CN105122520A - 石墨烯/碳组合物 - Google Patents

石墨烯/碳组合物 Download PDF

Info

Publication number
CN105122520A
CN105122520A CN201480022773.8A CN201480022773A CN105122520A CN 105122520 A CN105122520 A CN 105122520A CN 201480022773 A CN201480022773 A CN 201480022773A CN 105122520 A CN105122520 A CN 105122520A
Authority
CN
China
Prior art keywords
carbon
nano
graphene
composition
scale
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201480022773.8A
Other languages
English (en)
Inventor
I·杜
金炫中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Publication of CN105122520A publication Critical patent/CN105122520A/zh
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/32Carbon-based
    • H01G11/36Nanostructures, e.g. nanofibres, nanotubes or fullerenes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/32Carbon-based
    • H01G11/38Carbon pastes or blends; Binders or additives therein
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Nanotechnology (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Organic Chemistry (AREA)

Abstract

高表面积纳米尺寸石墨烯与碳的组合物。

Description

石墨烯/碳组合物
我们是居住在密歇根州英厄姆郡东兰辛市的韩国公民InhwanDo和居住在密歇根州英厄姆郡东兰辛市的韩国公民HyunjoongKim,发明了新型且新颖的物质组合物,其为
石墨烯/碳组合物。
下文为对其的说明书。
本申请要求2013年3月15日提交的序列号为61/786,735的美国临时专利申请的优先权。
发明背景
本发明涉及新型的物质组合物。
本发明使用高表面积纳米尺寸石墨烯与碳用于电容器。石墨烯/碳混合电极对于电化学电容器的性能增强表现出协同效应。两种形式的活性炭均充当活性物质,并且石墨烯充当活性物质。
活性炭为商业电化学电容器中常用的材料。然而,它们不呈现对于需要高能量和功率密度的应用所必要的充足性能。这种性能缺乏是由于无规则互连的内部微孔的非常宽的尺寸分布所引起的不良电导率和不良离子输送。
石墨烯由于其高表面积、高力学和电学性质、高度惰性表面性质、低杂质等而用于电化学电容器中。纳米尺寸石墨烯主要由中孔和大孔构成,并且因此对于甚至是相当大的电解质离子来说,纳米尺寸石墨烯的表面区域也是可进入的。表面积为600m2/g的纳米尺寸石墨烯显示出胜过新型碳纳米结构(例如具有与纳米尺寸石墨烯相当的表面积的单壁和双壁碳纳米管)的非常高的比电容。
通过用较低成本的石墨烯代替高成本的活性炭,石墨烯降低了电极成本,同时将能量储存改进至少5至20%。石墨烯还充当离子迁移催化剂以提高能量和功率密度两者。还降低了内部电阻。
本发明的方法和材料不同于现有技术中所发现的任何方法和材料。直接要求在电极中一起使用炭黑和石墨烯的唯一参考文献这样做的目的仅是为了提高基于金属的活性物质的导电。没有示出或建议所述活性物质是用石墨烯增强的活性炭。
这样的公开内容可见于US2012/0088156A中,其中该申请教导了用于制备电极的多步骤方法,包括将石墨烯氧化物添加至电极混合物,和将石墨烯氧化物还原为石墨烯。从属权利要求之一包括添加小于1%的导电助剂,其可以是炭黑。
发明内容
因此,在本文中公开并要求保护的一种实施方案是物质组合物,其包含高表面积纳米尺寸石墨与碳的组合。所述石墨为纳米尺寸石墨烯纳米管和纳米尺寸石墨烯纳米片,并且所述碳例如可以是活性炭、炭黑和碳纳米纤维以及碳气凝胶。
在本发明中还存在用于制造如上所述的组合物的方法。该制造方法包含将石墨烯分散在合适的溶剂中,将碳分散在合适的溶剂中,将产物组合并混合在一起以形成浆料,过滤所述浆料以提供片形式,干燥所述片,并将所述片压延至所需的厚度和表面光洁度。
附图简要说明
图1为用于在实施例1中制备的材料的电化学表征的恒电流充电/放电图,具有以F/g(法拉第/克)计的重量电容对以A/g(安培/克)计的电流密度。
图2为体积电容图,具有以A/g计的电流密度对以F/cm3计的体积电容。
图3为以Wh/kg计的重量能量对以A/g计的电流密度的图。
图4为以mWh/cm3计的体积能量对以A/g计的电流密度的图。
图5为以kW/kg计的重量功率对以A/g计的电流密度的图。
图6为以W/cm3计的体积功率对以A/g计的电流密度的图。
发明详述
本发明涉及将石墨烯添加至活性炭中。适用于本文的碳具有介于10纳米和100微米之间的平均尺寸和大于约300m2/g的BET表面积。石墨烯具有介于30纳米和50微米之间的尺寸和大于约300m2/g的BET表面。此外,石墨烯具有介于约25和25,000之间的纵横比。石墨烯与碳的比例介于0.5和10之间。
在图1至6中,1表示100%YP50F;2表示90%YP50F和10%C750;3表示80%YP50F和20%C750;4表示70%YP50F和30%C750;5表示60%YP50F和40%C750;6表示50%YP50F和50%C750,重量比。
在图7和8中,1表示100%xGnPXgSciences石墨烯;2表示90%活性炭和10%xGnP;3表示100%Kansai活性炭;并且4表示100%YP50F活性炭。
实施例
实施例1
使用商业活性炭(ACTIVATEDCARBON:YP-50F,1500m2/g,KuraryChemicalCompany)和纳米尺寸石墨烯(C-750,750m2/g,XGSciences,Lansing,Michigan)作为本实施例中的活性物质。使用炭黑(SuperC,Timcal)和PVDF分别作为导电剂和聚合物粘合剂。通过刮刀方法将由活性炭:纳米尺寸石墨烯:Super-C:PVDF=88:7:5的典型重量比构成的糊料涂覆在铝箔上。在0~2.5V的范围内在1MTEABF4/乙腈电解质中进行用于电化学表征的恒电流充电/放电。
虽然在低电流密度(<A/g)下没有显示出对于纳米尺寸石墨烯与活性炭的混合的协同效应,但是在高电流密度(>1A/g)下纳米尺寸石墨烯/活性炭电极的电容增加超过仅有活性炭的电极。添加30%至40%的纳米尺寸石墨烯对于实现最佳的协同效应似乎是优化的。参见图1和2。
比较了能量密度。重量能量密度随电流密度变化的行为与电容类似。然而,不论电流密度,纳米尺寸石墨烯/活性炭电极的体积能量密度高于活性炭电极的体积能量密度。
比较了功率密度。由于纳米尺寸石墨烯优异的导电性,不论电流密度和纳米尺寸石墨烯含量,纳米尺寸石墨烯/活性炭电极的重量和体积功率(powder)密度均增加。还参见图3和4。
实施例2
使用两种商业活性炭作为活性组分:YP-50F(1500m2/g,KurarayChemicalCompany)和MSP-20(2200m2/g,KansaiChemicalCompany)。使用纳米尺寸石墨烯(C-750,750m2/g)和多壁碳纳米管(230m2/g,HanwhaNanotech)分别作为另一种活性物质和粘合剂。使用浴型超声处理器在异丙醇中分散活性炭或者活性炭/纳米尺寸石墨烯60分钟,并且还在异丙醇中单独地超声处理碳纳米管1小时。将经分散的活性炭和碳纳米管溶液组合,随后超声处理另外60分钟。然后,使用膜过滤系统过滤该活性炭-碳纳米管和活性炭/纳米尺寸石墨烯-碳纳米管分散液(墨水)。在80℃下于真空下干燥2小时后,将活性炭-碳纳米管和活性炭/纳米尺寸石墨烯-碳纳米管独立纸压延在Ni泡沫上。在1MTEABF4/乙腈电解质中完成对具有两个相同活性炭-碳纳米管电极的2016硬币型电池的电化学测试。
显示出活性炭/纳米尺寸石墨烯-碳纳米管电极的比电容和能量密度比活性炭-碳纳米管电极高,这确认了作为用于电化学电容器的共活性物质的活性炭-纳米尺寸石墨烯的混合的协同效应。参见图5和6。

