CN105163844B - 用于自动中毒过程的反应器 - Google Patents

用于自动中毒过程的反应器 Download PDF

Info

Publication number
CN105163844B
CN105163844B CN201380076033.8A CN201380076033A CN105163844B CN 105163844 B CN105163844 B CN 105163844B CN 201380076033 A CN201380076033 A CN 201380076033A CN 105163844 B CN105163844 B CN 105163844B
Authority
CN
China
Prior art keywords
reactor
particle
entrance area
reaction
main region
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201380076033.8A
Other languages
English (en)
Other versions
CN105163844A (zh
Inventor
C·威克斯
M·S·斯克约思-拉斯姆森
钗提明·阮
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Topsoe AS
Original Assignee
Haldor Topsoe AS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Haldor Topsoe AS filed Critical Haldor Topsoe AS
Publication of CN105163844A publication Critical patent/CN105163844A/zh
Application granted granted Critical
Publication of CN105163844B publication Critical patent/CN105163844B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/0006Controlling or regulating processes
    • B01J19/002Avoiding undesirable reactions or side-effects, e.g. avoiding explosions, or improving the yield by suppressing side-reactions
    • B01J19/0026Avoiding carbon deposits
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/30Loose or shaped packing elements, e.g. Raschig rings or Berl saddles, for pouring into the apparatus for mass or heat transfer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/02Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds
    • B01J8/04Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds the fluid passing successively through two or more beds
    • B01J8/0446Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds the fluid passing successively through two or more beds the flow within the beds being predominantly vertical
    • B01J8/0449Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds the fluid passing successively through two or more beds the flow within the beds being predominantly vertical in two or more cylindrical beds
    • B01J8/0453Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds the fluid passing successively through two or more beds the flow within the beds being predominantly vertical in two or more cylindrical beds the beds being superimposed one above the other
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/02Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds
    • B01J8/04Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds the fluid passing successively through two or more beds
    • B01J8/0446Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds the fluid passing successively through two or more beds the flow within the beds being predominantly vertical
    • B01J8/0449Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds the fluid passing successively through two or more beds the flow within the beds being predominantly vertical in two or more cylindrical beds
    • B01J8/0457Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds the fluid passing successively through two or more beds the flow within the beds being predominantly vertical in two or more cylindrical beds the beds being placed in separate reactors
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/32Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air
    • C01B3/34Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents
    • C01B3/38Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents using catalysts
    • C01B3/40Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents using catalysts characterised by the catalyst
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/50Separation of hydrogen or hydrogen containing gases from gaseous mixtures, e.g. purification
    • C01B3/56Separation of hydrogen or hydrogen containing gases from gaseous mixtures, e.g. purification by contacting with solids; Regeneration of used solids
    • C01B3/58Separation of hydrogen or hydrogen containing gases from gaseous mixtures, e.g. purification by contacting with solids; Regeneration of used solids including a catalytic reaction
    • C01B3/586Separation of hydrogen or hydrogen containing gases from gaseous mixtures, e.g. purification by contacting with solids; Regeneration of used solids including a catalytic reaction the reaction being a methanation reaction
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2208/00Processes carried out in the presence of solid particles; Reactors therefor
    • B01J2208/00008Controlling the process
    • B01J2208/00654Controlling the process by measures relating to the particulate material
    • B01J2208/00707Fouling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2208/00Processes carried out in the presence of solid particles; Reactors therefor
    • B01J2208/02Processes carried out in the presence of solid particles; Reactors therefor with stationary particles
    • B01J2208/023Details
    • B01J2208/024Particulate material
    • B01J2208/025Two or more types of catalyst
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00002Chemical plants
    • B01J2219/00027Process aspects
    • B01J2219/0004Processes in series
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/30Details relating to random packing elements
    • B01J2219/302Basic shape of the elements
    • B01J2219/30223Cylinder
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/30Details relating to random packing elements
    • B01J2219/304Composition or microstructure of the elements
    • B01J2219/30475Composition or microstructure of the elements comprising catalytically active material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/30Details relating to random packing elements
    • B01J2219/308Details relating to random packing elements filling or discharging the elements into or from packed columns
    • B01J2219/3081Orientation of the packing elements within the column or vessel
    • B01J2219/3083Random or dumped packing elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/30Details relating to random packing elements
    • B01J2219/31Size details
    • B01J2219/315Two or more types of packing elements or packing elements of different sizes present in the column
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/02Processes for making hydrogen or synthesis gas
    • C01B2203/0205Processes for making hydrogen or synthesis gas containing a reforming step
    • C01B2203/0227Processes for making hydrogen or synthesis gas containing a reforming step containing a catalytic reforming step
    • C01B2203/0233Processes for making hydrogen or synthesis gas containing a reforming step containing a catalytic reforming step the reforming step being a steam reforming step
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/04Integrated processes for the production of hydrogen or synthesis gas containing a purification step for the hydrogen or the synthesis gas
    • C01B2203/0435Catalytic purification
    • C01B2203/0445Selective methanation
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/04Integrated processes for the production of hydrogen or synthesis gas containing a purification step for the hydrogen or the synthesis gas
    • C01B2203/0465Composition of the impurity
    • C01B2203/047Composition of the impurity the impurity being carbon monoxide
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/10Catalysts for performing the hydrogen forming reactions
    • C01B2203/1005Arrangement or shape of catalyst
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/14Details of the flowsheet
    • C01B2203/142At least two reforming, decomposition or partial oxidation steps in series
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/80Aspect of integrated processes for the production of hydrogen or synthesis gas not covered by groups C01B2203/02 - C01B2203/1695
    • C01B2203/82Several process steps of C01B2203/02 - C01B2203/08 integrated into a single apparatus
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L3/00Gaseous fuels; Natural gas; Synthetic natural gas obtained by processes not covered by subclass C10G, C10K; Liquefied petroleum gas
    • C10L3/06Natural gas; Synthetic natural gas obtained by processes not covered by C10G, C10K3/02 or C10K3/04
    • C10L3/08Production of synthetic natural gas

