CN105102105A - 纳米多孔薄膜及其制造方法 - Google Patents

纳米多孔薄膜及其制造方法 Download PDF

Info

Publication number
CN105102105A
CN105102105A CN201480015372.XA CN201480015372A CN105102105A CN 105102105 A CN105102105 A CN 105102105A CN 201480015372 A CN201480015372 A CN 201480015372A CN 105102105 A CN105102105 A CN 105102105A
Authority
CN
China
Prior art keywords
hole
material layers
atom level
level thin
polymer film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201480015372.XA
Other languages
English (en)
Inventor
兰德尔·M·斯蒂尔伯格
彼得·V·拜德沃斯
斯科特·E·海斯
史蒂文·W·西恩特
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Lockheed Martin Corp
Original Assignee
Lockheed Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Lockheed Corp filed Critical Lockheed Corp
Publication of CN105102105A publication Critical patent/CN105102105A/zh
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/12Composite membranes; Ultra-thin membranes
    • B01D69/122Separate manufacturing of ultra-thin membranes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0039Inorganic membrane manufacture
    • B01D67/0053Inorganic membrane manufacture by inducing porosity into non porous precursor membranes
    • B01D67/006Inorganic membrane manufacture by inducing porosity into non porous precursor membranes by elimination of segments of the precursor, e.g. nucleation-track membranes, lithography or laser methods
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0079Manufacture of membranes comprising organic and inorganic components
    • B01D67/00791Different components in separate layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/10Supported membranes; Membrane supports
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/10Supported membranes; Membrane supports
    • B01D69/107Organic support material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/02Inorganic material
    • B01D71/021Carbon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/02Inorganic material
    • B01D71/021Carbon
    • B01D71/0211Graphene or derivates thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/26Polyalkenes
    • B01D71/262Polypropylene
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/30Polyalkenyl halides
    • B01D71/32Polyalkenyl halides containing fluorine atoms
    • B01D71/34Polyvinylidene fluoride
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/40Polymers of unsaturated acids or derivatives thereof, e.g. salts, amides, imides, nitriles, anhydrides, esters
    • B01D71/401Polymers based on the polymerisation of acrylic acid, e.g. polyacrylate
    • B01D71/4011Polymethylmethacrylate
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/48Polyesters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/50Polycarbonates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C67/00Shaping techniques not covered by groups B29C39/00 - B29C65/00, B29C70/00 or B29C73/00
    • B29C67/20Shaping techniques not covered by groups B29C39/00 - B29C65/00, B29C70/00 or B29C73/00 for porous or cellular articles, e.g. of foam plastics, coarse-pored
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/06Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B3/00Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar form; Layered products having particular features of form
    • B32B3/26Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar form; Layered products having particular features of form characterised by a particular shape of the outline of the cross-section of a continuous layer; characterised by a layer with cavities or internal voids ; characterised by an apertured layer
    • B32B3/266Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar form; Layered products having particular features of form characterised by a particular shape of the outline of the cross-section of a continuous layer; characterised by a layer with cavities or internal voids ; characterised by an apertured layer characterised by an apertured layer, the apertures going through the whole thickness of the layer, e.g. expanded metal, perforated layer, slit layer regular cells B32B3/12
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B9/00Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2323/00Details relating to membrane preparation
    • B01D2323/34Use of radiation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2325/00Details relating to properties of membranes
    • B01D2325/02Details relating to pores or porosity of the membranes
    • B01D2325/028Microfluidic pore structures
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2305/00Condition, form or state of the layers or laminate
    • B32B2305/02Cellular or porous
    • B32B2305/026Porous
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/24Structurally defined web or sheet [e.g., overall dimension, etc.]
    • Y10T428/24273Structurally defined web or sheet [e.g., overall dimension, etc.] including aperture
    • Y10T428/24322Composite web or sheet

Abstract

公开了一种制造纳米多孔薄膜的方法。该方法提供包括原子级薄材料层和聚合物层的复合膜,并接着以高能粒子撞击该复合膜,以形成至少穿过该原子级薄材料层的多个孔隙。纳米多孔薄膜还具有原子级薄材料层和相邻于该石墨烯层的一侧的聚合物膜层,该原子级薄材料层具有从中穿过的多个孔。聚合物膜层具有从中穿过的多个扩大的孔隙,该多个扩大的孔隙与多个孔对齐。所有扩大的孔隙可与所有孔同心对齐。在一个实施方式中,原子级薄材料层为石墨烯。

Description

纳米多孔薄膜及其制造方法
相关申请的交叉引用
本申请要求于2013年3月13日提交的第61/779,098号临时申请的优先权,其内容通过引用被并入本文。
技术领域
一般而言,本发明设计纳米多孔薄膜及用于制造该薄膜的方法。更具体地,本发明涉及由原子级薄材料层和聚合物膜制成的纳米多孔薄膜,其中,纳米尺寸的孔设置在该原子级薄层中,并且同心纳米尺寸或微米尺寸的孔设置在该聚合物膜中。
背景技术
操纵用于纳米技术组件的单个原子的能力持续发展。这些发展的中的一些属于材料领域,且特别是原子级薄材料,其可使用单一分子组件或所选择的分子组件的组合。这种材料的一个示例是石墨烯,其为二维芳香族碳聚合物,二维芳香族碳聚合物具有众多的应用,范围从电子存储器、蓄电器、复合增强、薄膜等。其它的原子级薄材料被认为具有其自身的有益特性。
原子级薄材料的一个非限制性示例为石墨烯。石墨烯薄膜是单原子层厚度的碳原子层,结合在一起以限定片体。可称为层或片的单石墨烯薄膜的厚度约为0.2到0.3纳米(nm)厚,或在本文中有时称为“薄”。石墨烯层的碳原子限定由六个碳原子构成的六边形环状结构(苯环)的重复图案,其形成碳原子的蜂巢式晶格。间隙孔由片体中的每六个碳原子环状结构形成,并且该间隙孔宽度小于1纳米。事实上,本领域技术人员将理解的是,间隙孔被认为在其最长尺寸上宽约0.23纳米。因此,除非有穿孔,否则间隙孔的尺寸及配置以及石墨烯的电子性质排除了跨越石墨烯厚度的任何分子的运输。
最近的发展已聚焦在石墨烯薄膜上,该石墨烯薄膜用于用作诸如咸水脱盐的应用中的过滤薄膜。这种应用的一个示例公开于第8,361,321号美国专利中,其通过引用并入本文。由于石墨烯的这些各种使用以及其它原子级薄材料的发展,需要制造具有纳米或微米尺寸的孔或洞的材料和支撑衬底。
因为薄膜通常必须是非常薄的以允许在整个薄膜的厚度中保持这样小的孔隙尺寸,所以具有0.1到10nm孔隙尺寸的纳米多孔薄膜是难以制造的。因此,承担孔隙的薄膜必需支撑在较厚的多孔衬底上,以使最后的复合薄膜具有足够的机械强度。
制造这种复合薄膜的当前方法使用穿孔的石墨烯(厚度约1纳米)作为活性薄膜材料,并且使用多孔聚碳酸酯膜(厚度约5到10微米)作为支撑衬底。在这两层中的每一层上的孔已经被制造之后,这两层被匹配到另一个上。在两衬底中的孔没有彼此定位或对齐,因此通过复合膜的流动受到重叠的孔的统计量的限制。换言之,基于一致地对齐于多孔聚碳酸酯膜的孔的石墨烯薄膜材料中孔的随机排列,通过复合膜的流动受到限制。
匹配穿孔的原子级薄材料(例如,石墨烯)与多孔聚碳酸酯膜以产生用于纳米过滤的复合薄膜被认为提供了超越其它过滤型薄膜的改进。其它的纳米多孔薄膜由较厚的聚合物膜制成,该聚合物膜具有进行纳米尺度排除的曲折路径,但是由于其厚度,它们一般会具有极低的渗透性。因此,在本领域中需要提供具有对齐的同心孔的具有原子级薄材料层和聚合物层的纳米多孔薄膜。此外,在本领域中需要提供穿过原子级薄材料层和聚合物膜层的同心孔的纳米多孔薄膜,其中,穿过聚合物膜层的孔的直径实质上比穿过原子级薄材料层的孔的直径大。
发明内容
根据上述情况,本发明的第一方面提供纳米多孔薄膜及其制造方法。
本发明的另一方面提供用于制造纳米多孔膜的方法,其包括提供含有原子级薄材料层及聚合物膜的复合膜,以及以高能粒子撞击复合膜,以形成至少穿过原子级薄材料层的多个孔隙。
上述实施方式的另一方面提供选择高能粒子以形成穿过原子级薄材料层及聚合物膜的多个孔隙,以使得聚合物膜化学功能化。
上述实施方式的又一方面提供蚀刻聚合物膜,以在聚合物膜中形成多个扩大的孔隙。
上述实施方式的再一方面提供多个扩大的孔隙中的每个,以使得它们基本上与穿过原子级薄材料层的多个孔隙中的一个对齐。
上述实施方式的再一方面提供穿过原子级薄材料层的多个孔隙,其尺寸范围从0.5nm到约10nm,其中,多个扩大的孔隙的尺寸范围从10nm到1000nm,并且其中,多个扩大的孔隙以使得其具有大于多个孔隙的直径。方法还可包括控制撞击和蚀刻,以使得多个扩大的孔隙具有大于多个孔隙的直径。
上述实施方式的又一方面提供用于将所述原子级薄材料层设置为碳材料的单原子层,或将所述原子级薄材料层设置为碳材料的多原子层。方法还可包括从含有石墨烯、少层石墨烯、二硫化钼、氮化硼、六方晶氮化硼、二硒化铌、硅烯(silicene)和锗烯(germanene)的组中选择原子级薄材料。
方法的又一方面是利用聚碳酸酯作为聚合物膜。
方法的另一方面是提供多孔聚合物膜作为复合膜的一部分。
在该方法的另一模式中,高能粒子可被选择,以便为聚合物膜留下朝向孔隙扩大化学惰性。并且,方法可包括,在撞击期间,将原子级薄材料层化学结合至聚合物膜。或方法可撞击原子级薄材料层,以形成仅穿过原子级薄材料层的多个孔隙。
且方法可提供穿过原子级薄材料层的多个孔隙,该多个空隙的尺寸范围从约0.5nm到约10nm。
本发明的又一方面是提供一种纳米多孔薄膜,其包括原子级薄材料层,其具有从中穿过的多个孔,以及相邻于原子级薄材料层的一侧的聚合物膜层,聚合物膜层具有从中穿过的多个扩大的孔隙,其中多个扩大的孔隙与多个孔对齐。
在上述方面的一个变形中,薄膜可被建构为使得多个孔的直径范围可从0.5nm到10nm,并且其中,多个扩大的孔隙的直径范围从10nm到1000nm。
并且多个扩大的孔隙可具有大于多个孔的直径。
在上述方面的另一变形中,薄膜可被建构为使得多个扩大的孔隙可具有大于多个孔的直径。
在上述方面的又一变形中,薄膜可被建构为使得原子级薄材料层在多个孔的边缘化学结合至聚合物膜。
并且上述方面的又一变形是薄膜可被建构为使得基本上多个扩大的孔隙中的全部均与多个孔同心对齐。
上述方面的又一变形是原子级薄材料层可选自含有石墨烯、少层石墨烯、二硫化钼、氮化硼、六方晶氮化硼、二硒化铌、硅烯和锗烯的组。
附图说明
结合以下的说明、所附权利要求及附图,本发明的这些及其它特征与优点将变得更好理解。附图可以或可以不按比例绘制,并且某些零件的比例可出于说明方便而被放大。
图1是根据本发明的概念的用最初非多孔的聚合物膜来制造纳米多孔薄膜的过程的示意图;以及
图2是根据本发明的概念的用最初多孔的聚合物膜来制造纳米多孔薄膜的过程的示意图。
具体实施方式
现在参照图1,可看到形成纳米多孔薄膜的方法一般用数字10来表示。首先,提供复合膜12,其中膜12包括原子级薄材料,其以压到非多孔聚合物膜16的层14的形式存在。复合膜12可通过在热压制造操作中将原子级薄材料层14层压到聚合物膜16提供,其中膜12和层14被带到一起并升高到足够的温度,以使得至少提供膜12和层14之间的最小互连力。可使用其它方法来形成复合膜12。在以下呈现的实施方式中,原子级薄材料为石墨烯。可用于层14的其它原子级薄材料包括但不限于少层石墨烯、二硫化钼、氮化硼、六方晶氮化硼、二硒化铌、硅烯和锗烯。
在一个实施方式中,且如上所述,石墨烯层为单原子层厚度的碳原子层,结合在一起以限定片体。可称为层或片的单石墨烯薄膜的厚度约为0.2到0.3纳米(nm)。在一些实施方式中,可形成具有较大厚度和相应的较大强度的多石墨烯层。当薄膜生长或形成时,多石墨烯片体可设置为多层。或者,多石墨烯片体可通过将一层石墨烯层层叠或设置于另一石墨烯层的顶部实现。对本文中公开的所有实施方式,可使用单个石墨烯层或多石墨烯层(有时称为少层石墨烯)。测试显示多层石墨烯由于其自身的粘附性而维持它们的完整性及功能性。这改善了薄膜的强度和在某些情况下的流动性能。一旦穿孔,在将讨论的方法中,相对于聚亚酰胺或其它聚合物材料的过滤材料,石墨烯层提供显著改善过滤性能的高通量吞吐量材料。在多数实施方式中,石墨烯薄膜为0.5到2纳米厚。但可使用高达10纳米或更多的厚度。在任何情况下,除非存在穿孔,否则间隙孔的尺寸和配置和石墨烯的电子性质排除了跨越石墨烯的厚度的任何分子的运输。间隙孔尺寸非常小以至于不允许水或离子通过。
多数实施方式中的非多孔聚合物膜16为厚度范围从10微米到数千微米不限的聚碳酸酯膜。在多数实施方式中,聚合物膜16的厚度范围从25微米到250微米。诸如聚酯、聚亚酰胺、聚丙烯、聚偏二氟乙烯、或聚甲基丙烯酸甲酯等的其它材料可用于膜。
方法10中的下一个步骤是产生高能粒子18。该粒子可以以具有足够高能量以穿过聚合物复合膜的电子、离子、中子、离子簇等的形式存在,这些粒子的能量通常为>1MeV/具有介于106离子/cm2和1013离子/cm2之间通量的微米厚度,且这些粒子在一般由数字20表示的撞击操作中被导向朝向复合膜12。在一个实施方式中,高能粒子被导向朝向可为石墨烯或上述其它原子级薄材料的层14。然而,在其它实施方式中认为,高能粒子18可通过撞击导向朝向复合膜12的聚合物膜16侧。本领域技术人员将理解的是,术语撞击也可称为辐射。在任何情况下,粒子18穿过膜在聚合物膜材料的次纳米到纳米尺度上留下化学官能性“轨迹”。事实上,高能粒子18的撞击形成穿过膜12的轨迹孔隙22。轨迹孔隙22是统一尺寸的且范围可从直径0.5nm到直径10nm不限。孔隙的直径尺寸由撞击步骤20以及高能粒子18的特定类型的选择来确定。本领域技术人员将理解的是,在高能粒子和撞击步骤的选择上,可使用各种因素,以便直接影响直径尺寸。这些因素包括但不限于高能粒子撞击复合膜的停留时间、对高能粒子选择到粒子或材料的类型、以及诸如粒子通量的其它因素。需注意的是,选择用在撞击步骤中的高能粒子18沿聚合物膜16中的轨迹孔隙22的整个表面形成化学功能化24。本领域技术人员将理解的是,孔隙22的化学功能化24改变聚合物膜材料的化学性质。延伸穿过层14的孔隙的一部分可通过辐射被功能化,但官能性对于将描述的进一步的化学过程将是惰性的。
当撞击步骤20完成时,复合膜12经历刻蚀过程26。在此过程26中,整个膜12被浸入适当的流体或气体中。在聚碳酸酯的情况下,使用氢氧化钠溶液并持续预定的时间周期。依据被使用为聚合物膜16的聚合物,可使用其它类型的刻蚀流体或气体。刻蚀过程中的流体或气体侵蚀孔隙22中的聚合物材料的化学功能化24,以便有效地移除化学功能化区域并扩大或增加轨迹孔隙22的直径,以形成穿过聚合物膜16的扩大的孔隙28。本领域技术人员将理解的是,刻蚀步骤并未以任何显著方式改变关联于或延伸穿过层14的孔隙22。
在一个实施方式中,本领域技术人员将注意到的是,在石墨烯膜或层14中的任何缺陷可通过添加附加石墨烯层来缓解。因此,石墨烯层中的重叠缺陷的机率随各附加层显著降低。由于其原子尺度的厚度,附加石墨烯层应不改变高能粒子18通过复合膜12的穿透。在任何情况下,多个扩大的孔隙28设置在聚合物膜层16中。依据化学功能化24的数量和刻蚀过程26的参数,可控制孔隙的尺寸和直径。
在本实施方式中,孔隙28的直径范围可从10nm到1000nm,且为由这些参数确定的一致统一尺寸。作为刻蚀过程的结果,残余聚合物结构30设置用于支撑层14的相邻侧。在本实施方式中,刻蚀过程的最终结果提供具有多个石墨烯孔或孔隙32的层14,多个石墨烯孔或孔隙32可具有0.5到10nm的直径。此外,石墨烯孔32与扩大的孔隙28同心地对齐。因此,复合膜12设置有最大数量的同心对齐的石墨烯孔隙和聚合物膜孔隙,以便在活性薄膜(石墨烯)和衬底(聚合物)两者中提供一对一的孔映射。也可以说,通过刻蚀过程形成的石墨烯孔隙及聚合物膜孔隙彼此一致,其中石墨烯孔隙及聚合物膜孔隙彼此相邻。将上述公开的其它薄材料与聚合物膜和撞击过程一起使用将提供类似的纳米多孔薄膜。
现在参照图2,用于形成纳米多孔薄膜的替代方法一般由数字50来表示。该实施方式类似于图1中所示的方法,除了多孔薄膜首先被以在第一实施方式中所使用的方法层压到石墨烯薄膜上。具体地,方法50使用复合膜52,复合膜52使用与石墨烯层14基本相同的石墨烯层54。此外,石墨烯层14的所有特征均由石墨烯层54来提供。在该特定实施方式中,多孔聚合物层56可以由聚碳酸酯、聚酯、聚亚酰胺、聚丙烯、聚偏二氟乙烯、聚甲基丙烯酸甲酯,或者其它类似的材料来构成。聚合物层56设置有一般以标号58表示的扩大的孔隙。
在本实施方式中,复合膜52在过程59中被高能粒子60撞击。所选择的高能粒子类似于先前实施方式中的高能粒子;然而,选择它们以使得形成在聚合物层56中的任何孔隙不会通过撞击过程59产生化学功能化。
在本实施方式中,多孔聚合物层56设置有扩大的孔隙58,其具有10到1000nm的直径。本领域技术人员将理解的是,扩大的孔隙58的直径甚至可大于1000nm。在任何情况下,高能粒子60的撞击被导向朝向石墨烯层54,但应理解的是,撞击可通过在多孔聚合物层56中投射粒子60而发生。在本实施方式中,可选择高能粒子以使得留下聚合物层或膜朝向孔隙扩大的化学惰性。
作为撞击过程59的结果,延伸穿过石墨烯层54的多个孔隙62被产生。孔隙62与扩大的孔隙58对齐,并且可以与其同心或可以不与其同心。撞击还导致孔隙66的形成,孔隙66延伸穿过石墨烯并且仅部分地进入聚合物膜56,以形成腔室67。并且,在一些情况下,粒子60产生完全延伸穿过石墨烯层54和聚合物层56两者的孔隙68。还将理解的是,在石墨烯层14和聚合物层56之间可形成化学结合70,以进一步将聚合物层56固定到石墨烯层54。因此,公开的实施方式提供具有直径范围从0.5nm到10nm的孔隙62的对齐,其中底层的孔隙58具有可与之同心的扩大的直径。此外,在本实施方式中,多于一个孔或孔隙可在石墨烯层54中产生,聚碳酸酯或聚合物膜层56中的每个孔隙导致更高的渗透性。作为撞击过程的结果,应被理解的是,多个孔隙58与多个孔隙62对齐。因此,孔隙58和孔隙62将彼此相邻,以允许流体从中流过。换言之,对齐的孔隙58和孔隙62可不必具有相同的相对中心点。然而,在撞击过程后,显著数量的孔隙58和孔隙62将被同心地彼此对齐。其它实施方式可使用上述公开的其它薄材料和其它聚合物材料。
基于前述,本发明的优点已经显而易见。通过在能量粒子撞击前以未穿孔的薄材料层覆盖非多孔聚合物膜,任何后来形成的薄材料穿孔都与聚合物膜中的轨迹一致。如在第一实施方式中所公开的,轨迹的后续刻蚀留下在直径方面未受影响的石墨烯孔隙,但在聚合物膜中产生与石墨烯孔隙同心的更大的孔隙,以允许更高的复合膜整体渗透性。因此,在石墨烯薄膜和聚合物膜两者中的一对一孔映射允许在石墨烯和支撑薄膜中同时形成孔。公开的制造纳米多孔薄膜的方法在薄膜性能和制造性两方面是有利的。通过在石墨烯穿孔和支撑膜中的孔隙之间具有精确的重合,复合薄膜的渗透性比具有随机孔对准的复合膜高很多。此外,从制造的角度来看,同时处理活性层和支撑膜可能是更为容易的且更具可扩展性。在穿孔前结合额外的石墨烯层来排除缺陷也允许有意的穿孔持续通过所有的石墨烯层。若石墨烯层被个别穿孔,重叠穿孔仅会随机发生,从而降低薄膜渗透性。
在提供粒子撞击前的多孔聚合物膜的使用的实施方式中,可通过粒子的选择实现优点,该粒子可与在聚碳酸酯膜中产生轨迹所需的类型不同。换言之,多孔聚合物膜的使用可允许制造过程中形成复合膜中的弹性。此外,多孔聚合物膜的使用可允许在复合膜的使用中的优势。这样的构造可允许复合膜的额外弹性。还将理解的是,所公开的实施方式可同时形成孔隙并将石墨烯膜化学结合到支撑膜,以便进一步地强化复合材料。
因此,可以看出,本发明的目的已通过使用上文呈现的结构和其方法而被满足。虽然根据专利法规,仅已呈现并详细描述了最佳模式和优选的实施方式,但是应当理解的是,本发明不局限于此。因此,为了理解本发明的真正范围和广度,应参照以下权利要求。

Claims (22)

1.一种制造纳米多孔薄膜的方法,包括:
提供包括原子级薄材料层和聚合物膜的复合膜,以及
以高能粒子撞击所述复合膜,以形成至少穿过所述原子级薄材料层的多个孔隙。
2.根据权利要求1所述的方法,还包括:
选择高能粒子以形成穿过所述原子级薄材料层及所述聚合物膜的所述多个孔隙,使得所述聚合物膜化学功能化。
3.根据权利要求2所述的方法,还包括:蚀刻所述聚合物膜,以在所述聚合物膜中形成多个扩大的孔隙。
4.根据权利要求3所述的方法,其中,所述多个扩大的孔隙中的每个与穿过所述原子级薄材料层的所述多个孔隙中的一个基本对齐。
5.根据权利要求4所述的方法,其中,穿过所述原子级薄材料层的所述多个孔隙的尺寸范围从0.5nm到约10nm,其中,所述多个扩大的孔隙的尺寸范围从10nm到1000nm,并且其中,所述多个扩大的孔隙具有大于所述多个孔隙的直径。
6.根据权利要求4所述的方法,还包括:
控制所述撞击和蚀刻,以使得所述多个扩大的孔隙具有大于所述多个孔隙的直径。
7.根据权利要求1所述的方法,还包括:
将所述原子级薄材料层设置为碳材料的单原子层。
8.根据权利要求1所述的方法,还包括:
将所述原子级薄材料层设置为碳材料的多原子层。
9.根据权利要求1所述的方法,还包括:
使用聚碳酸酯作为所述聚合物膜。
10.根据权利要求1所述的方法,还包括:
提供多孔聚合物膜作为所述复合膜的一部分。
11.根据权利要求10所述的方法,还包括:
选择高能粒子,所述高能粒子使所述聚合物膜朝向孔隙扩大在化学上呈惰性。
12.根据权利要求11所述的方法,还包括:
在撞击期间,将所述原子级薄材料层化学结合至所述聚合物膜。
13.根据权利要求11所述的方法,还包括:
撞击所述原子级薄材料层,以形成仅穿过所述原子级薄材料层的所述多个孔隙。
14.根据权利要求13所述的方法,其中,穿过所述原子级薄材料层的所述多个孔隙的尺寸范围从约0.5nm到约10nm。
15.根据权利要求1所述的方法,还包括:
从含有石墨烯、少层石墨烯、二硫化钼、氮化硼、六方晶氮化硼、二硒化铌、硅烯和锗烯的组中选择所述原子级薄材料。
16.一种纳米多孔薄膜,包括:
原子级薄材料层,具有从中穿过的多个孔;以及
聚合物膜层,相邻于所述原子级薄材料层的一侧,所述聚合物膜层具有从中穿过的多个扩大的孔隙,其中所述多个扩大的孔隙与所述多个孔对齐。
17.根据权利要求16所述的薄膜,其中,所述多个孔的直径范围能够从0.5nm到10nm,并且其中,所述多个扩大的孔隙的直径范围从10nm到1000nm。
18.根据权利要求16所述的薄膜,其中,所述多个扩大的孔隙具有大于所述多个孔的直径。
19.根据权利要求16所述的薄膜,其中,所述多个扩大的孔隙具有大于所述多个孔的直径。
20.根据权利要求16所述的薄膜,其中,所述原子级薄材料层在所述多个孔的边缘化学结合至所述聚合物膜。
21.根据权利要求16所述的薄膜,其中,基本上所述多个扩大的孔隙中的全部均与所述多个孔同心对齐。
22.根据权利要求16所述的薄膜,其中,所述原子级薄材料层选自含有石墨烯、少层石墨烯、二硫化钼、氮化硼、六方晶氮化硼、二硒化铌、硅烯和锗烯的组。
CN201480015372.XA 2013-03-13 2014-03-07 纳米多孔薄膜及其制造方法 Pending CN105102105A (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201361779098P 2013-03-13 2013-03-13
US61/779,098 2013-03-13
PCT/US2014/021677 WO2014159043A1 (en) 2013-03-13 2014-03-07 Nanoporous membranes and methods for making the same

Publications (1)

Publication Number Publication Date
CN105102105A true CN105102105A (zh) 2015-11-25

Family

ID=50434279

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201480015372.XA Pending CN105102105A (zh) 2013-03-13 2014-03-07 纳米多孔薄膜及其制造方法

Country Status (5)

Country Link
US (2) US9505192B2 (zh)
EP (1) EP2969153A1 (zh)
CN (1) CN105102105A (zh)
TW (1) TW201505957A (zh)
WO (1) WO2014159043A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110770944A (zh) * 2017-06-14 2020-02-07 Gsi亥姆霍兹重离子研究中心有限责任公司 作为用于电池的隔板的多孔蚀刻离子径迹聚合物膜
CN115445400A (zh) * 2018-01-04 2022-12-09 埃利门特第一公司 一种箔片微孔筛网装置及其制造方法

Families Citing this family (45)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9475709B2 (en) 2010-08-25 2016-10-25 Lockheed Martin Corporation Perforated graphene deionization or desalination
US8961627B2 (en) 2011-07-07 2015-02-24 David J Edlund Hydrogen generation assemblies and hydrogen purification devices
US9193587B2 (en) 2011-07-13 2015-11-24 Lockheed Martin Corporation System and method for water purification and desalination
CN104411642B (zh) 2012-03-15 2018-04-03 麻省理工学院 基于石墨烯的过滤器
KR20140146131A (ko) 2012-03-21 2014-12-24 록히드 마틴 코포레이션 활성화 가스 스트림을 사용하여 그래핀을 천공하기 위한 방법들 및 그것으로부터 제조되는 천공된 그래핀
US9095823B2 (en) 2012-03-29 2015-08-04 Lockheed Martin Corporation Tunable layered membrane configuration for filtration and selective isolation and recovery devices
US9463421B2 (en) 2012-03-29 2016-10-11 Lockheed Martin Corporation Planar filtration and selective isolation and recovery device
US9610546B2 (en) 2014-03-12 2017-04-04 Lockheed Martin Corporation Separation membranes formed from perforated graphene and methods for use thereof
US10653824B2 (en) 2012-05-25 2020-05-19 Lockheed Martin Corporation Two-dimensional materials and uses thereof
US10980919B2 (en) 2016-04-14 2021-04-20 Lockheed Martin Corporation Methods for in vivo and in vitro use of graphene and other two-dimensional materials
US9834809B2 (en) 2014-02-28 2017-12-05 Lockheed Martin Corporation Syringe for obtaining nano-sized materials for selective assays and related methods of use
US10118130B2 (en) 2016-04-14 2018-11-06 Lockheed Martin Corporation Two-dimensional membrane structures having flow passages
US9744617B2 (en) 2014-01-31 2017-08-29 Lockheed Martin Corporation Methods for perforating multi-layer graphene through ion bombardment
US9067811B1 (en) * 2012-05-25 2015-06-30 Lockheed Martin Corporation System, method, and control for graphenoid desalination
US10717040B2 (en) 2012-08-30 2020-07-21 Element 1 Corp. Hydrogen purification devices
US11738305B2 (en) 2012-08-30 2023-08-29 Element 1 Corp Hydrogen purification devices
US9187324B2 (en) 2012-08-30 2015-11-17 Element 1 Corp. Hydrogen generation assemblies and hydrogen purification devices
TW201504140A (zh) 2013-03-12 2015-02-01 Lockheed Corp 形成具有均勻孔尺寸之多孔石墨烯之方法
US9480952B2 (en) 2013-03-14 2016-11-01 Lockheed Martin Corporation Methods for chemical reaction perforation of atomically thin materials
US9572918B2 (en) 2013-06-21 2017-02-21 Lockheed Martin Corporation Graphene-based filter for isolating a substance from blood
EP3062914A4 (en) * 2013-11-01 2017-07-05 Massachusetts Institute of Technology Mitigating leaks in membranes
SG11201606287VA (en) 2014-01-31 2016-08-30 Lockheed Corp Processes for forming composite structures with a two-dimensional material using a porous, non-sacrificial supporting layer
KR20160142820A (ko) 2014-01-31 2016-12-13 록히드 마틴 코포레이션 브로드 이온 필드를 사용한 2차원 물질 천공
WO2015138771A1 (en) 2014-03-12 2015-09-17 Lockheed Martin Corporation Separation membranes formed from perforated graphene
US9902141B2 (en) 2014-03-14 2018-02-27 University Of Maryland Layer-by-layer assembly of graphene oxide membranes via electrostatic interaction and eludication of water and solute transport mechanisms
KR102232418B1 (ko) * 2014-04-29 2021-03-29 엘지전자 주식회사 그래핀 멤브레인 및 그 제조 방법
CN107073408A (zh) 2014-09-02 2017-08-18 洛克希德马丁公司 基于二维膜材料的血液透析膜和血液过滤膜及其应用方法
WO2016171615A1 (en) 2015-04-20 2016-10-27 Ngee Ann Polytechnic Graphene-based membrane and method of producing the same
EP3331816A4 (en) * 2015-08-05 2019-03-27 Lockheed Martin Corporation HOLE PLATE OF GRAPH-BASED MATERIAL
WO2017023376A1 (en) 2015-08-05 2017-02-09 Lockheed Martin Corporation Perforatable sheets of graphene-based material
WO2017023380A1 (en) 2015-08-05 2017-02-09 Lockheed Martin Corporation Two-dimensional materials and uses thereof
JP2018530499A (ja) * 2015-08-06 2018-10-18 ロッキード・マーチン・コーポレーション グラフェンのナノ粒子変性及び穿孔
EP3331824A4 (en) * 2015-08-06 2019-05-22 Lockheed Martin Corporation NANOPARTICLE MODIFICATION AND GRAPHENE PERFORATION
WO2017049236A1 (en) * 2015-09-18 2017-03-23 Lockheed Martin Corporation Nanoporous membranes and methods for making the same
WO2017180141A1 (en) * 2016-04-14 2017-10-19 Lockheed Martin Corporation Selective interfacial mitigation of graphene defects
EP3442739A4 (en) 2016-04-14 2020-03-04 Lockheed Martin Corporation PROCESS FOR PROCESSING GRAPHENE SHEETS FOR LARGE SCALE TRANSFER USING A FREE FLOATING PROCESS
WO2017180135A1 (en) 2016-04-14 2017-10-19 Lockheed Martin Corporation Membranes with tunable selectivity
SG11201808961QA (en) 2016-04-14 2018-11-29 Lockheed Corp Methods for in situ monitoring and control of defect formation or healing
US10974208B2 (en) 2016-05-11 2021-04-13 Massachusetts Institute Of Technology Graphene oxide membranes and related methods
LU100812B1 (en) 2018-05-29 2019-11-29 Cnm Tech Gmbh Carbon nanomembranes on porous materials
CN108722206B (zh) * 2018-07-04 2020-10-30 同济大学 一种抗污染自清洁型GO/ZnO-PVDF薄膜及其制备方法
EP3969158A1 (en) 2019-05-15 2022-03-23 Via Separations, Inc. Filtration apparatus containing graphene oxide membrane
BR112021022979A2 (pt) 2019-05-15 2022-01-25 Via Separations Inc Membranas de óxido de grafeno duráveis
CN110860215B (zh) * 2019-10-12 2020-12-08 浙江大学 一种具有帐篷状结构的氧化石墨烯膜及其制备方法与应用
WO2023097166A1 (en) 2021-11-29 2023-06-01 Via Separations, Inc. Heat exchanger integration with membrane system for evaporator pre-concentration

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0364628A1 (en) * 1988-10-19 1990-04-25 Arastoo Khodai Joopary Gas, isotope, and liquid separations by membranes
WO2012027148A1 (en) * 2010-08-25 2012-03-01 Lockheed Martin Corporation Perforated graphene deionization or desalination

Family Cites Families (42)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6908552B2 (en) * 2002-02-26 2005-06-21 Gesellschaft Fuer Schwerionenforschung Mbh Method of producing nanostructures in membrances, and asymmetrical membrane
CA2606440A1 (en) 2005-04-29 2006-11-09 University Of Rochester Ultrathin porous nanoscale membranes, methods of making, and uses thereof
US7323401B2 (en) 2005-08-08 2008-01-29 Applied Materials, Inc. Semiconductor substrate process using a low temperature deposited carbon-containing hard mask
CN101361170B (zh) * 2005-11-14 2010-06-16 国立大学法人东京工业大学 纳米多孔基板及其制造方法
WO2007140252A1 (en) 2006-05-25 2007-12-06 Drexel University Filled nanoporous polymer membrane composites for protective clothing and methods for making them
KR100834729B1 (ko) * 2006-11-30 2008-06-09 포항공과대학교 산학협력단 반사 방지용 나노 다공성 필름 및 블록 공중합체를 이용한그 제조방법
US7960708B2 (en) * 2007-03-13 2011-06-14 University Of Houston Device and method for manufacturing a particulate filter with regularly spaced micropores
US8698481B2 (en) 2007-09-12 2014-04-15 President And Fellows Of Harvard College High-resolution molecular sensor
US20110139707A1 (en) * 2009-06-17 2011-06-16 The Regents Of The University Of California Nanoporous inorganic membranes and films, methods of making and usage thereof
US8268180B2 (en) 2010-01-26 2012-09-18 Wisconsin Alumni Research Foundation Methods of fabricating large-area, semiconducting nanoperforated graphene materials
US9475709B2 (en) 2010-08-25 2016-10-25 Lockheed Martin Corporation Perforated graphene deionization or desalination
KR101813170B1 (ko) 2011-04-11 2017-12-28 삼성전자주식회사 그래핀 함유 분리막
US9193587B2 (en) 2011-07-13 2015-11-24 Lockheed Martin Corporation System and method for water purification and desalination
US8617411B2 (en) * 2011-07-20 2013-12-31 Lam Research Corporation Methods and apparatus for atomic layer etching
CN104411642B (zh) * 2012-03-15 2018-04-03 麻省理工学院 基于石墨烯的过滤器
US20130240355A1 (en) 2012-03-16 2013-09-19 Lockheed Martin Corporation Functionalization of graphene holes for deionization
KR20140146131A (ko) 2012-03-21 2014-12-24 록히드 마틴 코포레이션 활성화 가스 스트림을 사용하여 그래핀을 천공하기 위한 방법들 및 그것으로부터 제조되는 천공된 그래핀
US9028663B2 (en) 2012-03-21 2015-05-12 Lockheed Martin Corporation Molecular separation device
US9463421B2 (en) 2012-03-29 2016-10-11 Lockheed Martin Corporation Planar filtration and selective isolation and recovery device
US9095823B2 (en) 2012-03-29 2015-08-04 Lockheed Martin Corporation Tunable layered membrane configuration for filtration and selective isolation and recovery devices
US20130277305A1 (en) 2012-04-19 2013-10-24 Lockheed Martin Corporation Selectively perforated graphene membranes for compound harvest, capture and retention
US9744617B2 (en) 2014-01-31 2017-08-29 Lockheed Martin Corporation Methods for perforating multi-layer graphene through ion bombardment
US9067811B1 (en) 2012-05-25 2015-06-30 Lockheed Martin Corporation System, method, and control for graphenoid desalination
US9610546B2 (en) 2014-03-12 2017-04-04 Lockheed Martin Corporation Separation membranes formed from perforated graphene and methods for use thereof
US9834809B2 (en) 2014-02-28 2017-12-05 Lockheed Martin Corporation Syringe for obtaining nano-sized materials for selective assays and related methods of use
US20160067390A1 (en) 2014-03-12 2016-03-10 Lockheed Martin Corporation Methods for in vivo and in vitro use of graphene and other two-dimensional materials
TW201504140A (zh) 2013-03-12 2015-02-01 Lockheed Corp 形成具有均勻孔尺寸之多孔石墨烯之方法
US20160009049A1 (en) 2013-03-13 2016-01-14 Lockheed Martin Corporation Nanoporous membranes and methods for making the same
US9480952B2 (en) 2013-03-14 2016-11-01 Lockheed Martin Corporation Methods for chemical reaction perforation of atomically thin materials
US20140261999A1 (en) 2013-03-15 2014-09-18 Lockheed Martin Corporation Method of separating an atomically thin material from a substrate
US9572918B2 (en) 2013-06-21 2017-02-21 Lockheed Martin Corporation Graphene-based filter for isolating a substance from blood
US20150075667A1 (en) 2013-09-19 2015-03-19 Lockheed Martin Corporation Carbon macrotubes and methods for making the same
SG11201606287VA (en) 2014-01-31 2016-08-30 Lockheed Corp Processes for forming composite structures with a two-dimensional material using a porous, non-sacrificial supporting layer
KR20160142820A (ko) 2014-01-31 2016-12-13 록히드 마틴 코포레이션 브로드 이온 필드를 사용한 2차원 물질 천공
WO2015138801A2 (en) 2014-03-12 2015-09-17 Lockheed Martin Corporation Graphene-based molecular sieves and methods for production thereof
CN106232103A (zh) 2014-03-12 2016-12-14 洛克希德马丁公司 石墨烯的体内和体外用途
WO2015138752A1 (en) 2014-03-12 2015-09-17 Lockheed Martin Corporation Coating of a porous substrate for disposition of graphene and other two-dimensional materials thereon
WO2015138808A1 (en) 2014-03-12 2015-09-17 Lockheed Martin Corporation Graphene-based molecular separation and sequestration device
WO2015138771A1 (en) 2014-03-12 2015-09-17 Lockheed Martin Corporation Separation membranes formed from perforated graphene
WO2015148548A2 (en) 2014-03-24 2015-10-01 Lockheed Martin Corporation Large area membrane evaluation apparatuses and methods for use thereof
AU2015255756A1 (en) 2014-05-08 2016-12-22 Lockheed Martin Corporation Stacked two-dimensional materials and methods for producing structures incorporating same
CN107073408A (zh) 2014-09-02 2017-08-18 洛克希德马丁公司 基于二维膜材料的血液透析膜和血液过滤膜及其应用方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0364628A1 (en) * 1988-10-19 1990-04-25 Arastoo Khodai Joopary Gas, isotope, and liquid separations by membranes
WO2012027148A1 (en) * 2010-08-25 2012-03-01 Lockheed Martin Corporation Perforated graphene deionization or desalination

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
KE LIU ETC.: "Atomically thin molybdenum disulfide nanopores with high sensitivity for DNA translocation", 《ACS NANO》 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110770944A (zh) * 2017-06-14 2020-02-07 Gsi亥姆霍兹重离子研究中心有限责任公司 作为用于电池的隔板的多孔蚀刻离子径迹聚合物膜
CN110770944B (zh) * 2017-06-14 2023-11-14 Gsi亥姆霍兹重离子研究中心有限责任公司 作为用于电池的隔板的多孔蚀刻离子径迹聚合物膜
CN115445400A (zh) * 2018-01-04 2022-12-09 埃利门特第一公司 一种箔片微孔筛网装置及其制造方法

Also Published As

Publication number Publication date
US20140272286A1 (en) 2014-09-18
TW201505957A (zh) 2015-02-16
WO2014159043A1 (en) 2014-10-02
EP2969153A1 (en) 2016-01-20
US20170043300A1 (en) 2017-02-16
US9505192B2 (en) 2016-11-29

Similar Documents

Publication Publication Date Title
CN105102105A (zh) 纳米多孔薄膜及其制造方法
US20160009049A1 (en) Nanoporous membranes and methods for making the same
Zhang et al. Vertically transported graphene oxide for high‐performance osmotic energy conversion
Shen et al. Size effects of graphene oxide on mixed matrix membranes for CO2 separation
Xu et al. Two-dimensional (2D) nanoporous membranes with sub-nanopores in reverse osmosis desalination: Latest developments and future directions
Yang et al. Fundamental transport mechanisms and advancements of graphene oxide membranes for molecular separation
Hosseini Monjezi et al. Current trends in metal–organic and covalent organic framework membrane materials
Ji et al. Superfast water transport zwitterionic polymeric nanofluidic membrane reinforced by metal–organic frameworks
Zhu et al. Dual-bioinspired design for constructing membranes with superhydrophobicity for direct contact membrane distillation
US10500546B2 (en) Processes for forming composite structures with a two-dimensional material using a porous, non-sacrificial supporting layer
JP6246785B2 (ja) 活性化ガス流を用いてグラフェンを穿孔するための方法
Ying et al. Two-dimensional materials for novel liquid separation membranes
Sun et al. Inorganic–Organic Hybrid Membrane Based on Pillararene‐Intercalated MXene Nanosheets for Efficient Water Purification
Wang et al. Graphene oxide membranes with tunable permeability due to embedded carbon dots
JP2017127868A (ja) 濾過または選択的な流体工学的分離及び回収の装置のための調整可能な膜構成
Chen et al. Polyhedral oligomeric silsesquioxane (POSS) nano‐composite separation membranes− A review
KR20180037991A (ko) 그래핀의 나노 입자 변형 및 천공
JP2015515369A5 (zh)
Selyanchyn et al. Membrane thinning for efficient CO2 capture
JP2013500146A5 (zh)
Wu et al. Recent development in composite membranes for flow batteries
KR20140114109A (ko) Macro한 공극을 갖는 지지층이 있는 분리막
JP5495108B2 (ja) スピンバルブ素子及びその製造方法
Verma et al. Graphene-reinforced polymeric membranes for water desalination and gas separation/barrier applications
JP2014042869A (ja) 多孔質複層フィルター

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20151125

WD01 Invention patent application deemed withdrawn after publication