Claims (3)

1.物质组合物,包含高表面积纳米尺寸石墨与碳的组合,其中所述纳米尺寸石墨选自由纳米尺寸石墨烯纳米管和纳米尺寸石墨烯纳米片构成的组。
2.如权利要求1所述的物质组合物,其中所述碳选自主要由以下构成的组:
a.活性炭;
b.炭黑,和
c.碳纳米纤维,和
d.碳气凝胶。
3.制造如权利要求3所述的组合物的方法,所述方法包含:
i.将石墨烯分散在合适的溶剂中;
ii.将碳分散在合适的溶剂中;
iii.将i和ii的产物组合并混合以形成浆料;
iv.过滤所述浆料以提供片形式;
v.干燥在iv中形成的片;
vi.压延所述片至所需的厚度和表面光洁度。
CN201480022773.8A 2013-03-15 2014-03-13 石墨烯/碳组合物 Pending CN105122520A (zh)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
US201361786735P 2013-03-15 2013-03-15
US61/786,735 2013-03-15
US14/201,986 US20140299818A1 (en) 2013-03-15 2014-03-10 Graphene / carbon compositions
US14/201,986 2014-03-10
PCT/US2014/025594 WO2014151372A1 (en) 2013-03-15 2014-03-13 Graphene / carbon compositions

Publications (1)

Publication Number Publication Date
CN105122520A true CN105122520A (zh) 2015-12-02

Family

ID=51580942

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201480022773.8A Pending CN105122520A (zh) 2013-03-15 2014-03-13 石墨烯/碳组合物

Country Status (7)

Country Link
US (1) US20140299818A1 (zh)
EP (1) EP2973805A4 (zh)
JP (1) JP2016518705A (zh)
KR (1) KR20150132394A (zh)
CN (1) CN105122520A (zh)
TW (1) TW201446644A (zh)
WO (1) WO2014151372A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106158425A (zh) * 2016-08-16 2016-11-23 肖丽芳 一种碳气凝胶复合石墨烯泡沫电极片的制备方法
CN108136340A (zh) * 2016-08-25 2018-06-08 浙江大学 一种基于活性炭的全碳膜及其制备方法和应用
CN108597889A (zh) * 2018-04-13 2018-09-28 北京化工大学 一种过渡金属水滑石-还原石墨烯纳米管纤维电极材料及其制备方法和一种超级电容器

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10240052B2 (en) 2011-09-30 2019-03-26 Ppg Industries Ohio, Inc. Supercapacitor electrodes including graphenic carbon particles
PT3213333T (pt) * 2014-10-31 2020-09-18 Ppg Ind Ohio Inc Elétrodos do supercapacitor, incluindo partículas de carbono grafémico
JP6818204B2 (ja) * 2016-08-26 2021-01-20 浜田 晴夫 ナノ炭素材料の分散方法、ナノ炭素材料の分散液及びナノ炭素材料複合体
CN106783205B (zh) * 2016-12-15 2019-07-26 宁波中车新能源科技有限公司 一种大倍率高功率电池电容负极极片及其制备方法
US10840032B1 (en) * 2020-03-24 2020-11-17 Yazaki Corporation Supercapacitor cell with high-purity binder-free carbonaceous electrode

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080248275A1 (en) * 2007-04-09 2008-10-09 Jang Bor Z Nano-scaled graphene plate films and articles
US20090061312A1 (en) * 2007-08-27 2009-03-05 Aruna Zhamu Method of producing graphite-carbon composite electrodes for supercapacitors
US20090294736A1 (en) * 2008-05-28 2009-12-03 Applied Sciences, Inc. Nanocarbon-reinforced polymer composite and method of making
US20100021819A1 (en) * 2008-07-28 2010-01-28 Aruna Zhamu Graphene nanocomposites for electrochemical cell electrodes
US20110227000A1 (en) * 2010-03-19 2011-09-22 Ruoff Rodney S Electrophoretic deposition and reduction of graphene oxide to make graphene film coatings and electrode structures

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1230283A (zh) * 1996-05-15 1999-09-29 海珀里昂催化国际有限公司 用于电化学电容器中的纳米级石墨纤维
US7623340B1 (en) * 2006-08-07 2009-11-24 Nanotek Instruments, Inc. Nano-scaled graphene plate nanocomposites for supercapacitor electrodes
US20080149900A1 (en) * 2006-12-26 2008-06-26 Jang Bor Z Process for producing carbon-cladded composite bipolar plates for fuel cells
KR100895267B1 (ko) * 2007-07-24 2009-04-29 연세대학교 산학협력단 정전기적 인력을 이용한 활성탄/탄소나노튜브 복합전극 및그 제조방법
JP5266844B2 (ja) * 2008-03-31 2013-08-21 日本ケミコン株式会社 電気二重層キャパシタ用電極及びその製造方法
WO2010107877A1 (en) * 2009-03-18 2010-09-23 Eaglepicher Technologies, Llc Non-aqueous electrochemical cell having a mixture of at least three cathode materials therein
US8652687B2 (en) * 2009-12-24 2014-02-18 Nanotek Instruments, Inc. Conductive graphene polymer binder for electrochemical cell electrodes
EP2374842B2 (en) * 2010-04-06 2019-09-18 Borealis AG Semiconductive polyolefin composition comprising conductive filler
DE112011103395T5 (de) * 2010-10-08 2013-08-14 Semiconductor Energy Laboratory Co., Ltd. Verfahren zum Herstellen eines Positivelektrodenaktivmaterials für eine Energiespeichervorrichtung und Energiespeichervorrichtung
KR20130024123A (ko) * 2011-08-30 2013-03-08 삼성전기주식회사 전극, 및 이를 포함하는 전기 화학 캐패시터
KR101243296B1 (ko) * 2011-10-14 2013-03-13 한국전기연구원 그래핀을 포함하는 전기이중층 커패시터용 시트 전극 및 그 제조방법
ITMI20120571A1 (it) * 2012-04-06 2013-10-07 Versalis Spa "procedimento per l'adduzione e il trasporto di additivi labili in correnti di materiale fuso"
US10079389B2 (en) * 2012-05-18 2018-09-18 Xg Sciences, Inc. Silicon-graphene nanocomposites for electrochemical applications
US10087073B2 (en) * 2013-02-14 2018-10-02 Nanotek Instruments, Inc. Nano graphene platelet-reinforced composite heat sinks and process for producing same
US9472354B2 (en) * 2013-03-15 2016-10-18 InHwan Do Electrodes for capacitors from mixed carbon compositions

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080248275A1 (en) * 2007-04-09 2008-10-09 Jang Bor Z Nano-scaled graphene plate films and articles
US20090061312A1 (en) * 2007-08-27 2009-03-05 Aruna Zhamu Method of producing graphite-carbon composite electrodes for supercapacitors
US20090294736A1 (en) * 2008-05-28 2009-12-03 Applied Sciences, Inc. Nanocarbon-reinforced polymer composite and method of making
US20100021819A1 (en) * 2008-07-28 2010-01-28 Aruna Zhamu Graphene nanocomposites for electrochemical cell electrodes
US20110227000A1 (en) * 2010-03-19 2011-09-22 Ruoff Rodney S Electrophoretic deposition and reduction of graphene oxide to make graphene film coatings and electrode structures

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106158425A (zh) * 2016-08-16 2016-11-23 肖丽芳 一种碳气凝胶复合石墨烯泡沫电极片的制备方法
CN108136340A (zh) * 2016-08-25 2018-06-08 浙江大学 一种基于活性炭的全碳膜及其制备方法和应用
CN108597889A (zh) * 2018-04-13 2018-09-28 北京化工大学 一种过渡金属水滑石-还原石墨烯纳米管纤维电极材料及其制备方法和一种超级电容器
CN108597889B (zh) * 2018-04-13 2019-11-15 北京化工大学 一种过渡金属水滑石-还原石墨烯纳米管纤维电极材料及其制备方法和一种超级电容器

Also Published As

Publication number Publication date
KR20150132394A (ko) 2015-11-25
WO2014151372A1 (en) 2014-09-25
EP2973805A1 (en) 2016-01-20
TW201446644A (zh) 2014-12-16
EP2973805A4 (en) 2016-12-07
JP2016518705A (ja) 2016-06-23
US20140299818A1 (en) 2014-10-09

Similar Documents

Publication Publication Date Title
Dong et al. Facile synthesis of a nitrogen-doped graphene flower-like MnO2 nanocomposite and its application in supercapacitors
Xue et al. DNA-directed fabrication of NiCo2O4 nanoparticles on carbon nanotubes as electrodes for high-performance battery-like electrochemical capacitive energy storage device
CN105122520A (zh) 石墨烯/碳组合物
Jian et al. Carbon quantum dots reinforced polypyrrole nanowire via electrostatic self-assembly strategy for high-performance supercapacitors
Wang et al. Kelp-like structured NiCo2S4-C-MoS2 composite electrodes for high performance supercapacitor
Zhu et al. 3D network-like mesoporous NiCo2O4 nanostructures as advanced electrode material for supercapacitors
Tang et al. Hydrothermal synthesis of a flower-like nano-nickel hydroxide for high performance supercapacitors
Mahmoud et al. Synthesis of cobalt phosphate-graphene foam material via co-precipitation approach for a positive electrode of an asymmetric supercapacitors device
Deng et al. RuO2/graphene hybrid material for high performance electrochemical capacitor
Ji et al. Nanoporous Ni (OH) 2 thin film on 3D ultrathin-graphite foam for asymmetric supercapacitor
Rakhi et al. High performance supercapacitors using metal oxide anchored graphene nanosheet electrodes
Zhao et al. Facile fabrication of binder-free reduced graphene oxide/MnO2/Ni foam hybrid electrode for high-performance supercapacitors
Wu et al. Anchoring hydrous RuO2 on graphene sheets for high‐performance electrochemical capacitors
Wang et al. Mn3O4 nanoparticles embedded into graphene nanosheets: preparation, characterization, and electrochemical properties for supercapacitors
Lu et al. Preparation and electrochemical capacitance of hierarchical graphene/polypyrrole/carbon nanotube ternary composites
Wang et al. High performance hybrid supercapacitor based on graphene-supported Ni (OH) 2-nanowires and ordered mesoporous carbon CMK-5
Zardkhoshoui et al. All-solid-state, flexible, ultrahigh performance supercapacitors based on the Ni-Al LDH-rGO electrodes
Chen et al. Al and Co co-doped α-Ni (OH) 2/graphene hybrid materials with high electrochemical performances for supercapacitors
Deng et al. Facile preparation of MnO2/graphene nanocomposites with spent battery powder for electrochemical energy storage
Huang et al. Synthesis of 3D reduced graphene oxide/unzipped carbon nanotubes/polyaniline composite for high-performance supercapacitors
Li et al. Hierarchical interpenetrating rHGO-decorated NiCo2O4 nanowires architectures for high-performance supercapacitors
Yang et al. In situ co-deposition of nickel hexacyanoferrate nanocubes on the reduced graphene oxides for supercapacitors
Liu et al. High performance graphene composite microsphere electrodes for capacitive deionisation
Cevik et al. Synthesis of hierarchical multilayer N-doped Mo2C@ MoO3 nanostructure for high-performance supercapacitor application
Xu et al. Waste activated carbon transformed to electrode of supercapacitor through combining with Co (OH) 2

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20151202

WD01 Invention patent application deemed withdrawn after publication