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Inorganic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Devices And Processes Conducted In The Presence Of Fluids And Solid Particles (AREA)
  • Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

本发明涉及用于传输受限反应的反应器,该反应器包括入口区域和主要区域,所述入口区域包含在所述反应中呈催化活性的材料的颗粒,且所述主要区域包含在所述反应中呈催化活性的材料的颗粒,其特征在于所述主要区域的颗粒的外部几何表面积低于所述入口区域的颗粒的外部几何表面积。

Description

用于自动中毒过程的反应器
发明领域
本发明涉及用于自动中毒过程(auto-poisoning process)的反应器,以及用于此类方法的最佳反应器装载(optimal reactor loading)。
发明背景
许多催化法倾向于在反应器的入口处失活,在那里毒物通常沉积在顶层催化剂上。常见的解决方案是以过量催化剂量或以针对该毒物的特定吸附或吸收的材料形式安装防护材料。
但是,在一些情况下,该毒物或致失活物类可以构成该反应物原料的全部或部分,换言之是自动中毒反应物。
自动中毒反应的第一个实例是在烃类的绝热蒸汽预重整中的情况(CnHm+nH2O=nCO+{n+m/2}H2),其中如果温度不足或催化剂具有不足的活性的话,对于在催化活性相上的反应所吸附的特别高级的烃类倾向于不从活性相上解吸。由此该高级烃类脱氢并导致在该催化剂中的活性相周围形成含碳物类的包覆层,最终导致失活。实际解决方案是采用足够活性的催化剂和提高操作入口温度至其中自动中毒的风险被消除或降低至不会降低催化剂寿命的程度的水平。
自动中毒反应的第二个实例是在例如代用天然气(SNG)法中的高温甲烷化反应(CO+3H2=CH4+H2O),其中含有浓缩的一氧化碳和氢气的反应性非常高的气体进料到第一反应器中,通常该进料气体具有一系数(module),即接近3的摩尔比M=(H2-CO2)/(CO+CO2)。通常该气体主要含有H2和CO,但是也含有其它化合物如CO2、CH4和高级烃类,并且可能存在惰性物质,并且此外可以添加额外的蒸汽以抑制反应器中过度的绝热升温。催化剂的失活可能在低入口温度下发生,例如低于330℃,并且据信这是由催化剂中活性相上分解的一氧化碳所造成的,在那里该一氧化碳形成表面含碳中间体(而不是与表面键合的氢反应形成甲烷)、重组并在催化剂中的活性相周围生成含碳物类的包覆层,这最终导致了失活。实际解决方案是在提高的入口温度下操作(H.H.Gierlich,M.Fremery,A.Skov,J.R.Rostrup-Nielsen:Studies in Surface Science and Catalysis(Elsevier)第6卷,第459-469页),但是这将提高出口温度,由于这将反应平衡远离从所需产物甲烷,因此这是不合意的,此外,提高的温度可能破坏催化剂的稳定性,除非例如通过控制该平衡(例如通过降低反应物的分压或提高产物的分压)来降低该绝热升温。
现在根据本发明提出此类问题的一种解决方案。已经确定,对于传输受限的反应,提高初始区域的活性表面积将允许快速提高至足够的反应温度,这会降低例如碳形成所造成的自动中毒的风险。如果随后将主要区域保持在较低的活性表面区域下,可以保持高入口反应性和适度的压降之间的平衡。
传输受限的反应或部分传输受限的反应对本申请应解释为如下反应:该反应受限于反应物由本体气相(bulk gas phase)向催化剂表面的外部传质,或该反应受限于反应物从催化剂颗粒的表面向内部的内部传质,而该反应非受限于反应的实际化学速率。通常术语扩散受限可以替代地用于此类反应。
放热入口区域对本申请应理解为其中发生放热反应释放热量的靠近反应器入口的区域。
吸热入口区域对本申请应理解为其中发生吸热反应消耗热量的靠近反应器入口的区域,其后接放热的下游区域。该吸热反应可以是初级反应物的活化,或其可能涉及进料中的杂质的消耗。
最大升温应理解为最小反应器温度与出口温度之间的差值。
自动中毒应理解为催化剂通过如下物类进行的毒化或失活的过程:其中该物类被构成为全部反应物原料或呈反应物原料不可分离的一部分。
外部几何表面积应解释为相对于反应器中体相体积的体相表面(bulk surface)面积。
体相表面应理解为催化剂外部表面,并且不应包括内部孔隙表面。
体相体积应理解为被催化剂颗粒占据的反应器体积,应理解为包括颗粒之间的空隙。
绝热反应器应理解为其中热交换介质不发生故意的(deliberate)热交换的反应器。但是,具有向周边的适度热损耗的反应器也被认为是绝热的。
发明概述
广义上,本发明涉及用于传输受限反应的反应器,该反应器包含入口区域,其包含在所述传输受限反应中呈催化活性的材料的颗粒,和主要区域,其包含在所述传输受限反应中呈催化活性的材料的颗粒,其特征在于所述主要区域的颗粒的外部几何表面积低于所述入口区域的颗粒的外部几何表面积,其益处在于提供了一种用于所述反应的反应器,该反应器具有降低的传输限制以及有限的压降。
在另一实施方案中,所述传输受限反应是出口温度比入口温度高5至450℃的放热反应。
在另一实施方案中,所述传输受限反应是通过与氢进行反应的一氧化碳的甲烷化反应,其益处在于由一氧化碳和氢制造甲烷。
在另一实施方案中,所述传输受限反应是烃类的蒸汽预重整,其益处在于由烃类制造氢。
在另一实施方案中,该入口区域中的颗粒的外部几何表面积为700-2000m2/m3,并且该主要区域中的颗粒的外部几何表面积是入口区域中的颗粒的外部几何表面积的50-90%,其相关益处在于提供一组高反应性工艺条件。
在另一实施方案中,传输受限入口区域的颗粒具有2至6毫米的直径,其益处在于所述颗粒具有高表面积,同时是物理稳定的并且方便制造。
在另一实施方案中,入口区域和主要区域的颗粒的至少之一具有选自圆柱体状、环状、球状、多孔环(包括7孔环)、雏菊形和四叶形的几何形状,其益处在于所述颗粒具有有利的表面积,同时与具有相同表面积的更小颗粒相比更便于处理。
在另一实施方案中,该入口区域的颗粒的体相体积是主要区域上游的反应器体积的小于50%、优选小于25%和最优选小于15%,其益处在于所述颗粒提供反应性入口区域,足以将温度提高至一定水平,使得主要区域的颗粒具有足够的反应性。
在另一实施方案中,放热入口区域在吸热入口区域下游,其益处在于所述吸热反应区域在主要放热反应之前容纳初始反应。
本发明的再一方面涉及如上述任一权利要求所述的反应器,其是绝热的,相关益处在于与冷却反应器相比,此类反应器是简单的且具有适中的成本。
根据本公开,已经发现了对自动中毒失活现象的新的解决方案,其能够在作为快速催化反应的、其传输受限于或部分传输受限于反应物从本体气相向催化剂表面的外部传质以及被反应物失活(如预重整和甲烷化)的过程中进行更灵活的操作。由此,如果通过减少雷诺数以降低质量传递数来延缓反应物从本体气相向催化剂表面的传输的话,将有更多时间可用于反应和解吸,但是对于要进行的解吸而言,至关重要的是该温度还被反应升高。由此,为了提高活性表面积的可用性,需要更高的几何表面积。这两个要求指向使用较小的催化剂颗粒。不幸的是,小的催化剂颗粒还导致高压降,并由此提高电力消耗。
该解决方案是平衡在需要快速反应以避免失活的反应器入口处使用具有高外部几何表面积(通常为小颗粒)的催化剂颗粒和在反应器剩余部分中使用具有低外部几何表面积的颗粒(通常为更大的颗粒)。从高外部几何表面积颗粒向低外部几何表面积颗粒的变化应当是其中反应已经被引发并且该温度高于临界值。优选地,该高外部几何表面积催化剂颗粒应用于其中已经发生10-50%、优选20-30%的最大温升的入口区域中。该温度在一些情况下可以先降低,接着再升高。在此类情况下,入口区域和主要区域的相对尺寸应当由到反应器出口的最低温度来限定。在最低温度上游的区域可以包含具有高或低几何表面积的颗粒。
所需温升通常可以在运行开始时的相对装载高度(relative loading height)的前50%中实现,通常甚至在该相对装载高度的前15%中实现。由此,优选地,小催化剂颗粒应用于相对装载高度的前50%中,更优选在相对装载高度的前25%中且最优选在相对装载高度的前15%中。
附图简要说明
下面参照附图更详细地描述本发明,其中:
图1显示了圆柱形催化剂颗粒的草图,
图2显示了环形催化剂颗粒的草图,
图3显示了7孔催化剂颗粒的草图,
图4显示了四叶形催化剂颗粒的草图,
图5显示了雏菊形催化剂颗粒的草图,
图6显示了本发明的一个实施方案,
图7显示了现有技术的一个实施方案,和
图8显示了来自具有不同工艺配置的3个实施例的数据。
详细描述
图1-5显示了催化剂颗粒的实例,其可以具有圆柱体形状(参见图1)、环形(参见图2)、形状优化的颗粒如7孔环(参见图3)、四叶形(参见图4)、以及雏菊形(参见图5),但是也存在许多其它常见催化剂形状。通常,通过增加孔或改变表面形状来提高形状优化的颗粒中的外部几何表面积。
催化剂颗粒的特征在于具有通常为500至2000m2/m3的外部几何表面积。这可以使用高度为2至6毫米不等的直径为3至4.5毫米的圆柱体、高度为3至6毫米不等和孔直径为1至2毫米不等的直径为5至9毫米的7孔圆柱体来获得。由常见催化剂形状可以容易地实现其它变化。该压降相对于4.5×4.5毫米圆柱体通常为大约10至180%。这些原则也可以由本领域技术人员应用于具有减低压降的甚至更大的颗粒,以及具有更高外部几何表面积的较小颗粒。
对本公开的目的而言,催化活性材料的颗粒根据它们的外部几何表面积分级。大颗粒的催化剂装载将具有低外部几何表面积,而较小颗粒或具有孔或优化形状的颗粒的装载可以具有更高的外部几何表面积。
表1显示了3种催化剂形状的实例,以及这些催化剂的相关参数。
表1
在图6中,显示了现有技术的一个实施方案。其涉及用于合成气甲烷化的方法,以及实施该方法的工艺设备。在此类工艺设备中,将合成气流10引导至包含单一催化床14的第一反应器12。为了控制该第一反应器的温度,将一部分产物再循环。在第二反应器22中,在冷凝物的冷凝工艺前,该甲烷化反应进一步完成,并将富甲烷气体26引导至最终的甲烷化反应。
在现有技术的一个实施方案中,该第一反应器的催化床含有催化颗粒,该催化剂颗粒具有高几何表面积,例如小颗粒,如具有4.5毫米的直径和4.5毫米的高度的圆柱体。
在图7中,显示了本公开的方法。在此类工艺设备中,合成气流10引导至包含两个催化床16和18的第一反应器12。为了控制该第一反应器的温度,将一部分产物再循环。在第二反应器22中,在冷凝物的冷凝工艺前,该甲烷化反应进一步完成,并将富甲烷气体26引导至最终的甲烷化。
在一个实施方案中,该第一反应器的第一催化床含有具有高几何表面积的催化颗粒,例如具有4.5毫米的直径和4.5毫米的高度的圆柱形小颗粒,而第二催化床含有具有较小几何表面积和更低压降因子的催化颗粒,例如直径为16毫米且高度为10毫米的7孔催化颗粒。以这种方式,第一催化床中的整体反应性与第二床的整体反应性相同,而有可能获得明显更低的压降。其效果在于可以仅以适度提高的压降进行反应的快速引发。
实施例
在评价本发明对甲烷化过程的效果时,比较三种工艺配置。图8中示出根据三种工艺配置的温度vs.反应器高度。
所有实施例基于表2中所示的入口气体组成。
表2
入口气体
P[巴] 27.1
T[℃] 310
摩尔分数
H2 44.67
CO 5.25
CO2 6.10
CH4 22.14
N2 4.08
H2O 17.76
实施例1:
现有技术的第一实施例展示了在具有高表面积的催化剂颗粒的存在下甲烷化过程的操作。温度vs.反应器高度显示在图8中,实施例1标示为虚线。该实施例显示了快速反应,在0.6米的反应器后转化率为98%,并且310-360℃的温度区间中的反应区域长度仅为大约0.45米。但是,该操作的压降是过量0.0261kg/cm2
实施例2:
根据现有技术的第二实施例展示了在具有低表面积的催化剂颗粒的存在下,采用降低的压降的甲烷化过程的操作。温度vs.反应器高度显示在图8中,实施例2标示为实线。该实施例显示了慢速反应,在0.9米的反应器后转化率为98%,并且310-360℃的温度区间中的反应区域长度为大约0.6米,这提高了碳沉积的风险。但是,该操作的压降仅为0.0031kg/cm2。由于颗粒结构更开放,该反应器体相体积也更高,但是相关的催化剂质量更低。
实施例3:
根据本公开技术的实施方案的第三实施例展示了通过结合使用两种类型的催化剂颗粒,从而以令人满意的点火和降低的压降实现甲烷化过程的可能性。温度vs.反应器高度显示在图8中,实施例3标示为点/虚线。该实施例显示了如在第一实施例中的有利的快速初始反应,在0.6米的反应器后转化率为98%,并且310-360℃的温度区间中的反应区域长度仅为大约0.45米,这将压降保持在仅0.0107kg/cm2。在这种情况下,该反应器体相体积也是适中的,因此为催化剂的相关质量。
这三个实例表明,通过根据本公开设计甲烷化过程,该操作特性可以降低催化剂失活的风险,并降低该反应器的压降。
当入口温度低于310℃时,该反应也是可能的,但是反应温度的下限可以由充分的催化活性的要求,或由合成气与催化剂镍形成羰基镍的风险来决定。

Claims (14)

1.用于传输受限反应的反应器,该反应受限于反应物由本体气相向催化剂表面的外部传质或受限于反应物从催化剂颗粒的表面向内部的内部传质,所述反应器包括:
入口区域,其包含在所述反应中呈催化活性的材料的颗粒;和
主要区域,其包含在所述反应中呈催化活性的材料的颗粒,其特征在于所述主要区域的颗粒的外部几何表面积低于所述入口区域的颗粒的外部几何表面积;
其中所述外部几何表面积是相对于体相体积,催化剂不包括内部孔隙表面的外部表面,所述体相体积为被催化剂颗粒占据的包括颗粒之间的空隙的反应器体积。
2.如权利要求1所述的反应器,其中所述传输受限反应是出口温度比入口温度高5至450℃的放热反应。
3.如权利要求2所述的反应器,其中所述传输受限反应是与氢进行反应的一氧化碳的甲烷化反应。
4.如权利要求1所述的反应器,其中所述传输受限反应是烃类的蒸汽预重整。
5.如权利要求1、2、3或4所述的反应器,其中所述入口区域中的颗粒的外部几何表面积为700-2000m2/m3,并且所述主要区域中的颗粒的外部几何表面积是入口区域中的颗粒的外部几何表面积的50-90%。
6.如权利要求5所述的反应器,其中所述入口区域的颗粒具有2至6毫米的直径。
7.如权利要求5所述的反应器,其中入口区域和主要区域的颗粒的至少之一具有选自圆柱体状、环状和球状的几何形状。
8.如权利要求5所述的反应器,其中入口区域和主要区域的颗粒的至少之一具有选自7孔环、雏菊形和四叶形的几何形状。
9.如权利要求5所述的反应器,其中所述入口区域的颗粒的体相体积是主要区域上游的反应器体积的50%以下。
10.如权利要求5所述的反应器,其中所述入口区域的颗粒的体相体积是主要区域上游的反应器体积的25%以下。
11.如权利要求5所述的反应器,其中所述入口区域的颗粒的体相体积是主要区域上游的反应器体积的15%以下。
12.如权利要求5所述的反应器,其中放热入口区域在吸热入口区域下游。
13.如权利要求7所述的反应器,其中放热入口区域在吸热入口区域下游。
14.如权利要求5所述的反应器,其是绝热的。
CN201380076033.8A 2013-02-27 2013-02-27 用于自动中毒过程的反应器 Active CN105163844B (zh)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/EP2013/053860 WO2014131435A1 (en) 2013-02-27 2013-02-27 Reactor for an auto-poisoning proces

Publications (2)

Publication Number Publication Date
CN105163844A CN105163844A (zh) 2015-12-16
CN105163844B true CN105163844B (zh) 2017-07-07

Family

ID=47844285

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201380076033.8A Active CN105163844B (zh) 2013-02-27 2013-02-27 用于自动中毒过程的反应器

Country Status (2)

Country Link
CN (1) CN105163844B (zh)
WO (1) WO2014131435A1 (zh)

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2013207783B2 (en) 2012-01-13 2017-07-13 Lummus Technology Llc Process for providing C2 hydrocarbons via oxidative coupling of methane and for separating hydrocarbon compounds
US9670113B2 (en) 2012-07-09 2017-06-06 Siluria Technologies, Inc. Natural gas processing and systems
WO2014089479A1 (en) 2012-12-07 2014-06-12 Siluria Technologies, Inc. Integrated processes and systems for conversion of methane to multiple higher hydrocarbon products
EP3074119B1 (en) 2013-11-27 2019-01-09 Siluria Technologies, Inc. Reactors and systems for oxidative coupling of methane
CN110655437B (zh) 2014-01-08 2022-09-09 鲁玛斯技术有限责任公司 乙烯成液体的系统和方法
US10377682B2 (en) 2014-01-09 2019-08-13 Siluria Technologies, Inc. Reactors and systems for oxidative coupling of methane
CA3225180A1 (en) 2014-01-09 2015-07-16 Lummus Technology Llc Oxidative coupling of methane implementations for olefin production
US10793490B2 (en) 2015-03-17 2020-10-06 Lummus Technology Llc Oxidative coupling of methane methods and systems
US9334204B1 (en) 2015-03-17 2016-05-10 Siluria Technologies, Inc. Efficient oxidative coupling of methane processes and systems
US20160289143A1 (en) 2015-04-01 2016-10-06 Siluria Technologies, Inc. Advanced oxidative coupling of methane
US9328297B1 (en) 2015-06-16 2016-05-03 Siluria Technologies, Inc. Ethylene-to-liquids systems and methods
EP3362425B1 (en) 2015-10-16 2020-10-28 Lummus Technology LLC Separation methods and systems for oxidative coupling of methane
EP3442934A4 (en) 2016-04-13 2019-12-11 Siluria Technologies, Inc. OXIDIZING COUPLING OF METHANE FOR THE PRODUCTION OF OLEFINS
WO2018118105A1 (en) 2016-12-19 2018-06-28 Siluria Technologies, Inc. Methods and systems for performing chemical separations
JP2020521811A (ja) 2017-05-23 2020-07-27 ラマス テクノロジー リミテッド ライアビリティ カンパニー メタン酸化カップリングプロセスの統合
AU2018298234B2 (en) 2017-07-07 2022-11-17 Lummus Technology Llc Systems and methods for the oxidative coupling of methane
DE102019127790A1 (de) * 2019-10-15 2021-04-15 Clariant International Ltd Neues Katalysatorsystem für die Herstellung von Maleinsäureanhydrid durch katalytische Oxidation von n-Butan
CN115672331B (zh) * 2021-07-23 2024-08-20 国家能源投资集团有限责任公司 甲烷化催化剂及其制备方法和应用
WO2024126256A1 (de) * 2022-12-12 2024-06-20 Evonik Oxeno Gmbh & Co. Kg Energieeffizientes verfahren zur abtrennung von butenen aus c4-kohlenwasserstoffströmen

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0930801A (ja) * 1995-07-19 1997-02-04 Mitsubishi Electric Corp 改質反応器
US20030086866A1 (en) * 2001-10-26 2003-05-08 Wangerow James R. Compact combined shift and selective methanation reactor for co control
US20060204414A1 (en) * 2005-03-11 2006-09-14 Saint-Gobain Ceramics & Plastics, Inc. Bed support media
US7566428B2 (en) * 2005-03-11 2009-07-28 Saint-Gobain Ceramics & Plastics, Inc. Bed support media
CN101928592B (zh) * 2009-06-26 2012-07-18 中国石油天然气股份有限公司 一种加氢催化剂的级配组合
CN101942317B (zh) * 2009-07-09 2013-08-28 中国石油化工股份有限公司 一种沸腾床催化剂的级配方法

Also Published As

Publication number Publication date
CN105163844A (zh) 2015-12-16
WO2014131435A1 (en) 2014-09-04

Similar Documents

Publication Publication Date Title
CN105163844B (zh) 用于自动中毒过程的反应器
US12098079B2 (en) Chemical reactor with integrated heat exchanger, heater, and high conductance catalyst holder
KR100929886B1 (ko) 고수소 가스 제조용 콤팩트 연료 처리장치
KR100891928B1 (ko) 단일 챔버 콤팩트 연료 처리장치
EP1616838B1 (en) Catalyst, process and apparatus for the adiabatic pre-reforming of natural gas
US20220212928A1 (en) Combination of structured catalyst elements and pellets
JP2008544943A (ja) 合成ガスの製造および使用
US20060188435A1 (en) Method and apparatus for the production of hydrogen-rich gas
CN102844267A (zh) 重整烃的方法
KR20080009700A (ko) 열적 통합형 수소 발생 시스템용 방법 및 장치
CN106132529A (zh) 伪等温反应器
CN107223114A (zh) 制造氨的方法
CN101450790A (zh) 一种天然气-二氧化碳重整制备合成气的方法和装置
KR101403699B1 (ko) 열교환 장치를 내장한 일산화탄소 선택적 산화반응기 및 연료 개질 시스템
KR101401355B1 (ko) 탄화수소 개질용 마이크로 채널 반응기
CN113117712A (zh) 一种微波条件下的甲烷干重整反应及其催化剂
CN205761060U (zh) 重整反应器
JP2013517923A (ja) 触媒反応装置処理方法
CN102133512B (zh) 适用于气相放热反应的反应器
EP2212959B1 (en) Reduced generation of ammonia in nickel catalyst of reformer
GB2423489A (en) Water gas shift reactor
CN204564098U (zh) 一种可控制温度的绝热反应器
CN104689764A (zh) 一种可控制温度的绝热反应器
US20160136604A1 (en) Reactor for partial oxidation of hydrocarbon gases
WO2024154754A1 (ja) メタネーション反応装置及びメタネーション反応方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant