多孔吸附材料及其制备方法
CN104478055A (zh) 污水处理复合剂、其制备方法和应用方法
CN102580697A (zh) 一种钠基膨润土-am-aa复合新型铅离子吸附剂
CN104973655A (zh) 一种天然沸石水处理剂
CN101497032A (zh) 一种生物吸附剂的制备方法及其应用方法
CN102600796A (zh) 一种吸附氨氮的脱氮滤料及其再生方法
CN103253727B (zh) 一种高磷铁矿尾矿深度净化处理含磷废水的方法
Tran et al. Adsorptive removal of heavy metals from water using thermally treated laterite: an approach for production of drinking water from rain water

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant