CN105156103A - Debris-core-borehole-reservoir multiscale shale reservoir three-dimensional fracturing evaluation method - Google Patents
Debris-core-borehole-reservoir multiscale shale reservoir three-dimensional fracturing evaluation method Download PDFInfo
- Publication number
- CN105156103A CN105156103A CN201510631876.0A CN201510631876A CN105156103A CN 105156103 A CN105156103 A CN 105156103A CN 201510631876 A CN201510631876 A CN 201510631876A CN 105156103 A CN105156103 A CN 105156103A
- Authority
- CN
- China
- Prior art keywords
- reservoir
- shale
- pressure break
- fracture toughness
- elastic parameter
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000011156 evaluation Methods 0.000 title claims abstract description 20
- 229910052500 inorganic mineral Inorganic materials 0.000 claims abstract description 27
- 239000011707 mineral Substances 0.000 claims abstract description 27
- 238000007621 cluster analysis Methods 0.000 claims abstract description 20
- 239000011435 rock Substances 0.000 claims abstract description 13
- 238000013210 evaluation model Methods 0.000 claims abstract description 10
- 238000004422 calculation algorithm Methods 0.000 claims abstract description 6
- 238000012706 support-vector machine Methods 0.000 claims abstract description 6
- 238000005553 drilling Methods 0.000 claims description 17
- 238000012549 training Methods 0.000 claims description 4
- 238000001615 p wave Methods 0.000 claims 1
- 238000010008 shearing Methods 0.000 claims 1
- 230000000153 supplemental effect Effects 0.000 claims 1
- 230000000694 effects Effects 0.000 abstract description 6
- 238000000034 method Methods 0.000 abstract description 4
- 201000004569 Blindness Diseases 0.000 abstract 1
- 238000012986 modification Methods 0.000 abstract 1
- 230000004048 modification Effects 0.000 abstract 1
- 239000007789 gas Substances 0.000 description 24
- 238000011161 development Methods 0.000 description 7
- 206010017076 Fracture Diseases 0.000 description 6
- 208000010392 Bone Fractures Diseases 0.000 description 4
- 238000012360 testing method Methods 0.000 description 4
- 229910021532 Calcite Inorganic materials 0.000 description 3
- 238000004364 calculation method Methods 0.000 description 3
- 229910000514 dolomite Inorganic materials 0.000 description 3
- 239000010459 dolomite Substances 0.000 description 3
- 230000000704 physical effect Effects 0.000 description 3
- 239000010453 quartz Substances 0.000 description 3
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 3
- 235000009508 confectionery Nutrition 0.000 description 2
- 238000013461 design Methods 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 2
- 238000004220 aggregation Methods 0.000 description 1
- 230000002776 aggregation Effects 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 238000009933 burial Methods 0.000 description 1
- 230000006835 compression Effects 0.000 description 1
- 238000007906 compression Methods 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 239000012634 fragment Substances 0.000 description 1
- 238000011065 in-situ storage Methods 0.000 description 1
- 239000011229 interlayer Substances 0.000 description 1
- 239000010410 layer Substances 0.000 description 1
- 239000003345 natural gas Substances 0.000 description 1
- 238000005457 optimization Methods 0.000 description 1
- 238000007781 pre-processing Methods 0.000 description 1
- 238000011084 recovery Methods 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 238000012216 screening Methods 0.000 description 1
- 239000003079 shale oil Substances 0.000 description 1
- 238000004904 shortening Methods 0.000 description 1
Landscapes
- Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)
Abstract
Description
技术领域technical field
本发明属于页岩油气开发技术领域,尤其涉及一种岩屑-岩心-井眼-储层多尺度的页岩储层三维可压裂性评价方法。The invention belongs to the technical field of shale oil and gas development, and in particular relates to a three-dimensional fracturing evaluation method for shale reservoirs with multiple scales of cuttings-core-wellbore-reservoir.
背景技术Background technique
随着我国国民经济持续快速增长,能源需求急剧增加,石油天然气资源供需矛盾突出。我国页岩气资源十分丰富,根据2012年国土资源部油气中心最新研究成果表明,我国页岩气可采资源量为25万亿方,发展潜力巨大。随着美国Barnett、EagleFord和我国涪陵等典型页岩气田的成功开发,页岩气有望成为重要的接替能源。然而,我国页岩气的开发普遍存在着单井成本高、整体产量低、压后效果参差不齐等瓶颈问题,再加上国际油价的大幅下跌,使得我国页岩气资源的开发面临着投资成本难以回收的难题,严重制约页岩气产业的发展。With the continuous and rapid growth of my country's national economy, the demand for energy has increased sharply, and the contradiction between supply and demand of oil and natural gas resources has become prominent. my country's shale gas resources are very rich. According to the latest research results of the Oil and Gas Center of the Ministry of Land and Resources in 2012, the recoverable resources of shale gas in my country are 25 trillion cubic meters, and the development potential is huge. With the successful development of typical shale gas fields such as Barnett and Eagle Ford in the United States and Fuling in my country, shale gas is expected to become an important alternative energy source. However, the development of shale gas in my country generally has bottlenecks such as high cost per well, low overall production, and uneven post-pressure effects. Coupled with the sharp drop in international oil prices, the development of shale gas resources in my country is facing investment The difficulty of recovering the cost seriously restricts the development of the shale gas industry.
美国的页岩气储层地貌平坦、埋藏较浅、储层物性均匀,通常通过对比水平井井眼各位置的可压裂性来优选射孔簇位置和压裂层段,压后效果较好。然而,四川地区地质构造剧烈、储层地质条件复杂,页岩储层内部物性和非均质性差异较大,现有的脆性指数评价方法仅属于井眼尺度,无法实现整个储层脆性的预测,若水平井井眼轨迹位于脆性较差的储层或钻遇弹性模量较高和泊松比较小的脆性隔层,采用现有方法优化的射孔位置和压裂层段将难以得到体积压裂所要求的裂缝网络,从而使页岩气井的产能达不到预期目标甚至部分井压后并不见气,导致前期钻井和大规模水力压裂的巨额投资难以得到回报。为了优化页岩气井长水平段轨迹的设计,使1000-2000m的长水平段均位于储层物性和可压裂性较好的位置,必须建立整个储层的三维可压裂性模型。The shale gas reservoirs in the United States have flat landforms, shallow burial, and uniform reservoir physical properties. Usually, the perforation cluster locations and fracturing intervals are selected by comparing the fracturing properties of each location of the horizontal wellbore, and the post-fracturing effect is better. . However, due to the severe geological structure and complex geological conditions of reservoirs in Sichuan area, the internal physical properties and heterogeneity of shale reservoirs are quite different. The existing brittleness index evaluation methods only belong to the wellbore scale and cannot realize the prediction of the brittleness of the entire reservoir. , if the wellbore trajectory of the horizontal well is located in a reservoir with poor brittleness or encounters a brittle interlayer with a high elastic modulus and a small Poisson's ratio, it will be difficult to achieve volume fracturing with the perforation position and fracturing interval optimized by the existing method. Due to the required fracture network, the production capacity of shale gas wells cannot reach the expected target, and even part of the well pressure does not see gas, which makes it difficult to return the huge investment in early drilling and large-scale hydraulic fracturing. In order to optimize the design of the trajectory of the long horizontal section of the shale gas well, so that the long horizontal section of 1000-2000m is located in a position with good reservoir physical properties and fracturing properties, a three-dimensional fracturing model of the entire reservoir must be established.
发明内容Contents of the invention
本发明的目的在于克服现有技术的缺点,提供一种岩屑-岩心-井眼-储层多尺度的页岩储层三维可压裂性评价方法,建立页岩储层的三维可压裂性模型。结合地质甜点、地应力和天然裂缝发育情况,此模型可用于指导页岩气水平井的井眼轨迹设计,为射孔簇位置和压裂层段的优化提供理论支持,以形成最大化的裂缝网络,提高最终压裂效果,尽快回收页岩气井的投资成本。The purpose of the present invention is to overcome the shortcomings of the prior art, provide a cuttings-core-wellbore-reservoir multi-scale shale reservoir three-dimensional fracturability evaluation method, and establish a three-dimensional fracturability evaluation method for shale reservoirs sex model. Combined with geological sweet spots, in-situ stress and natural fracture development, this model can be used to guide the wellbore trajectory design of shale gas horizontal wells, and provide theoretical support for the optimization of perforation cluster positions and fracturing intervals to form maximum fractures network, improve the final fracturing effect, and recover the investment cost of shale gas wells as soon as possible.
本发明的目的通过以下技术方案来实现,一种岩屑-岩心-井眼-储层多尺度的页岩储层三维可压裂性评价方法,包括下列步骤:The purpose of the present invention is achieved through the following technical solutions, a cuttings-core-borehole-reservoir multi-scale shale reservoir three-dimensional fracturability evaluation method, comprising the following steps:
S1、采用矿物含量脆性指数评价经验公式,计算页岩取心位置处的矿物含量脆性指数;S1. Using the empirical formula for mineral content brittleness index evaluation, calculate the mineral content brittleness index at the shale coring position;
S2、建立内摩擦角、I型和II型裂缝断裂韧性与岩石力学特征参数之间的关系式;S2. Establishing the relationship between the internal friction angle, the fracture toughness of type I and type II fractures, and the characteristic parameters of rock mechanics;
S3、建立综合考虑矿物含量、弹性参数、内摩擦角、临界应变能释放率和断裂韧性的页岩可压裂性评价模型,计算钻井位置处储层的可压裂性纵向曲线;S3. Establish a shale fracturability evaluation model that comprehensively considers mineral content, elastic parameters, internal friction angle, critical strain energy release rate and fracture toughness, and calculate the fracturability longitudinal curve of the reservoir at the drilling position;
S4、运用支持向量机算法,得到储层可压裂性与弹性参数之间的聚类分析关系,并采用单井可压裂性纵向曲线验证可压裂性与弹性参数之间的聚类分析模式;S4. Use the support vector machine algorithm to obtain the cluster analysis relationship between the fracturability and elastic parameters of the reservoir, and use the vertical curve of the fracturability of a single well to verify the cluster analysis between the fracturability and elastic parameters model;
S5、应用聚类分析模式到储层三维弹性参数数据体,建立基于岩屑-岩心-井眼-储层多尺度的页岩储层三维可压裂性模型。S5. Apply the cluster analysis model to the three-dimensional elastic parameter data volume of the reservoir, and establish a three-dimensional fracturing model of the shale reservoir based on the multi-scale of cuttings-core-wellbore-reservoir.
进一步地,所述步骤S3包括以下子步骤:Further, the step S3 includes the following sub-steps:
S31、采用弹性参数脆性指数评价经验公式,计算取心位置处的弹性参数脆性指数EEn;S31. Using the elastic parameter brittleness index evaluation empirical formula, calculate the elastic parameter brittleness index EE n at the coring position;
S32、建立综合考虑所述步骤S1中的矿物含量脆性指数Bn、弹性参数脆性指数EEn和所述步骤S2中的内摩擦角临界应变能释放率GC和断裂韧性的页岩可压裂性评价模型:S32. Establishing a comprehensive consideration of the mineral content brittleness index B n in the step S1, the elastic parameter brittleness index EE n and the internal friction angle in the step S2 Shale fracturing evaluation model of critical strain energy release rate G C and fracture toughness:
式中,FI1、FI2分别为考虑页岩应变能释放率和断裂韧性的可压裂性评价指数,无量纲;In the formula, FI 1 and FI 2 are the fracturing evaluation indexes considering the strain energy release rate and fracture toughness of shale, respectively, dimensionless;
w为数值范围0~1的权重系数,无量纲;w is a weight coefficient with a value ranging from 0 to 1, dimensionless;
为综合矿物含量脆性指数Bn和弹性参数脆性指数EEn的脆性表达式,Bn-n为综合矿物含量和弹性参数的页岩脆性指数,无量纲;Bn、EEn均无量纲; is the brittleness expression of comprehensive mineral content brittleness index B n and elastic parameter brittleness index EE n , B nn is the shale brittleness index of comprehensive mineral content and elastic parameter, dimensionless; both B n and EE n are dimensionless;
为临界应变能释放率权重表达式,GC_n为砂岩储层的应变能释放率权重,无量纲;GC、GC_max、GC_min分别为砂岩储层的临界应变能释放率、砂岩储层的最大临界应变能释放率和最小临界应变能释放率,单位为N/m; is the weight expression of critical strain energy release rate, G C_n is the weight of strain energy release rate of sandstone reservoir, dimensionless; G C , G C_max , G C_min are critical strain energy release rate of sandstone reservoir, sandstone reservoir Maximum critical strain energy release rate and minimum critical strain energy release rate, in N/m;
为内摩擦角权重表达式,为砂岩储层的内摩擦角权重,无量纲;分别为砂岩储层计算位置处内摩擦角的正弦值、砂岩储层的最大内摩擦角的正弦值和最小内摩擦角的正弦值,无量纲; is the weight expression of internal friction angle, is the weight of internal friction angle of sandstone reservoir, dimensionless; Respectively, the sine value of the internal friction angle at the calculated position of the sandstone reservoir, the sine value of the maximum internal friction angle and the sine value of the minimum internal friction angle of the sandstone reservoir, dimensionless;
为I型断裂韧性权重表达式,KIC_n为砂岩储层的I型断裂韧性权重,无量纲;KIC、KIC_max、KIC_min分别为砂岩储层计算位置处的I型断裂韧性、砂岩储层的最大I型断裂韧性和最小I型断裂韧性,单位为MPa·m1/2; is the weight expression of type I fracture toughness, K IC_n is the weight of type I fracture toughness of sandstone reservoir, dimensionless; K IC , K IC_max , K IC_min are respectively The maximum type I fracture toughness and the minimum type I fracture toughness, the unit is MPa·m 1/2 ;
为II型断裂韧性权重表达式,KIIC_n为砂岩储层的II型断裂韧性权重,无量纲;KIIC、KIIC_max、KII_min分别为砂岩储层计算位置处的II型断裂韧性、砂岩储层的最大II型断裂韧性和最小II型断裂韧性,单位为MPa·m1/2; is the weight expression of type II fracture toughness, K IIC_n is the weight of type II fracture toughness of sandstone reservoir, dimensionless; K IIC , K IIC_max , K II_min are the type II fracture toughness and sandstone reservoir The maximum type II fracture toughness and the minimum type II fracture toughness, the unit is MPa m 1/2 ;
S33、利用所建立的综合多因素可压裂性评价模型,结合页岩气井的测井数据和所述步骤S2中的内摩擦角、I型和II型断裂韧性与岩石力学特征参数之间的关系式,计算页岩气钻井位置储层的可压裂性纵向曲线特征。S33. Using the established comprehensive multi-factor fracturing evaluation model, combining the logging data of shale gas wells and the relationship between the internal friction angle, type I and type II fracture toughness and rock mechanical characteristic parameters in step S2 Relational formula to calculate the fracability longitudinal curve characteristics of reservoirs at shale gas drilling locations.
进一步地,所述步骤S4包括:Further, the step S4 includes:
采用支持向量机算法,考虑到地震反演储层弹性参数的可靠性,选择纵波阻抗,横波阻抗,泊松比,拉梅参数与剪切模量之比作为聚类分析训练的弹性参数,训练页岩储层可压裂性与页岩弹性参数之间的分类关系,找出储层弹性参数与可压裂性之间的聚类分析模式,并采用所述步骤S3中单井可压裂性纵向曲线验证可压裂性与弹性参数之间的聚类分析模式。Using the support vector machine algorithm, considering the reliability of seismic inversion reservoir elastic parameters, the compressional wave impedance, shear wave impedance, Poisson's ratio, and the ratio of Lame parameter to shear modulus are selected as elastic parameters for cluster analysis training. The classification relationship between shale reservoir fracturability and shale elastic parameters, find out the cluster analysis mode between reservoir elastic parameters and fracturability, and use the single well fracturability in step S3 The cluster analysis pattern between fracturability and elastic parameters is verified by the longitudinal curves.
进一步地,所述步骤S5包括:Further, the step S5 includes:
对叠前地震数据体进行预处理以确保数据体质量并得到三维储层弹性参数数据体,利用所述步骤S3所建立的单井可压裂性纵向曲线,通过应用所述步骤S4中的聚类分析模式到三维储层弹性参数数据体,建立基于岩屑-岩心-井眼-储层多尺度的页岩储层三维可压裂性模型。Preprocessing the pre-stack seismic data volume to ensure the quality of the data volume and obtain the three-dimensional reservoir elastic parameter data volume, using the single well fracturability longitudinal curve established in the step S3, by applying the aggregation in the step S4 From the similar analysis model to the three-dimensional reservoir elastic parameter data volume, a three-dimensional fracturing model of shale reservoir based on cuttings-core-wellbore-reservoir multi-scale is established.
本发明具有以下优点:The present invention has the following advantages:
1、建立了页岩气储层的三维可压裂性评价模型,此模型可真实准确地量化储层不同空间位置的可压裂性,结合地质甜点,使页岩气水平井总是钻遇高产、高可压裂性层位,在一定程度上弥补地质条件认识不清楚的不足,提高页岩储层体积压裂的效果,最大化页岩气井的产能,减小页岩气井投资成本的回收时间;1. Established a three-dimensional fracturing evaluation model for shale gas reservoirs. This model can truly and accurately quantify the fracturing properties of different spatial locations of the reservoir. Combined with geological sweet spots, shale gas horizontal wells always encounter High-yield and high-fracturability layers can make up for the lack of understanding of geological conditions to a certain extent, improve the effect of volume fracturing in shale reservoirs, maximize the productivity of shale gas wells, and reduce the investment cost of shale gas wells. recovery time;
2、运用所建立的模型可评价单井钻井位置处的可压裂性,优选射孔簇位置和压裂层段;2. Use the established model to evaluate the fracturing performance at the drilling position of a single well, and optimize the perforation cluster position and fracturing interval;
3、运用所建立的模型可使井眼轨迹总是位于可压裂性高的储层内部,钻头在高可压裂性储层钻进时钻速得到提高,缩短钻井周期,节约钻井成本。3. Using the established model, the wellbore trajectory can always be located inside the highly fracturable reservoir, and the drilling speed can be increased when the drill bit drills in the highly fracturable reservoir, shortening the drilling cycle and saving drilling costs.
附图说明Description of drawings
图1是本发明一种岩屑-岩心-井眼-储层多尺度的页岩储层三维可压裂性评价方法的流程图;Fig. 1 is a flow chart of a cuttings-core-wellbore-reservoir multi-scale shale reservoir three-dimensional fracturability evaluation method of the present invention;
图2是本发明中井眼钻井位置处储层的矿物含量脆性指数曲线图;Fig. 2 is the mineral content brittleness index curve figure of the wellbore drilling position place reservoir among the present invention;
图3是本发明中井眼钻井位置处储层的弹性参数脆性指数曲线图;Fig. 3 is the curve diagram of the elastic parameter brittleness index of the reservoir at the wellbore drilling position in the present invention;
图4是本发明中综合考虑矿物含量、弹性参数、内摩擦角、临界应变能释放率的钻井位置处储层的可压裂性纵向曲线图;Fig. 4 is a vertical curve diagram of the fracability of the reservoir at the drilling position with comprehensive consideration of mineral content, elastic parameters, internal friction angle, and critical strain energy release rate in the present invention;
图5是本发明中基于储层弹性参数与可压裂性之间的聚类分析模式的纵向剖面图;Fig. 5 is a longitudinal sectional view of the cluster analysis mode based on reservoir elastic parameters and fracturing in the present invention;
图6是本发明中所建立的页岩储层三维可压裂性垂向截面图;Fig. 6 is a three-dimensional fracturing vertical sectional view of a shale reservoir established in the present invention;
图7是本发明中所建立的页岩储层三维可压裂性横向截面图。Fig. 7 is a three-dimensional fracturability transverse cross-sectional view of a shale reservoir established in the present invention.
具体实施方式Detailed ways
下面结合附图对本发明做进一步的描述,但本发明的保护范围不局限于以下所述。The present invention will be further described below in conjunction with the accompanying drawings, but the protection scope of the present invention is not limited to the following description.
一种岩屑-岩心-井眼-储层多尺度的页岩储层三维可压裂性评价方法,包括下列步骤:A cuttings-core-wellbore-reservoir multi-scale three-dimensional fracturing evaluation method for shale reservoirs, comprising the following steps:
S1、采用X-射线衍射仪等测试设备,开展目标区块钻井岩屑和取样岩心碎片的矿物组分测试,采用Wang和Gale的矿物含量脆性指数Bn评价经验公式(Wang,F.P.,andJ.F.W.Gale.Screeningcriteriaforshale-gassystems:GulfCoastAssociationofGeologicalSocietiesTransactions,v.59,p.779-793,2009):S1. Using X-ray diffractometer and other testing equipment, carry out the mineral composition test of drilling cuttings and sampled core fragments in the target block, and use Wang and Gale's empirical formula for mineral content brittleness index B n evaluation (Wang, FP, and J. FWGale. Screening criteria for shale-gas systems: Gulf Coast Association of Geological Societies Transactions, v.59, p.779-793, 2009):
Bn=(W石英、方解石+W白云岩)/W总质量(1)计算钻井位置或取心位置处页岩的矿物含量脆性指数Bn,无量纲,式中,W石英、方解石为石英和方解石的质量,W白云岩为白云石质量,单位为Kg;W总质量为矿物的总质量,单位为Kg;结合校正后的矿物含量曲线,计算井眼钻井位置处储层的矿物含量脆性指数曲线见图2所示;B n = (W quartz, calcite + W dolomite )/W total mass (1) Calculate the mineral content brittleness index B n of shale at the drilling position or coring position, dimensionless, where W quartz and calcite are quartz and the mass of calcite, W dolomite is the mass of dolomite in Kg; W total mass is the total mass of minerals in Kg; combined with the corrected mineral content curve, the mineral content brittleness of the reservoir at the drilling position of the wellbore is calculated The exponential curve is shown in Figure 2;
S2、采用高温高压三轴岩石力学测试系统,测试页岩岩心的单轴和三轴岩石力学强度参数,包括弹性模量E、泊松比v、内摩擦角等,采用巴西圆盘实验测定页岩试样的抗拉强度、I型和II型断裂韧性KIC和KIIC,建立内摩擦角I型和II型断裂韧性与岩石力学特征参数之间的关系式:S2. Use a high temperature and high pressure triaxial rock mechanics testing system to test the uniaxial and triaxial rock mechanical strength parameters of shale cores, including elastic modulus E, Poisson's ratio v, and internal friction angle et al. measured the tensile strength, type I and type II fracture toughness K IC and K IIC of shale samples using the Brazilian disc experiment, and established the internal friction angle The relationship between mode I and II fracture toughness and rock mechanical characteristic parameters:
式中,σt为致密砂岩的抗拉强度,单位为MPa;σn为裂缝面法向围压,单位为MPa;ρ为致密砂岩密度,单位为Kg/m3。In the formula, σ t is the tensile strength of tight sandstone, in MPa; σ n is the normal confining pressure of the fracture surface, in MPa; ρ is the density of tight sandstone, in Kg/m 3 .
S3、采用Rickman的矿物含量脆性指数评价经验公式(RickmanR,MullenM,PetreE,etal.APracticalUseofShalePetrophysicsforStimulationDesignOptimization:AllShalePlaysAreNotClonesoftheBarnettShale.SPE115258,SPEAnnualTechnicalConferenceandExhibition,21-24September,Denver,Colorado,USA,2008),计算取心位置处的弹性参数脆性指数EEn,无量纲:S3. Using Rickman’s empirical formula for mineral content brittleness index evaluation (RickmanR, MullenM, PetreE, et al.APracticalUseofShalePetrophysicsforStimulationDesignOptimization:AllShalePlaysAreNotClonesofttheBarnettShale.SPE115258,SPEAnnualTechnicalConferenceandExhibition,21-24September,Denver,Colorado200,USA), the location of the elastic calculation parameters Brittleness index EE n , dimensionless:
式中,En为弹性参数脆性指数,无量纲;E、Emax和Emin分别是致密砂岩储层的弹性模量、致密砂岩储层内最大弹性模量和最小弹性模量,单位为GPa,In the formula, E n is the elastic parameter brittleness index, dimensionless; E, E max and E min are the elastic modulus of tight sandstone reservoir, the maximum elastic modulus and the minimum elastic modulus in tight sandstone reservoir, respectively, in GPa,
νn为泊松比脆性指数,无量纲;ν、vmax和vmin分别是致密砂岩储层的泊松比、致密砂岩储层的最大泊松比和最小泊松比,无量纲,结合测井资料,计算出井眼钻井位置处储层的弹性参数脆性指数曲线如图3所示; ν n is Poisson's ratio brittleness index, dimensionless; ν, v max and v min are Poisson's ratio of tight sandstone reservoir, maximum Poisson's ratio and minimum Poisson's ratio of tight sandstone reservoir, respectively, dimensionless. Well data, calculate the elastic parameter brittleness index curve of the reservoir at the drilling position of the wellbore, as shown in Figure 3;
建立综合考虑所述步骤S1中的矿物含量脆性指数Bn、弹性参数脆性指数EEn和所述步骤S2中的内摩擦角、临界应变能释放率GC、断裂韧性的页岩可压裂性评价模型:Establishing a shale fracturing property that comprehensively considers the mineral content brittleness index B n , the elastic parameter brittleness index EE n in the step S1, and the internal friction angle, critical strain energy release rate G C , and fracture toughness in the step S2 Evaluation model:
式中,FI1、FI2分别为考虑页岩应变能释放率和断裂韧性的可压裂性评价指数,无量纲;In the formula, FI 1 and FI 2 are the fracturing evaluation indexes considering the strain energy release rate and fracture toughness of shale, respectively, dimensionless;
w为数值范围0~1的权重系数,无量纲;w is a weight coefficient with a value ranging from 0 to 1, dimensionless;
为综合矿物含量脆性指数Bn和弹性参数脆性指数EEn的脆性表达式,Bn-n为综合矿物含量和弹性参数的页岩脆性指数,无量纲;Bn、EEn的单位为无量纲; is the brittleness expression of comprehensive mineral content brittleness index B n and elastic parameter brittleness index EE n , B nn is the shale brittleness index of comprehensive mineral content and elastic parameter, dimensionless; the units of B n and EE n are dimensionless;
为临界应变能释放率权重表达式,GC_n为砂岩储层的应变能释放率权重,无量纲;GC、GC_max、GC_min分别为砂岩储层的临界应变能释放率、砂岩储层的最大临界应变能释放率和最小临界应变能释放率,单位为N/m; is the weight expression of critical strain energy release rate, G C_n is the weight of strain energy release rate of sandstone reservoir, dimensionless; G C , G C_max , G C_min are critical strain energy release rate of sandstone reservoir, sandstone reservoir Maximum critical strain energy release rate and minimum critical strain energy release rate, in N/m;
为内摩擦角权重表达式,为砂岩储层的内摩擦角权重,无量纲;分别为砂岩储层计算位置处内摩擦角的正弦值、砂岩储层的最大内摩擦角的正弦值和最小内摩擦角的正弦值,无量纲; is the weight expression of internal friction angle, is the weight of internal friction angle of sandstone reservoir, dimensionless; Respectively, the sine value of the internal friction angle at the calculated position of the sandstone reservoir, the sine value of the maximum internal friction angle and the sine value of the minimum internal friction angle of the sandstone reservoir, dimensionless;
为I型断裂韧性权重表达式,KIC_n为砂岩储层的I型断裂韧性权重,无量纲;KIC、KIC_max、KIC_min分别为砂岩储层计算位置处的I型断裂韧性、砂岩储层的最大I型断裂韧性和最小I型断裂韧性,单位为MPa·m1/2; is the weight expression of type I fracture toughness, K IC_n is the weight of type I fracture toughness of sandstone reservoir, dimensionless; K IC , K IC_max , K IC_min are respectively The maximum type I fracture toughness and the minimum type I fracture toughness, the unit is MPa·m 1/2 ;
为II型断裂韧性权重表达式,KIIC_n为砂岩储层的II型断裂韧性权重,无量纲;KIIC、KIIC_max、KII_min分别为砂岩储层计算位置处的II型断裂韧性、砂岩储层的最大II型断裂韧性和最小II型断裂韧性,单位为MPa·m1/2; is the weight expression of type II fracture toughness, K IIC_n is the weight of type II fracture toughness of sandstone reservoir, dimensionless; K IIC , K IIC_max , K II_min are the type II fracture toughness and sandstone reservoir The maximum type II fracture toughness and the minimum type II fracture toughness, the unit is MPa m 1/2 ;
利用所建立的综合多因素可压裂性评价模型,结合页岩气井的测井数据、矿物含量脆性指数Bn、弹性参数脆性指数EEn、内摩擦角、抗拉强度、I型和II型断裂韧性、岩石力学特征参数之间的关系式(2),计算页岩气钻井位置储层的可压裂性纵向曲线如图4所示。Using the established comprehensive multi-factor fracturing evaluation model, combined with logging data of shale gas wells, mineral content brittleness index B n , elastic parameter brittleness index EE n , internal friction angle, tensile strength, type I and type II The relationship between fracture toughness and rock mechanical characteristic parameters (2), and the calculation of the fracturability longitudinal curve of the reservoir at the shale gas drilling location are shown in Fig. 4.
S4、采用支持向量机算法,考虑到地震反演储层弹性参数的可靠性,选择纵波阻抗Zp,单位为kg·m-2·s-1,横波阻抗Zs,单位为kg·m-2·s-1,泊松比ν,无量纲,拉梅参数与剪切模量比μ/λ作为聚类分析训练的弹性参数,训练页岩储层可压裂性与页岩弹性参数之间的分类关系,找出储层弹性参数与可压裂性之间的聚类分析模式如图5所示,发现所得到的聚类分析模式与标准井计算结果有很好的吻合性。S4. Using the support vector machine algorithm, considering the reliability of seismic inversion of elastic parameters of the reservoir, choose the compression wave impedance Zp, the unit is kg m -2 s -1 , the shear wave impedance Zs, the unit is kg m -2 · s -1 , Poisson's ratio ν, dimensionless, the ratio of Lame parameter and shear modulus μ/λ is used as the elastic parameter for cluster analysis training, and the relationship between the fracturability of the shale reservoir and the shale elastic parameter in the training Classification relationship, to find out the cluster analysis mode between reservoir elastic parameters and fracturing properties, as shown in Figure 5, it is found that the obtained cluster analysis mode is in good agreement with the calculation results of standard wells.
S5、对叠前地震数据体进行预处理,以确保数据体质量并得到三维储层弹性参数数据体,利用所建立的单井可压裂性纵向曲线如图4所示,通过应用聚类分析模式(图5)到三维储层弹性参数数据体,建立基于岩屑-岩心-井眼-储层多尺度的页岩储层三维可压裂性模型,如图6为页岩储层三维可压裂性垂向截面图,图7为页岩储层三维可压裂性横向截面图,从图6和图7中,可以比较直观的看到储层空间区域可压裂性较好的位置,页岩气水平井井位的布置应优选考虑该区域,使体积压裂形成最大化的裂缝网络,提高压裂的最终效果。S5. Preprocess the pre-stack seismic data volume to ensure the quality of the data volume and obtain the three-dimensional reservoir elastic parameter data volume. Using the established vertical curve of single well fracturing as shown in Figure 4, apply cluster analysis From the model (Fig. 5) to the 3D reservoir elastic parameter data body, a 3D fracturability model of shale reservoir based on multi-scale cuttings-core-borehole-reservoir is established, as shown in Fig. Fracturing vertical sectional view, Figure 7 is a 3D fracturing lateral sectional view of shale reservoirs, from Figures 6 and 7, it can be seen more intuitively where the reservoir space area is more fracturable , the layout of shale gas horizontal wells should preferably consider this area, so that volume fracturing can form a maximized fracture network and improve the final effect of fracturing.
Claims (4)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201510631876.0A CN105156103B (en) | 2015-09-29 | 2015-09-29 | A kind of multiple dimensioned shale reservoir three-dimensional compressibility evaluation method of landwaste-rock core-wellbore-reservoir |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201510631876.0A CN105156103B (en) | 2015-09-29 | 2015-09-29 | A kind of multiple dimensioned shale reservoir three-dimensional compressibility evaluation method of landwaste-rock core-wellbore-reservoir |
Publications (2)
Publication Number | Publication Date |
---|---|
CN105156103A true CN105156103A (en) | 2015-12-16 |
CN105156103B CN105156103B (en) | 2018-06-05 |
Family
ID=54797105
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201510631876.0A Active CN105156103B (en) | 2015-09-29 | 2015-09-29 | A kind of multiple dimensioned shale reservoir three-dimensional compressibility evaluation method of landwaste-rock core-wellbore-reservoir |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN105156103B (en) |
Cited By (27)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105822292A (en) * | 2016-03-17 | 2016-08-03 | 成都创源油气技术开发有限公司 | Evaluation method for computing compressibility of shale gas reservoir by using well-logging data |
CN106097125A (en) * | 2016-06-17 | 2016-11-09 | 延长油田股份有限公司 | A kind of Sandstone Gas Reservoir pressure break evaluation methodology |
CN106202737A (en) * | 2016-07-14 | 2016-12-07 | 中国石油天然气股份有限公司 | Method and device for screening compact reservoir volume fracturing adaptive zone |
CN107291968A (en) * | 2016-04-13 | 2017-10-24 | 中国石油化工股份有限公司 | Pressure break selections method and system |
CN108519281A (en) * | 2018-02-27 | 2018-09-11 | 中国石油天然气股份有限公司 | Method, device and system for determining brittleness index of rock |
CN108593436A (en) * | 2018-05-11 | 2018-09-28 | 北京石油化工学院 | A method of compact reservoir compressibility is evaluated based on stress-strain diagram |
CN108615102A (en) * | 2016-12-12 | 2018-10-02 | 中国石油天然气股份有限公司 | Method for evaluating capability of forming network cracks by tight oil gas fracturing |
CN108681635A (en) * | 2018-05-15 | 2018-10-19 | 中国石油天然气股份有限公司 | Compact reservoir volume fracturing compressibility evaluation method |
CN109209356A (en) * | 2017-07-06 | 2019-01-15 | 中国石油化工股份有限公司 | A method of stratum compressibility is determined based on tension fracture and shear fracture |
CN109738311A (en) * | 2018-11-23 | 2019-05-10 | 河南理工大学 | A method for determining the crack propagation velocity and fractal dimension of rock I-type fractures |
CN109916754A (en) * | 2019-02-26 | 2019-06-21 | 成都理工大学 | A Reservoir Brittleness Evaluation Method Based on Microscopic Characteristics of Cuttings and Drilling Parameters |
CN109917102A (en) * | 2019-01-28 | 2019-06-21 | 西南石油大学 | A Brittleness Evaluation Method Considering the Complexity of Rock Fracture |
CN109992864A (en) * | 2019-03-22 | 2019-07-09 | 成都理工大学 | Numerical simulation and parameter optimization method of volume fracturing in unconventional dual-media reservoirs |
CN110163533A (en) * | 2019-06-03 | 2019-08-23 | 西南石油大学 | A kind of comprehensive compressibility Slope map of pixels of shale air cleft net |
CN110219644A (en) * | 2019-06-29 | 2019-09-10 | 西南石油大学 | The method for determining reservoir compressibility index value spatial distribution |
CN110529088A (en) * | 2019-08-30 | 2019-12-03 | 西南石油大学 | A kind of rock compressibility section method for building up based on thin section identification |
CN110726608A (en) * | 2019-11-08 | 2020-01-24 | 西南石油大学 | A shale brittleness evaluation method based on energy evolution of stress-strain curve |
CN111353218A (en) * | 2020-02-20 | 2020-06-30 | 西安石油大学 | Logging quantitative evaluation method for coal bed gas-dense gas reservoir compaction property |
CN111425193A (en) * | 2020-01-21 | 2020-07-17 | 东北石油大学 | A reservoir compressibility evaluation method based on cluster analysis logging petrophysical facies division |
CN111797575A (en) * | 2020-07-23 | 2020-10-20 | 西南石油大学 | Deep shale fracturing process parameter optimization method |
CN113108957A (en) * | 2021-03-18 | 2021-07-13 | 西南石油大学 | Rock core testing and extracting method for paleotectonic period ground stress |
CN113138107A (en) * | 2021-04-15 | 2021-07-20 | 东北石油大学 | Rock brittleness evaluation method based on while-drilling rock debris logging information |
CN114034619A (en) * | 2021-10-26 | 2022-02-11 | 重庆科技学院 | A method for evaluating the brittleness of shale oil and gas reservoirs based on digital core simulation |
CN114233283A (en) * | 2020-09-09 | 2022-03-25 | 中国石油天然气股份有限公司 | Compressibility evaluation method for shale oil reservoir |
CN115047074A (en) * | 2022-05-19 | 2022-09-13 | 中国石油大学(北京) | Method for obtaining stratum rock acoustic wave characteristics by using drilling debris |
CN115584963A (en) * | 2022-09-20 | 2023-01-10 | 西南石油大学 | A comprehensive evaluation method for fracturing of unconventional reservoirs |
CN117114208A (en) * | 2023-10-23 | 2023-11-24 | 成都理工大学 | Fully-coupled well factory dynamic adjustment integral fracturing optimization method |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20060224370A1 (en) * | 2005-03-31 | 2006-10-05 | Eduard Siebrits | Method system and program storage device for simulating interfacial slip in a hydraulic fracturing simulator software |
CA2825430A1 (en) * | 2011-02-23 | 2012-08-30 | Landmark Graphics Corporation | Method and systems of determining viable hydraulic fracture scenarios |
CN103256046A (en) * | 2013-04-28 | 2013-08-21 | 北京大学 | Unconventional oil and gas reservoir horizontal well section full-fracture-length fracturing parameter analog method and device |
CN104569343A (en) * | 2014-12-31 | 2015-04-29 | 长江大学 | Shale reservoir brittle mineral logging quantitative characterization method |
CN104775810A (en) * | 2015-03-03 | 2015-07-15 | 西南石油大学 | Method for evaluating compressibility of shale gas reservoir |
-
2015
- 2015-09-29 CN CN201510631876.0A patent/CN105156103B/en active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20060224370A1 (en) * | 2005-03-31 | 2006-10-05 | Eduard Siebrits | Method system and program storage device for simulating interfacial slip in a hydraulic fracturing simulator software |
CA2825430A1 (en) * | 2011-02-23 | 2012-08-30 | Landmark Graphics Corporation | Method and systems of determining viable hydraulic fracture scenarios |
CN103256046A (en) * | 2013-04-28 | 2013-08-21 | 北京大学 | Unconventional oil and gas reservoir horizontal well section full-fracture-length fracturing parameter analog method and device |
CN104569343A (en) * | 2014-12-31 | 2015-04-29 | 长江大学 | Shale reservoir brittle mineral logging quantitative characterization method |
CN104775810A (en) * | 2015-03-03 | 2015-07-15 | 西南石油大学 | Method for evaluating compressibility of shale gas reservoir |
Cited By (43)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105822292A (en) * | 2016-03-17 | 2016-08-03 | 成都创源油气技术开发有限公司 | Evaluation method for computing compressibility of shale gas reservoir by using well-logging data |
CN107291968A (en) * | 2016-04-13 | 2017-10-24 | 中国石油化工股份有限公司 | Pressure break selections method and system |
CN107291968B (en) * | 2016-04-13 | 2020-12-11 | 中国石油化工股份有限公司 | Fracturing segment selection method and system |
CN106097125A (en) * | 2016-06-17 | 2016-11-09 | 延长油田股份有限公司 | A kind of Sandstone Gas Reservoir pressure break evaluation methodology |
CN106202737A (en) * | 2016-07-14 | 2016-12-07 | 中国石油天然气股份有限公司 | Method and device for screening compact reservoir volume fracturing adaptive zone |
CN106202737B (en) * | 2016-07-14 | 2019-08-06 | 中国石油天然气股份有限公司 | A method and device for screening suitable areas for volume fracturing in tight reservoirs |
CN108615102B (en) * | 2016-12-12 | 2020-12-01 | 中国石油天然气股份有限公司 | Method for evaluating capability of forming network cracks by tight oil gas fracturing |
CN108615102A (en) * | 2016-12-12 | 2018-10-02 | 中国石油天然气股份有限公司 | Method for evaluating capability of forming network cracks by tight oil gas fracturing |
CN109209356B (en) * | 2017-07-06 | 2021-08-31 | 中国石油化工股份有限公司 | Method for determining stratum fracturing property based on tensile fracture and shear fracture |
CN109209356A (en) * | 2017-07-06 | 2019-01-15 | 中国石油化工股份有限公司 | A method of stratum compressibility is determined based on tension fracture and shear fracture |
CN108519281A (en) * | 2018-02-27 | 2018-09-11 | 中国石油天然气股份有限公司 | Method, device and system for determining brittleness index of rock |
CN108519281B (en) * | 2018-02-27 | 2020-08-11 | 中国石油天然气股份有限公司 | Method, device and system for determining brittleness index of rock |
CN108593436A (en) * | 2018-05-11 | 2018-09-28 | 北京石油化工学院 | A method of compact reservoir compressibility is evaluated based on stress-strain diagram |
CN108593436B (en) * | 2018-05-11 | 2020-08-11 | 北京石油化工学院 | Method for evaluating compressibility of tight reservoir based on stress-strain curve |
CN108681635B (en) * | 2018-05-15 | 2021-11-02 | 中国石油天然气股份有限公司 | Compact reservoir volume fracturing compressibility evaluation method |
CN108681635A (en) * | 2018-05-15 | 2018-10-19 | 中国石油天然气股份有限公司 | Compact reservoir volume fracturing compressibility evaluation method |
CN109738311A (en) * | 2018-11-23 | 2019-05-10 | 河南理工大学 | A method for determining the crack propagation velocity and fractal dimension of rock I-type fractures |
CN109917102A (en) * | 2019-01-28 | 2019-06-21 | 西南石油大学 | A Brittleness Evaluation Method Considering the Complexity of Rock Fracture |
CN109916754A (en) * | 2019-02-26 | 2019-06-21 | 成都理工大学 | A Reservoir Brittleness Evaluation Method Based on Microscopic Characteristics of Cuttings and Drilling Parameters |
CN109992864A (en) * | 2019-03-22 | 2019-07-09 | 成都理工大学 | Numerical simulation and parameter optimization method of volume fracturing in unconventional dual-media reservoirs |
CN110163533B (en) * | 2019-06-03 | 2020-03-03 | 西南石油大学 | A comprehensive compressibility evaluation method for shale gas fracture network |
CN110163533A (en) * | 2019-06-03 | 2019-08-23 | 西南石油大学 | A kind of comprehensive compressibility Slope map of pixels of shale air cleft net |
CN110219644A (en) * | 2019-06-29 | 2019-09-10 | 西南石油大学 | The method for determining reservoir compressibility index value spatial distribution |
CN110219644B (en) * | 2019-06-29 | 2021-05-28 | 西南石油大学 | Method for Determining Spatial Distribution of Reservoir Fractability Index Values |
CN110529088A (en) * | 2019-08-30 | 2019-12-03 | 西南石油大学 | A kind of rock compressibility section method for building up based on thin section identification |
CN110726608A (en) * | 2019-11-08 | 2020-01-24 | 西南石油大学 | A shale brittleness evaluation method based on energy evolution of stress-strain curve |
CN111425193A (en) * | 2020-01-21 | 2020-07-17 | 东北石油大学 | A reservoir compressibility evaluation method based on cluster analysis logging petrophysical facies division |
CN111353218B (en) * | 2020-02-20 | 2023-03-24 | 西安石油大学 | Logging quantitative evaluation method for coal bed gas-dense gas reservoir compaction property |
CN111353218A (en) * | 2020-02-20 | 2020-06-30 | 西安石油大学 | Logging quantitative evaluation method for coal bed gas-dense gas reservoir compaction property |
CN111797575A (en) * | 2020-07-23 | 2020-10-20 | 西南石油大学 | Deep shale fracturing process parameter optimization method |
CN114233283B (en) * | 2020-09-09 | 2023-08-22 | 中国石油天然气股份有限公司 | Compressibility evaluation method of shale oil reservoir |
CN114233283A (en) * | 2020-09-09 | 2022-03-25 | 中国石油天然气股份有限公司 | Compressibility evaluation method for shale oil reservoir |
CN113108957B (en) * | 2021-03-18 | 2021-11-30 | 西南石油大学 | Rock core testing and extracting method for paleotectonic period ground stress |
US11372121B1 (en) | 2021-03-18 | 2022-06-28 | Southwest Petroleum University | Method for testing and extracting paleo-tectonic geostress based on rock core |
CN113108957A (en) * | 2021-03-18 | 2021-07-13 | 西南石油大学 | Rock core testing and extracting method for paleotectonic period ground stress |
CN113138107B (en) * | 2021-04-15 | 2022-08-26 | 东北石油大学 | Rock brittleness evaluation method based on while-drilling rock debris logging information |
CN113138107A (en) * | 2021-04-15 | 2021-07-20 | 东北石油大学 | Rock brittleness evaluation method based on while-drilling rock debris logging information |
CN114034619A (en) * | 2021-10-26 | 2022-02-11 | 重庆科技学院 | A method for evaluating the brittleness of shale oil and gas reservoirs based on digital core simulation |
CN115047074A (en) * | 2022-05-19 | 2022-09-13 | 中国石油大学(北京) | Method for obtaining stratum rock acoustic wave characteristics by using drilling debris |
CN115584963A (en) * | 2022-09-20 | 2023-01-10 | 西南石油大学 | A comprehensive evaluation method for fracturing of unconventional reservoirs |
CN115584963B (en) * | 2022-09-20 | 2024-05-31 | 西南石油大学 | A comprehensive evaluation method for fracturing properties of unconventional reservoirs |
CN117114208A (en) * | 2023-10-23 | 2023-11-24 | 成都理工大学 | Fully-coupled well factory dynamic adjustment integral fracturing optimization method |
CN117114208B (en) * | 2023-10-23 | 2024-06-04 | 成都理工大学 | Fully-coupled well factory dynamic adjustment integral fracturing optimization method |
Also Published As
Publication number | Publication date |
---|---|
CN105156103B (en) | 2018-06-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN105156103B (en) | A kind of multiple dimensioned shale reservoir three-dimensional compressibility evaluation method of landwaste-rock core-wellbore-reservoir | |
CN105134156B (en) | A kind of modeling method for tight sandstone reservoir three-dimensional compressibility model | |
CN106547034B (en) | A kind of method of determining compact reservoir rock brittleness index | |
CN113534291B (en) | Quantitative prediction method for different-scale fractures of low-permeability reservoir under constraint of rock mechanical layer | |
Yang et al. | Theories and practices of carbonate reservoirs development in China | |
CN108952700B (en) | Method for determining anisotropic stratum well wall fracture pressure | |
CN113820750B (en) | Method for quantitatively predicting mudstone structural cracks based on elastoplastic mechanics | |
CN105201479B (en) | A kind of horizontal well on shale reservoir stratum staged fracturing perforation cluster method for optimally designing parameters | |
CN104775810B (en) | A kind of shale gas reservoir compressibility evaluation method | |
Guo et al. | Evaluation of fracability and screening of perforation interval for tight sandstone gas reservoir in western Sichuan Basin | |
CN105114047A (en) | Method utilizing logging information for determining optimal perforation layer for SRV fracturing | |
Xu et al. | Discrete fracture modeling of shale gas flow considering rock deformation | |
Su et al. | A combined stimulation technology for coalbed methane wells: Part 1. Theory and technology | |
Li et al. | Study on roadheader cutting load at different properties of coal and rock | |
Liu et al. | Quantitative prediction of the drilling azimuth of horizontal wells in fractured tight sandstone based on reservoir geomechanics in the Ordos Basin, central China | |
CN104483706B (en) | A kind of Coal Pore Structure based on coal petrography mechanics parameter well logging quantitative identification method | |
CN106202800A (en) | Submerged tunnel stress field DDM inversion method based on exploration achievements | |
CN103390108B (en) | A kind of well type method for designing based on fracturing geology body compressibility and device | |
Li et al. | Rock mechanical properties of deep shale-gas reservior and their effects on reservoir stimulation | |
CN115705454A (en) | Crack propagation simulation fracturing design optimization method based on phase field method | |
CN116976143A (en) | Weak-plane-considered reservoir stratum 'double dessert' evaluation method | |
Liu et al. | Methodology and application of shale-reservoir natural fracture modeling based on microseismic monitoring data | |
Shahid et al. | Determining the rock brittle index (BI) using multivariate regression (a case study) | |
Sui et al. | Comprehensive evaluation on shale fracability using principal component analysis | |
Wang et al. | Case study: Analysis of refracturing crack orientation-angle and extension-length in tight gas reservoir, Sulige Gasfield of China |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
CB03 | Change of inventor or designer information | ||
CB03 | Change of inventor or designer information |
Inventor after: Zhu Haiyan Inventor after: Tang Xuanhe Inventor after: Liu Qingyou Inventor after: Rong Mang Inventor after: Chen Jianda Inventor after: Li Kuidong Inventor after: Xiao Jialin Inventor after: Jin Xiaochun Inventor after: Tao Lei Inventor after: Chen Qi Inventor before: Zhu Haiyan Inventor before: Guo Jianchun Inventor before: Tao Lei Inventor before: Jin Xiaochun Inventor before: Zhang Bo |
|
TA01 | Transfer of patent application right | ||
TA01 | Transfer of patent application right |
Effective date of registration: 20180223 Address after: No. 8 Road, Xindu Xindu District of Chengdu city of Sichuan Province in 610500 Applicant after: Southwest Petroleum University Applicant after: PETROLEUM ENGINEERING TECHNOLOGY RESEARCH INSTITUTE, JIANGHAN OILFIELD BRANCH OF CHINA PETROCHEMICAL CORPORATION Address before: No. 8 Road, Xindu Xindu District of Chengdu city of Sichuan Province in 610500 Applicant before: Southwest Petroleum University |
|
GR01 | Patent grant | ||
GR01 | Patent grant |