CN105008410A - 纳米多孔滤膜 - Google Patents

纳米多孔滤膜 Download PDF

Info

Publication number
CN105008410A
CN105008410A CN201480010272.8A CN201480010272A CN105008410A CN 105008410 A CN105008410 A CN 105008410A CN 201480010272 A CN201480010272 A CN 201480010272A CN 105008410 A CN105008410 A CN 105008410A
Authority
CN
China
Prior art keywords
poly
block
film
vinylbenzene
pla
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201480010272.8A
Other languages
English (en)
Inventor
M·A·希尔迈勒
E·A·杰克逊
Y·李
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Minnesota
Original Assignee
University of Minnesota
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Minnesota filed Critical University of Minnesota
Publication of CN105008410A publication Critical patent/CN105008410A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F297/00Macromolecular compounds obtained by successively polymerising different monomer systems using a catalyst of the ionic or coordination type without deactivating the intermediate polymer
    • C08F297/02Macromolecular compounds obtained by successively polymerising different monomer systems using a catalyst of the ionic or coordination type without deactivating the intermediate polymer using a catalyst of the anionic type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0002Organic membrane manufacture
    • B01D67/0023Organic membrane manufacture by inducing porosity into non porous precursor membranes
    • B01D67/003Organic membrane manufacture by inducing porosity into non porous precursor membranes by selective elimination of components, e.g. by leaching
    • B01D67/0031Organic membrane manufacture by inducing porosity into non porous precursor membranes by selective elimination of components, e.g. by leaching by elimination of at least one of the blocks of a block copolymer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0039Inorganic membrane manufacture
    • B01D67/0053Inorganic membrane manufacture by inducing porosity into non porous precursor membranes
    • B01D67/0058Inorganic membrane manufacture by inducing porosity into non porous precursor membranes by selective elimination of components, e.g. by leaching
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/02Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor characterised by their properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/10Supported membranes; Membrane supports
    • B01D69/107Organic support material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/10Supported membranes; Membrane supports
    • B01D69/108Inorganic support material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/12Composite membranes; Ultra-thin membranes
    • B01D69/125In situ manufacturing by polymerisation, polycondensation, cross-linking or chemical reaction
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/14Dynamic membranes
    • B01D69/141Heterogeneous membranes, e.g. containing dispersed material; Mixed matrix membranes
    • B01D69/1411Heterogeneous membranes, e.g. containing dispersed material; Mixed matrix membranes containing dispersed material in a continuous matrix
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/28Polymers of vinyl aromatic compounds
    • B01D71/281Polystyrene
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/76Macromolecular material not specifically provided for in a single one of groups B01D71/08 - B01D71/74
    • B01D71/80Block polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F8/00Chemical modification by after-treatment
    • C08F8/02Alkylation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2323/00Details relating to membrane preparation
    • B01D2323/30Cross-linking
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2325/00Details relating to properties of membranes
    • B01D2325/24Mechanical properties, e.g. strength
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/14Ultrafiltration; Microfiltration
    • B01D61/145Ultrafiltration
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2810/00Chemical modification of a polymer
    • C08F2810/40Chemical modification of a polymer taking place solely at one end or both ends of the polymer backbone, i.e. not in the side or lateral chains

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Medicinal Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Polymers & Plastics (AREA)
  • General Chemical & Material Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)
  • Analytical Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Oil, Petroleum & Natural Gas (AREA)

Abstract

公开了适合于在超滤中使用的纳米多孔膜,它包括纳米多孔的交联聚(苯乙烯)-嵌段-聚(异戊二烯)-嵌段-聚(苯乙烯),和含该多孔膜与微孔载体的复合材料。还公开了制备纳米多孔膜和复合膜的方法。

Description

纳米多孔滤膜
相关申请的交叉参考
本专利申请要求2013年1月31日提交的美国临时专利申请No.61/758,982的权益,其公开内容通过参考引入。
关于联邦资助研发的声明
在政府支持下,依据国家科学基金授予的资助号DMR-1006370做出本发明。政府在本发明中具有一定的权利。
发明背景
因许多用途,例如在催化,制模(templating),水过滤,气体分离,生物过滤,生物分子分离,药物传递,和电池或燃料电池中提出了纳米多孔膜。尽管由无机材料制备的纳米多孔膜通常显示出化学、热和/或机械稳定性,但由有机材料(例如聚合物)制备的那些提供加强的化学可调性和机械挠度。许多工业应用要求挠曲的薄膜(厚度<500nm),和因此聚合物被视为制备纳米多孔膜的起始材料。
在由聚合物实施纳米多孔膜制备中的一些挑战包括实现最终多孔结构所需的机械完整性。例如,一些膜倾向于发脆或者无挠曲性,或者在某些加工或操作条件下,孔隙倾向于坍塌。
前述表明对具有一个或多个所需性能的纳米多孔膜存在未被满足的需求。
发明概述
本发明在较大程度上实现了前述需求,即提供含纳米多孔的交联聚(苯乙烯)-嵌段-聚(异戊二烯)-嵌段-聚(苯乙烯)的多孔膜。
在一个实施方案中,纳米多孔的交联聚(苯乙烯)-嵌段-聚(异戊二烯)-嵌段-聚(苯乙烯)的厚度范围为约20纳米(nm)-约500nm。典型地,该膜的孔径为至少约2纳米,例如范围为约2纳米-约100纳米。
本发明的另一实施方案包括一种复合材料,该复合材料包括含在微孔载体上的纳米多孔的交联聚(苯乙烯)-嵌段-聚(异戊二烯)-嵌段-聚(苯乙烯)的多孔膜。在一个实施方案中,微孔载体包括微孔膜,优选微孔聚合物膜。在一个实施方案中,该微孔载体包括砜膜,优选聚醚砜膜。
在一些实施方案中,通过包括例如旋涂,盐-板转移(salt-platetransfer)/薄膜-转移,流延成型或浸涂的方法,制备膜和/或复合材料。
在一些实施方案中,通过下述方法,生产含纳米多孔的交联聚(苯乙烯)-嵌段-聚(异戊二烯)-嵌段-聚(苯乙烯)的多孔膜,所述方法包括制备聚(苯乙烯)-嵌段-聚(异戊二烯)-嵌段-聚(苯乙烯)-嵌段-聚(d,l-丙交酯)四嵌段的三元共聚物,和水解聚(d,l-丙交酯)。在一个实施方案中,该方法包括水解聚(d,l-丙交酯)和反应性离子蚀刻。或者或另外,该方法可包括在微孔液体填充的载体上旋涂聚(苯乙烯)-嵌段-聚(异戊二烯)-嵌段-聚(苯乙烯)-嵌段-聚(d,l-丙交酯)四嵌段的三元共聚物,或者在盐板上旋涂聚(苯乙烯)-嵌段-聚(异戊二烯)-嵌段-聚(苯乙烯)-嵌段-聚(d,l-丙交酯)四嵌段的三元共聚物,溶解该盐板,和将该四嵌段的三元共聚物转移到微孔载体上。
本发明进一步提供制备多孔膜的方法,该方法包括使羟基封端的聚(苯乙烯)-嵌段-聚(异戊二烯)-嵌段-聚(苯乙烯)嵌段聚合物与d,l-丙交酯反应,形成四嵌段共聚物聚(苯乙烯)-嵌段-聚(异戊二烯)-嵌段-聚(苯乙烯)-聚(d,l-丙交酯),将该四嵌段共聚物形成为具有连续基体相和分散相的纳米结构的薄膜,其中连续基体相包括聚(异戊二烯)嵌段,和分散相包括聚(苯乙烯)嵌段和聚(d,l-丙交酯)嵌段,和选择性除去至少一部分聚(d,l-丙交酯)嵌段。
本发明利用嵌段聚合物的性能在于它们可自组织成具有均匀尺寸分布的纳米级区域的非常有序的结构。例如,根据一些实施方案,本发明的四嵌段共聚物前体形成具有核-壳圆柱体形貌的结构。通过除去牺牲的次要组分,这种有序的前体转化成各种纳米多孔材料。本发明膜的纳米级孔非常适合于苛刻的分离应用(例如,通过尺寸排阻法除去病毒),同时窄的孔度分布促进不同寻常的选择性。此外,可有利地设计该嵌段聚合物,引入适合于具体应用的所需的化学、热和机械特性。
借助嵌段聚合物本身的结构,即通过固态下的嵌段自组织,交联本发明的纳米多孔膜。通过在自组装过程中形成的玻璃态区域之间的物理交联和橡胶状中间嵌段的缠结,从而交联该膜。没有使用化学交联剂来引起交联。与由聚苯乙烯或者聚(异戊二烯)-嵌段-聚(苯乙烯)共聚物制造的非交联的纳米多孔膜相比,纳米多孔膜具有优越的机械性能。本发明的纳米多孔膜具有六方堆积的圆柱体形貌。
附图中若干附图的简要说明
图1,A描绘了PS-PI-PS-PLA四嵌段聚合物自组织成核-壳圆柱体形貌,接着选择性除去PLA,生成纳米多孔的热塑性弹性体(PS-PI-PS)。图1,B阐述了根据本发明的实施方案的含有在微孔聚醚砜膜载体上涂布的纳米多孔PS-PI-PS层的复合膜的结构。
图2描绘了根据本发明的一个实施方案,制备PS-PI-PS-OH和PS-PI-PS-PLA聚合物的合成流程图。
图3描绘了在150℃下形模(channel-die)校准之后,在25℃下获得的PS-PI-PS-PLA聚合物的1D-SAXS(a)(fPLA=0.21)。三角形表示与六方堆积的圆柱体形貌有关的√3:√4:√7:√9:√13:√16:和√25的理论q/q*比。图3还描绘了形模装置(b)的示意图,它示出了沿着z-轴的流动方向。图3还描绘了XY平面的2D形貌特征(c)(底部,2D SAXS图案;顶部,切片形模棒的XY面的TEM)。图3进一步描绘了YZ平面的2D形貌特征(d)(底部,2D SAXS图案;顶部,切片形模棒的YZ面的TEM)。比例尺为100nm。
图4描绘了微孔聚醚砜(PES)在其涂布之前的扫描电子显微照片(SEM)(A)。图4还描绘了在直接旋涂之后,PS-PI-PS-PLA(0.21)/PLA共混物涂布的PES载体的SEM(B)。图4进一步描绘了在PES载体上涂布的旋涂薄膜表面的轻敲扫描模式的AFM相位图(C)。图4进一步描绘了在PLA水解之后纳米多孔选择性层的SEM(D)。
图5描绘了在水填充的PES载体上由甲苯旋涂的PS-PI-PS-PLA(0.21)薄膜表面的轻敲扫描模式的AFM图像(a)。图5还描绘了在水填充的PES载体上由甲苯旋涂的PS-PI-PS-PLA(0.21)/PLA薄膜表面的轻敲扫描模式的AFM图像(b)。比例尺为500nm。
图6描绘了根据本发明的一个实施方案的复合PS-PI-PS/PES膜的渗透率数据(a)。由直线拟合的斜率(实线)发现渗透率为96.9Lm-2h-1bar-1。图6还描绘了在标准荧光葡聚糖溶液(1)和滤液(2)上获得的UV-Vis吸光度数据(b)。
图7描绘了在添加异戊二烯到含有聚(苯乙烯)的聚合混合物中之后立即获得的1H NMR谱图。由介于6.2至7.2ppm的聚苯乙烯共振,计算聚苯乙烯的第一嵌段量。利用介于0.6至1ppm的仲丁基端基共振,计算苯乙烯的聚合度。存在小量聚异戊二烯,因为在添加异戊二烯单体之后数分钟获得等分试样。
图8描绘了在25℃下,在CDC13内PS-PI-PS-OH的1H NMR谱图。通过1H NMR端基分析的组合,计算Mn。PS第一嵌段等分试样的SEC数据基于PS标准物。使用在3.3ppm处的CH2共振处发现的端基,和再利用在0.5-0.9ppm处的仲丁基端基(此处未示出,参见图6),进行通过1H NMR的端基分析。通过端基分析计算的分子量与实验误差的极限一致(98%一致率)。
图9描绘了在第一嵌段PS(虚线)和PS-PI-PS-OH三嵌段(实心黑线)聚合之后得到的等分试样上获得的尺寸排阻色谱(SEC)曲线。在等分试样曲线内,在22mL处和在20.5mL处的小峰是在从反应烧瓶中取出期间在等分试样内链的偶联导致的。
图10描绘了在25℃下,在CDC13内PS-PI-PS-PLA(0.20)的1H NMR谱图。使用在3.8ppm处的亚甲基共振,以及还采用在0.5-0.9ppm处的仲丁基端基(未示出)进行端基分析。对于PS-PI-PS-PLA四嵌段来说,聚合度计算的两种方式得到相同的分子量。
图11描绘了PS-PI-PS-OH(4),PS-PI-PS-PLA(0.19)(3),PS-PI-PS-PLA(0.20)(2),和PS-PI-PS-PLA(0.25)(1)的SEC曲线。
图12描绘了PS-PI-PS-OH(a),PS-PI-PS-PLA(0.20)(b),PS-PI-PS-PLA(0.21)(c),和PS-PI-PS-PLA(0.25)(d)的DSC曲线。垂直地移动曲线,以便更加清楚地显示它们。
图13描绘了PS-PI-PS-OH和PS-PI-PS-PLA的DSC数据的原始数据图表(A)和衍生图表(B),其显示出PS和PLA嵌段的玻璃化转变温度。在各自中示出的单独曲线是PS-PI-PS-PLA(0.25)(a),PS-PI-PS-PLA(0.21)(b),PS-PI-PS-PLA(0.20)(c),和PS-PI-PS-OH(d)。垂直地移动曲线,以便更加清楚地显示它们。
图14描绘了采用相应的2D-SAXS图案,形模校准的PS-PI-PS-PLA(0.20)的室温1D-SAXS数据。由XY平面扫描,左侧;XZ平面,中间;和YZ平面,右侧。三角形表示与六方堆积的圆柱体形貌有关的对于1,√3:√4:√7:√9:√13:√16:√19:和√25的q/q*来说的理论反射。
图15描绘了对于每一样品(A)来说所使用的积分面积的示意图。图15还描绘了来自fPLA为(a)0.20(F2=0.65),(b)0.21(F2=0.77),和(c)0.25(F2=0.72)(B)的形模校准的PS-PI-PS-PLA聚合物的归一化取向分布函数(Ρ(β))。
图16描绘了形模校准的聚合物PS-PI-PS-OH(a),PS-PI-PS-PLA(0.20)(b),PS-PI-PS-PLA(0.21)(c),PS-PI-PS-PLA(0.25)(d)的XY面的TEM。样品在-100℃下被冷冻切片成厚度为约60-70nm的样品,然后在成像之前,用四氧化锇染色约10分钟。黑色区域是染色的聚异戊二烯区域导致的。白色区域包含聚苯乙烯和聚丙交酯嵌段二者。比例尺为100nm。
图17描绘了形模校准的聚合物PS-PI-PS-PLA(0.25)(a)的XY面的TEM,和PS-PI-PS-PLA(0.25)(b)的YZ面的TEM。样品在-100℃下被冷冻切片成厚度为约60-70nm的样品,然后在成像之前,用四氧化锇染色约10分钟。黑色区域是染色的聚异戊二烯区域导致的。白色区域包含聚苯乙烯和聚丙交酯嵌段二者。比例尺为100nm。
图18描绘了在TEM格栅上由0.1wt%甲苯溶液落模流延(dropcast)的PS-PI-PS-PLA(0.19)薄膜的TEM。薄膜的不同区域显示出不同的圆柱体取向:一些是平行的,如(A)中所示,和一些是垂直和平行的,如(B)中所示。图像(A)中高的对比度显示出三个不同的区域:黑色是聚异戊二烯,白色是聚苯乙烯,和在白色聚苯乙烯区域之间的浅灰色是聚丙交酯。在PS和PLA之间的轻微对比度是在PS和PLA之间电子密度的固有差别导致的,因为均没有被OsO4染色。对于垂直区域来说,较小的对比度是显然的。在成像之前,用OsO4染色薄膜约10分钟。黑色区域是染色的聚异戊二烯区域导致的。比例尺为300nm。
图19描绘了在TEM格栅上由0.1wt%甲苯溶液落模流延的PS-PI-PS-PLA(0.19)薄膜的TEM。在成像之前用四氧化锇染色约10分钟。黑色区域是染色的聚异戊二烯区域导致的。比例尺为300nm。
图20描绘了PS-PI-PS-OH的应力vs应变数据(狗骨头样品)。
图21描绘了由PS-PI-PS-PLA(0.21)(A),PS-PI-PS-PLA(0.20)(B),和PS-PI-PS-PLA(0.25)(C)制造的狗骨头样品的应力vs应变数据。
图22描绘了由PS-PI-PS-PLA(0.20)制造的狗骨头样品的应力vs应变数据。
图23描绘了由PS-PI-PS-PLA(0.25)制造的狗骨头样品的应力vs应变数据。
图24描绘了在室温下在具有0.1wt%SDS的0.5M NaOH内,用60/40水/甲醇蚀刻之后,蚀刻的形模校准的PS-PI-PS-PLA(0.20)的XY面的SEM图像。
图25描绘了载体表面的真实(左侧)和二元(右侧)SEM图像。使用右侧的图像估计平均孔度和孔表面积。比例尺均为1μm。
图26阐述了根据本发明的一个实施方案,在聚醚砜载体上,通过旋涂直接涂布PS-PI-PS-PLA聚合物,接着除去PLA嵌段的工序。
图27阐述了根据本发明的一个实施方案,借助盐板转移方法,涂布PS-PI-PS-PLA聚合物的工序。
图28描绘了在由甲苯溶液(a),氯苯溶液(b),和THF溶液(c)旋涂之后,复合膜表面的SEM图像。比例尺为7.5μm。
图29描绘了根据本发明的一个实施方案,借助盐板方法制备的膜表面的SEM图像。在碱蚀刻和通量试验之后获得SEM图像。分别在a-c中示出了高的放大倍率,中等放大倍率和较低放大倍率。
图30描绘了根据本发明的一个实施方案,直接涂布的膜的渗透率数据。
图31描绘了TRITC-葡聚糖标准溶液和滤液的UV-Vis吸光度数据。
图32描绘了由PES载体临界值(cut-off)试验获得的UV-Vis吸光度数据,从而表明载体对溶质完全可渗透。
发明详述
在一个实施方案中,本发明提供多孔膜,它包括纳米多孔的交联聚(苯乙烯)-嵌段-聚(异戊二烯)-嵌段-聚(苯乙烯)。
聚(苯乙烯)和聚(异戊二烯)嵌段可以是任何合适的长度。例如,在一些实施方案中,聚(苯乙烯)嵌段的数均分子量(Mn)可以是约1-约100kg/mol,约1-约10kg/mol,或约2-约8kg/mol。在某些实施方案中,聚(苯乙烯)嵌段的Mn为约3,4,5,6,7,或8kg/mol。
聚(异戊二烯)嵌段的数均分子量(Mn)可以是约2-约200kg/mol,约2-约20kg/mol,或约4-约16kg/mol。在某些实施方案中,聚(异戊二烯)嵌段的Mn为约5,6,7,8,9,10,11,12,13,14,或15kg/mol。
根据本发明的一个实施方案,聚(苯乙烯)和聚(异戊二烯)嵌段可以以任何合适的体积分数存在于PS-PI-PS嵌段聚合物内。例如,聚(苯乙烯)和聚(异戊二烯)嵌段各种可以以约30-70%,约40-约60%,或约45-约55%的体积分数存在,且体积分数加合为100%。在某些实施方案中,聚(苯乙烯)和聚(异戊二烯)嵌段各种可以以约46%,47%,48%,49%,或50%存在。因此,在一些实施方案中,该组合物可包括体积分数比为46%/54%,47%/53%,48%/52%,49%/51%,50%/50%,51%/59%,52%/48%,53%/47%,或54%/46%的PS和PI嵌段。
PS-PI-PS嵌段聚合物优选具有窄的多分散性指数,例如,Mw/Mn小于约1.25,优选小于约1.20,和更优选小于约1.10。在一些实施方案中,PS-PI-PS嵌段聚合物的Mw/Mn为1.00-1.10,例如1.01,1.02,1.03,1.04,1.05,1.06,1.07,1.08,或1.09。
多孔膜中的纳米多孔的交联聚(苯乙烯)-嵌段-聚(异戊二烯)-嵌段-聚(苯乙烯)可具有任何合适的厚度,例如厚度为至少20nm,至少30nm,至少40nm,至少50nm,至少60nm,至少70nm,至少80nm,至少90nm,至少100nm,至少150nm,至少200nm,至少250nm,至少300nm,至少350nm,或至少400nm。
多孔膜中的纳米多孔的交联聚(苯乙烯)-嵌段-聚(异戊二烯)-嵌段-聚(苯乙烯)可具有任何合适的厚度,例如厚度为小于或等于约400nm,小于或等于约350nm,小于或等于约300nm,小于或等于约250nm,小于或等于约200nm,小于或等于约150nm,小于或等于约100nm,小于或等于约80nm,小于或等于约60nm,或者小于或等于约40nm。
多孔膜中的纳米多孔的交联聚(苯乙烯)-嵌段-聚(异戊二烯)-嵌段-聚(苯乙烯)可具有任何合适的厚度,例如厚度范围为约20nm-约500nm,约30nm to 400nm,约40nm-约300nm,约50nm-约200nm,或约60nm-约100nm。
根据任何一个实施方案的膜可具有任何合适的孔度,例如孔径为至少约2nm,约5nm,约10nm,约15nm,约20nm,约30nm,约40nm,或约50nm,或孔径为小于或等于约100nm,小于或等于约80nm,小于或等于约60nm,小于或等于约40nm,或小于或等于约20nm。因此,例如,该膜的孔度为约2nm-约100nm,约5nm-约100nm,约10nm-约100nm,或约20nm-约100nm。在一些实施方案中,该膜的孔度为约2nm-约20nm,约5nm-约30nm,约10nm-约50nm,或约20nm-约80nm。
本发明进一步提供制备多孔膜的方法,该方法包括使羟基封端的聚(苯乙烯)-嵌段-聚(异戊二烯)-嵌段-聚(苯乙烯)嵌段聚合物与d,l-丙交酯反应,形成四嵌段聚合物聚(苯乙烯)-嵌段-聚(异戊二烯)-嵌段-聚(苯乙烯)-聚(d,l-丙交酯),将该四嵌段共聚物形成为具有连续基体相和分散相的纳米结构的薄膜,其中连续基体相包括聚(异戊二烯)嵌段,和分散相包括聚(苯乙烯)嵌段和聚(d,l-丙交酯)嵌段,且选择性除去至少一部分聚(d,l-丙交酯)嵌段。
可除去PLA区域中任何合适的部分。例如,至少约5%的PLA区域被除去,和在一些实施方案中,至少约10%,至少约15%,至少约20%,至少约25%,至少约30%,至少约35%,至少约40%,或至少约50%或更多的PLA区域被除去。在一些实施方案中,纳米多孔的交联聚(苯乙烯)-嵌段-聚(异戊二烯)-嵌段-聚(苯乙烯)膜中至少约5%,至少约10%,至少约15%,至少约20%,至少约25%,至少约30%,至少约35%,至少约40%,或至少约50%或更多的孔是开放的。例如,在一个实施方案中,对于盐板方法的膜来说,约27%的孔是开放的,和对于直接涂布的膜来说,约15%的孔是开放的。
在该方法的一个实施方案中,将四嵌段共聚物溶解在溶剂中,并将该四嵌段共聚物溶液以纳米结构的薄膜形式流延。
在上述方法的一个实施方案中,四嵌段共聚物溶液进一步含有聚(d,l-丙交酯)均聚物。
在一个实施方案中,该方法进一步包括从纳米结构的薄膜中除去至少一部分聚(d,l-丙交酯)均聚物。
本发明进一步提供一种复合材料,它包括与微孔载体结合的任何上述实施方案的膜。可使用任何合适的微孔载体,例如聚合的,陶瓷的,金属的或非金属的。微孔载体可以是平坦的片材载体,管状载体,或中空纤维载体。微孔载体可具有任何合适的孔度。例如,微孔载体可具有大于或等于1μm的孔径。在一些实施方案中,孔径为约10μm-约100μm,约10μm-约50μm,或约10μm-30μm。
例如,微孔载体可以是微孔膜。可使用任何合适的微孔膜,例如微孔聚合膜。微孔聚合膜的实例包括,但不限于,砜膜,纤维素基膜,其中包括醋酸纤维素,三醋酸纤维素,CA/三醋酸纤维素的共混物膜,硝酸纤维素膜,再生纤维素膜,聚烯烃膜,聚酯膜,聚酰胺膜,聚酰亚胺膜,聚碳酸酯膜,聚苯醚膜,聚丙烯腈膜,聚苯并咪唑膜,PTFE膜,聚醚酮膜,聚醚醚酮膜,聚偏氯乙烯膜,聚氯乙烯膜,和由它们的共混物或共聚物制造的膜。
在一个实施方案中,优选砜膜作为微孔载体。砜膜的实例包括聚砜膜,和聚醚砜膜,优选聚醚砜膜。
可通过任何合适的方法,例如通过旋涂,盐板转移/薄膜转移方法,制备复合材料。因此,例如,通过包括在微孔液体填充的载体上涂布聚(苯乙烯)-嵌段-聚(异戊二烯)-嵌段-聚(苯乙烯)-嵌段-聚(d,l-丙交酯)四嵌段的三元共聚物溶液的方法,生产复合材料。
可使用任何合适的溶剂,例如非极性有机溶剂来制备四嵌段的三元共聚物溶液。非极性有机溶剂的实例包括甲苯和氯苯。四氢呋喃和氯仿是其他合适的溶剂。可通过任何合适的涂布技术,例如浸涂,喷涂,弯液面涂布(meniscus coat),或旋涂,从而涂布四嵌段的三元共聚物溶液。
优选地,在涂布溶液之前,用与四嵌段的三元共聚物溶液的溶剂互不混溶的极性溶剂填充载体的孔隙。极性互不混溶的溶剂的实例包括水和醇类。
或者,通过在盐板上涂布,例如旋涂聚(苯乙烯)-嵌段-聚(异戊二烯)-嵌段-聚(苯乙烯)-嵌段-聚(d,l-丙交酯)四嵌段的三元共聚物,溶解盐板,和将所得四嵌段的三元共聚物薄膜转移到微孔载体上,生产复合材料。
紧跟在上述工艺步骤之后,从四嵌段的三元共聚物中除去至少一部分聚(d,l-丙交酯)(或PLA)。可通过任何合适的方法,例如通过酸或碱水解,或者通过反应性离子蚀刻(RIE),除去PLA嵌段。例如,可在65℃下,通过使用60:40(v:v)水:甲醇的碱性溶液(0.5M NaOH),蚀刻PLA。Bailey,T.S.等人,Macromolecules 2006,39,8772-8781。
可通过顺序阴离子聚合苯乙烯,异戊二烯,然后苯乙烯,制备PS-PI-PS嵌段共聚物,所述聚合工艺可在惰性氛围内,在烃溶剂中,通过任何合适的引发剂,例如仲丁基锂来引发。在聚合最后,通过与环氧乙烷反应,使链端封端,提供羟基链端。
可通过任何合适的方法,制备PS-PI-PS-PLA嵌段共聚物。例如,首先生产羟基封端的PS-PI-PS嵌段共聚物,然后与用二氮杂双环[5,4,0]十一碳-7-烯(DBU)催化的L-丙交酯聚合。
PLA链段可以以任何合适的分数,例如以至少10%的体积分数存在于PS-PI-PS-PLA嵌段共聚物内。在一些实施方案中,PLA链段以约14%-约30%,约15%-25%,或约18%-约24%的体积分数存在。在某些实施方案中,PLA链段以约15%,约16%,约17%,约18%,约20%,约21%,约22%,约23%,约24%,或约25%的体积分数存在。
在一些实施方案中,PI链段可以以任何合适的分数,例如以至少约30%的体积分数存在于PS-PI-PS-PLA嵌段共聚物内。在一些实施方案中,PI链段以约32%-约50%,约35%-49%,或约36%-约48%的体积分数存在。
在一些实施方案中,PS链段可以以任何合适的分数,例如以小于约60%的体积分数存在于PS-PI-PS-PLA嵌段共聚物内。在某些实施方案中,PS链段以约35%-约60%,约36%-约55%,或约38%-约52%的体积分数存在。
PS-PI-PS-PLA嵌段聚合物可具有任何合适的分子量。例如,PS-PI-PS-PLA嵌段聚合物的数均分子量(Mn)可以是至少10kg/mol。在一些实施方案中,PS-PI-PS-PLA嵌段聚合物的Mn为约15kg/mol-约35kg/mol,约20kg/mol-约32kg/mol,或约25kg/mol-约30kg/mol。
PS-PI-PS-PLA嵌段聚合物优选具有窄的分散性指数,例如Mw/Mn小于约1.25,优选小于约1.20,和更优选小于约1.15。在一些实施方案中,PS-PI-PS-PLA嵌段聚合物的Mw/Mn为1.00-1.10,例如为1.01,1.02,1.03,1.04,1.05,1.06,1.07,1.08,或1.09。
可在各种应用中使用根据本发明实施方案的膜,其中包括例如诊断应用(包括例如样品制备和/或诊断测流装置),喷墨应用,用于药物工业的过滤流体,用于医疗应用的过滤流体(包括家庭和/或患者使用,例如静脉注射应用,还包括例如过滤生物流体,例如血液(例如除去白细胞)),用于电解工业的过滤流体(例如,在微电子工业中过滤光致抗蚀剂流体),用于食品和饮料工业的过滤流体,净化,过滤含有抗体和/或蛋白质的流体,过滤含核酸的流体,细胞检测(包括原位),细胞收获(cell harvest)和/或过滤细胞培养流体。或者或另外,可使用根据本发明实施方案的膜,过滤空气和/或气体和/或可用于放空应用(例如,允许空气和/或气体,但不是液体穿过其中)。根据本发明实施方案的膜可在各种装置中使用,其中包括外科手术装置和产品,例如眼外科产品。
本发明进一步提供一种装置,例如过滤装置,色谱装置和/或膜组件,它包括置于外壳内的一个或多个本发明的膜。该装置可以是任何合适的形式。例如,该装置可包括过滤器元件,所述过滤器元件包括基本上平坦、皱褶或螺旋形式的膜。在一个实施方案中,该元件可具有中空通常圆柱体的形式。视需要,该装置可包括过滤器元件结合上游和/或下游的载体或排放层。该装置可包括多个膜,例如提供多层过滤器元件,或者层叠,以提供膜组件,例如在膜色谱法中使用的膜组件。
过滤器,在一些实施方案中,包括多个过滤器元件的过滤器,典型地被置于外壳内,所述外壳包括至少一个入口和至少一个出口,且确定在入口和出口之间的至少一个流体流动路径,其中该过滤器越过该流体流动路径,提供过滤器装置。在另一实施方案中,过滤器装置包括一个外壳,所述外壳包括至少一个入口和至少一个第一出口和第二出口,且确定在入口和第一出口之间的第一流体流动路径,和在入口和第二出口之间的第二流体流动路径,其中该过滤器越过第一流体流动路径,例如允许切向流动,使得第一流体沿着第一流体流动路径从入口经过滤器和经第一出口流动,和第二流体沿着第二流体流动路径从入口和经第二出口流动且没有流经过滤器。
下述实施例进一步阐述本发明,但当然绝对不应当解释为限制其范围。
实施例1
这一实施例阐述了在生产和表征在根据本发明的实施方案制备膜中所使用的嵌段共聚物中牵涉的实验细节。
材料:苯乙烯(99%,10-15ppm 4-叔丁基儿茶酚抑制剂,Aldrich)通过在10-20mTorr的静态真空下,从氢化钙(90-95%,Aldrich)中一次蒸馏和从丁基氯化镁(约3mL/50g苯乙烯,2.0M在二乙醚内的溶液,Aldrich)中相继蒸馏而纯化。(99%,100ppmp-叔丁基儿茶酚抑制剂,Aldrich)通过从正丁基锂(约3mL/50g异戊二烯,2.5M在己烷内的溶液,Aldrich)中两次相继的真空蒸馏而纯化。环氧乙烷(99.5+%,压缩气体,Aldrich)从丁基氯化镁(1mL/10mL环氧乙烷)中蒸馏一次。环己烷通过在高纯氩气下在家用建造(home-built)的柱子内流经活化氧化铝和承载的铜氧化还原催化剂而纯化。仲丁基锂(1.3M在环己烷内的溶液,Aldrich)以收到时的原样使用。在使用之前用氮气使反应封端所使用的50/50(v:v)甲醇/异丙醇溶液脱气。d,l-丙交酯在使用之前,从乙酸乙酯中重结晶并在氮气下储存在手套箱内。所有其他化学品以收到时的原样使用,且没有纯化。
表征:在室温下,在500MHz下操作的Varian Inova 500仪器上进行1H-NMR光谱实验。在CDCl3内,在约15mg/mL的浓度下制备聚合物溶液。在25℃使用5s的松弛延迟32次瞬态(transient)之后,获得所有光谱图,且以相对于7.27ppm处CHCl31H信号,以8(ppm)形式报道化学位移。
使用尺寸排阻色谱法(SEC),表征PS等分试样,PS-PI-PS-OH三嵌段,PS-PI-PS-PLA四嵌段和PLA蚀刻的PS-PI-PS-PLA整料(monolith)的分散性(D)和分子量演变。在CHCl3内,在1-5mg/mL的浓度下制备样品。在35℃下,使用三个串联的Plgel 5μm Mixed-C柱子,在400-400,000g mol-1的可获得的分子量范围内进行SEC。该柱子被容纳在配有Hewlett-Packard 1047A折射指数检测仪的Hewlett-Packard(Agilent Technologies)1100系列液体色谱仪内。相对于从Polymer Laboratories处获得的聚苯乙烯标准物,报道分子量和D值。
在用铟标准物校正的获自TA Instruments的Q 1000仪器上,进行差示扫描量热(DSC)分析。加热该样品到150℃,随后冷却到-100℃,接着再次加热到150℃。在10℃min-1下加热和冷却样品。本文中呈现的数据和玻璃化转变温度的测量值从第二次加热的坡面(ramp)中获取。在TA Instruments Universal Analysis软件上进行数据分析(Tg)。
在Argonne National Laboratories,在通过Dow-Northwestern-DuPont Collaborative Access Team(DNDCAT)维护的Advanced Photon Source(APS)的Sector 5-ID-D束线下,进行小角X-射线散射(SAXS)实验。该光源产生波长为0.84埃的X-射线。对于此处报道的实验来说,样品与检测仪的距离固定为4.042m,和检测仪的半径为81mm。使用在2048×2048分辨率下操作的Mar 165mm直径的CCD检测仪,监控散射强度。方位积分二维散射图案,提供以空间频率(q)vs散射强度形式列出的一维曲线。
使用2D-散射图案,针对每一PS-PI-PSPLA四嵌段,研究相对于方位角β,主散射矢量,q*,强度变化的分析,以测定圆柱校准程度。对于每一2D-SAXS图案,计算归一化的取向分布函数(P,eq.1),接着计算F2(方程式2和3):
F2=1-3(cos2β)   (eq2)
透射电镜法(TEM):使用添加有Model FC-S的Reichert UltraCutS Ultramicrotome,在-100℃下切割聚合物薄膜的超薄部分(约70nm)。将薄的部分置于300目铜格栅上,和随后通过暴露于4%水溶液下,用四氧化锇蒸汽染色约10分钟。在配有Gatan Multiscan CCD照相机的在100kV下操作的JEOL JEM-1210透射电镜上进行TEM分析。
使用从在1000psi下在150℃下挤压10分钟的样品中切割的聚合物的小矩形样品,进行拉伸试验。该样品具有0.5mm(T)x 3(W)x 7mm(L)的合适尺寸。在Rheometrics Scientific MiniMat仪器上进行拉伸测量。在2.0mm min-1下,单轴纵向延伸样品。
扫描电镜法(SEM):在用SEM成像之前,借助直接的Pt溅射器涂布,用3nm Pt涂布蚀刻并干燥的四嵌段。在Hitachi S-900FE-SEM上,在2kV下进行SEM。在SEM表征之前,采用VCR Ion Beam溅射器用约2-3nm铂涂布样品,以限制表面充电(charging)。
原子力显微镜法(AFM):使用Agilent 5500环境SPM加上翻转的光学显微镜术(inverted light microscopy),采用Olympus轻敲模式,在环境条件下,使用商业硅TM尖部(tips)(Veeco Instruments),进行AFM表面形貌分析。
椭圆光度法:使用J.A.Woolam,EC-2000椭圆光度计,在60和75°的入射角和400至1lOO nm的激光波长下进行椭圆光度法。
过滤试验:在小的断头(dead-end)超滤池内进行水的流速实验(8010过滤池,膜直径25mm,体积10mL,搅拌速度600rpm)。使用0.5mg mL-1TRITC-Dextran溶液,在HPLC等级的水中,在600rpm的搅拌速度和0.2bar的压力下进行溶质排斥(rejection)试验。采用UV-Vis光谱法,测定所收集溶液的浓度。在Spectronic Genesys 5分光计上,在300-1000nm的波长范围内测定所有溶液的UV-Vis吸收光谱。在1cm聚苯乙烯比色皿内获得溶液的光谱。HPLC等级的水用作所有测量的基线。采用变化浓度的TRITC-Dex溶液(0,0.05,0.1,0.125,0.25,0.375和0.5mg/mL),校正UV吸光度(在λmax=521nm下)vs TRITC-Dex浓度。进行三次校正。
代表性合成PS-PI-PS-OH:使用Bailey等人描述的方法(Bailey,T.S.等人,Macromolecules 2001,34,6994-7008),进行PS-PI-PS-OH三嵌段前体的合成。通过在环己烷内的仲丁基锂(2.636mL,1.3M),在约5psi的氩气正压下引发苯乙烯(19.91g,5H),异戊二烯(35.87g,4H),然后苯乙烯(21.79g,5H)的顺序阴离子聚合。在聚合之后,添加150倍过量的环氧乙烷(18.43mL),用1单元环氧乙烷封端增长的PS-PI-PS链端。所有玻璃器皿在105℃的烘箱内干燥过夜,并在使用之前,在真空下闪干。产率=75.7g(97.6%),SEC(PS标准物):PS链端Mn=5,700kg/mol,Mw/Mn=1.04,PS-PI-PS-OH Mn(通过PS链段的1H NMR光谱法和SEC)=21.3kg/mol,Mw/Mn=1.05。1H NMR(在TMS的低磁场,ppm):6.20-7.26(b,-(C6H5)),4.90-5.30在(b,-CH2-CH=C(CH3)-CH2-),4.60-4.90(b,CH2=C(CH3)-),3.5-3.7(m,-CH2-OH),0.84-2.40(b,CH2=C(CH3)-C(R)HCH2-,-CH2-CH=C(CH3)-CH2-,和C6H5-C(R)H-CH2-),0.5-0.78(m,-CH3,引发剂链段)。
代表性合成PS-PI-PS-PLA:通过聚合用二氮杂双环[5,4,0]十一碳-7-烯(DBU)催化的d,l-丙交酯,进行用PS-PI-PS-OH母体三嵌段引发的d,l-丙交酯的聚合。以下给出了PS-PI-PS-PLA(0.20)的工序作为PS-PI-PS-PLA四嵌段的代表性合成。在氮气手套箱中,在玻璃的闪烁小瓶内,将PS-PI-PS-OH(1.00g)和d,l-丙交酯(0.475g)溶解在干燥的二氯甲烷(10mL)中。然后添加DBU(7μL),引发聚合。然后用特氟龙为衬里的螺帽密封该小瓶,从手套箱中取出,并置于搅拌板上。在室温下进行聚合60分钟,以便达到约80%的d,l-丙交酯转化率。在60分钟之后,添加小量苯甲酸(约5-10mg),终止反应。用甲醇沉淀该聚合物,过滤,并真空干燥(50℃下48小时)。产率=1.13g(77%d,l-丙交酯转化率)。Mn(通过1H NMR光谱法)=27.5kg/mo1,PDI(PS标准物):Mw/Mn=1.07。1H NMR(在TMS的低磁场,ppm):6.20-7.26(b,-CH(C6H5)),4.90-5.30(b,-CH2-CH=C(CH3)-CH2-),4.98-5.28(b,-C(0)CH(CH3)0-),4.60-4.90(b,-CH2=C(CH3)-),4.30-4.42(m,-C(0)CH(CH3)OH),3.95-4.15(b,-CH2CH2-0-),2.60-2.75(bd,-C(0)CH(CH3)OH),0.84-2.40(b,CH2=C(CH3)-C(R)H-CH2-,-CH2-CH=C(CH3)-CH2-,-C(0)CH(CH3)0-,和C6H5-C(R)H-CH2-),0.5-0.78(m,-CH3,引发剂链段)。
降解条件:在进行蚀刻条件之前,将形模校准的样品冷冻切割成3x 3x 1.5mm立方体。在蚀刻之前,将每一样品置于液氮的真空瓶内1分钟,然后立即分成两半。在所有降解实验中,在没有搅拌下,允许PS-PI-PS-PLA立方体在稀碱条件下反应1个月。测试具有不同极性的溶剂的一系列碱溶液,发现改进的降解条件。所测试的五种溶液全部含有0.5M NaOH,0.1wt%SDS,和下述五种溶剂或溶剂混合物之一:1)水,2)40:60(v:v)甲醇:水,3)70:30(v:v)甲醇:水,4)甲醇,和5)乙醇。还将立方体置于五种相应的对照溶液之一内(与蚀刻溶液相同,但不具有NaOH)1个月。用对照溶液,去离子水漂洗所有样品(约20秒),然后直接溶解在氯仿中以供SEC分析。SEM验证在室温下碱性蚀刻之后,形成了纳米孔。与更亲水的蚀刻溶液相比,乙醇和甲醇蚀刻溶液在除去PLA方面,证明是优异的。
实施例2
这一实施例证明了四嵌段的三元共聚物的合成方法,它可用于制备本发明的纳米多孔膜。
根据前面报道的工序,通过由具有对称组成(fps=fPI)的一种母体PS-PI-PS-OH三嵌段聚合物和通过顺序阴离子聚合合成的大致相等长度的PS区段,聚合d,l-丙交酯,从而合成三种PS-PI-PS-PLA四嵌段的三元共聚物(Bailey,T.S等人,Macromolecules 2001,34,6994-7008)。参见关于合成流程图的图2。通过1H NMR光谱法(图7-8)和尺寸排阻色谱法(SEC)(图9)的组合,测定在下表1中列出的PS-PI-PS-OH的组成。然后使用母体三嵌段,引发被1,8-二氮杂双环[5.4.0]十一碳-7-烯(DBU)催化的d,l-丙交酯的开环酯交换聚合(ROTEP)。Lohmei jer,B.G.G等人,Macromolecules 2006,39,8574-8583)。如前所述,使用1H NMR光谱法(图10),计算PLA的摩尔质量。Bailey,T.S等人,Macromolecules 2006,39,8772-8781。PS-PI-PS-PLA样品的SEC分析(图11)表明随着PLA含量增加,摩尔质量增加,和窄的单峰摩尔质量分布(在所有情况下,分散性,D<1.1,参见表1)。
表1.PS-PI-PS-OH前体和PS-PI-PS-PLA聚合物的分子特征
(a)在来自PS-PI-PS-OH合成的PS等分试样上,由最终的PS-PI-PS-OH三嵌段的1H NMR光谱和尺寸排阻色谱的组合估计。(b)尺寸排阻色谱法(RI检测仪,PS标准物,CHCl3,35℃)。(c)小角X-射线散射。(d)差示扫描量热法。(e)通过拉伸试验测定的断裂伸长率(εb)。(f)通过拉伸试验测量的拉伸强度(TS)。
熔融态相行为:使用DSC表征PS,PI和PLA嵌段的玻璃化转变温度(表1)。在四嵌段的DSC曲线内存在50至70℃的两个偏移(图12-13)表明PS和PLA嵌段是分离的微相;Tg,PS(-63℃)比Tg,PLA(~53℃)高约10℃。
由小角X-射线散射(SAXS)数据和透射电镜法(TEM)成像的组合,测定通过由表1中列出的PS-PI-PS和PS-PI-PS-PLA样品形成的形貌。将PS-PI-PS和PS-PI-PS-PLA的粉末样品(约400-500mg)挤压成矩形板,然后使用形模,在150℃下加工,校准底下的形貌成宏观取向的聚合物“火柴棍(matchstick)”(棍的尺寸为W x H x L:2mm x2mm x 100mm)。在从每一样品末端中切割的小的矩形片(W x H x L:2mm x 2mm x 5mm)上进行2D-SAXS。所有三个四嵌段聚合物在XY,XZ和YZ平面内显示出类似的一维(1D)和二维(2D)散射图案,这与校准的六方堆积圆柱体形貌一致(图3和14)。来自形模校准的PS-PI-PS-PLA(0.21)的XY平面的代表性1D-SAXS曲线揭示了在q*=0.23nm-1处的主散射峰(D=27nm),和与六方对称一致的较高有序的反射(图3,a)。
图3,a描绘了在150℃下形模校准之后在25℃下获取的PS-PI-PS-PLA聚合物的1D-SAXS(fPLA=0.21)。三角形表明与六方堆积的圆柱体形貌有关的1,√3:√4:√7:√9:√13:√16:√19:和√25的理论q/q*。图3,b描绘了形模装置的卡通画,其示出了沿着z-轴的流动方向。图3,c描绘了XY平面的2D形貌表征(底部:2DSAXS图案;顶部,冷冻切片的形模棒的XY面的TEM)。图3,d描绘了YZ平面的2D形貌表征(底部:2D SAXS图案;顶部,冷冻切片的形模棒的YZ面的TEM)。比例尺为100nm。
来自PS-PI-PS-PLA(0.21)的三个平面(XY,XZ和YZ平面)各自的2D-散射(图3)与由校准圆柱体形貌预期的散射一致。对于宏观校准的圆柱体形貌来说,与流动方向垂直(即与XZ或YZ平面垂直)的入射的辐射线产生具有两个独特峰的2D-SAXS图案,其强度在散射矢量处方位分离180°(图15)。使用2D散射图案,研究相对于方位角β,主散射矢量的强度,q*的变化分析,以确定圆柱体的校准程度。校准程度随二次取向因子F2的值从0增加到1(即各向同性到完美地校准)。对于形模校准的PS-PI-PS-PLA四嵌段来说计算F2值为0.65至0.77,从而表明四嵌段主要在流动方向上校准。
在-100℃下,将形模校准的样品冷冻切片成约60-70nm厚的薄片,然后在TEM成像之前,用四氧化锇蒸汽染色(10分钟),获得各相之间的对比度。在图3,c-d中示出了代表性形模校准的PS-PI-PS-PLA四嵌段的TEM图像(fPLA=0.21)。该结构与“翻转”的圆柱体形貌一致,其中大多数区域PS和PLA(用白色显示)形成圆柱体,和次要区域,PI(染成黑色)形成基体。PS-PI-PS-PLA四嵌段的翻转的核-壳圆柱体结构可归因于A-B-A-C嵌段结构和对链段-链段相互作用参数的排序的相应影响(χBC>>χAC≈χAB;其中A是PS,B是PI,和C是PLA)。
图3,c结合XY平面的TEM图像与来自同一平面的2-D散射图案。在冷冻切片步骤期间不完美的样品校准导致六方结构轻微变形,当通过TEM观察时。图3,d结合针对YZ平面的TEM图像和2D SAXS图案二者,且均与校准的结构一致。1-D散射数据(图3,a),(图.3,c和d)的TEM和2-D散射曲线一起意味着校准的六方堆积圆柱体形貌。这一六方堆积的圆柱体形貌对于具有fPS=fPI和fPLA为0.20至0.25的四嵌段来说是显而易见的(图16-17)。
薄膜相行为:由甲苯的稀溶液(对于PS,PI和PLA来说的相对中性的溶剂),在FormvarTM涂布的TEM格栅上落模流延PS-PI-PS-PLA聚合物,并用四氧化锇染色。原样流延的样品还显示出在暗的PI基体内白色PS和PLA区域的圆柱体结构(图18-19)。在这些原样流延的薄膜中,存在平行的圆柱体取向区域,垂直取向的区域,以及混合区域(图19)。认为这些结构是由于不同的蒸发速率和横跨TEM格栅的薄膜厚度变化导致的。在其中聚合物采用平行取向的薄膜的一些较薄的部分中(图18),PS(白色)和PLA(灰色)区域之间的对比度显示出核(PLA)-壳(PS)结构。为了进一步证明核-壳圆柱体形貌,如下所述,在PLA蚀刻过的样品上使用扫描电镜法(SEM)。
拉伸性能:PS-PI-PS-PLA(0.20)和PS-PI-PS-PLA(0.25)的代表性工程应力vs%应变曲线(图20-23)证明这些材料的行为一致地像平均断裂伸长率(εb)接近450%应变的坚硬材料(表1)。因此,认为由这些聚合物衍生的纳米多孔材料比纳米多孔PS或PS-PI-PS整料更加坚固。
从本体PS-PI-PS-PLA中碱性水解PLA:在65℃下,通过用60:40(v:v)水甲醇的碱性溶液(0.5M NaOH)蚀刻,除去PLA。为了防止在蚀刻PS-PI-PS-PLA样品期间,PS孔壁坍塌,蚀刻溶液的温度保持在室温下,因为PS壳具有相对低的Tg(~63℃)。添加小量十二烷基硫酸钠(SDS),以增加蚀刻溶液与疏水PS孔壁之间的相容性,从而确保完全渗滤。除去PLA的最初的尝试牵涉将从形模校准的样品中切割的小的立方体浸渍在稀碱溶液(0.5M NaOH,60:40(v:v)水:甲醇,0.1wt%SDS)内1周。
在室温下蚀刻的PS-PI-PS-PLA立方体具有通过SEM可视的孔(图24),但进行非常有限的PLA的去除;SEC和1H NMR结果表明并非所有PLA从室温蚀刻样品中除去。预期甚至在添加0.1wt%SDS情况下,亲水蚀刻溶液不可能很深地达到孔内部,这可能是由于PS-PI-PS基体的疏水性质与不完美的圆柱体校准(校准约70%)的组合导致的。尽管无法从本体样品中除去所有PLA,但认为可通过蚀刻,在较大效率下在薄膜内生成纳米孔。
复合膜:图1阐述了以上制备的复合膜的结构。对于支持材料来说,聚醚砜(PES)膜(图4,A)具有117nm±103nm的平均孔径(来自133μm2的二值化SEM图像的分析(图25)和所报道的1,000kDa的摩尔质量临界值(cut-off))。通过两种方法生产复合膜:1)直接旋涂PS-PI-PS-PLA聚合物到水填充的PES载体上(图26),Li,X.F.等人,J.Mater.Chem.2010,20,4333-4339;Querelle,S.,等人,ACSApplied Materials&Interfaces,2013,5,5044-50和2)在盐板上旋涂,溶解盐板,然后将该薄膜转移到PES支持材料上(图27)。Yang,S.Y.等人,Adv.Func.Mater.2008,18,1371-1377;Kubo,T.;等人,Appl.Phys.Lett.2009,93,133112(1-3)。
为了通过直接涂布方法,成功地生成完全涂布的PES载体,测定到聚合物溶剂和PES填充液体的恰当组合是必须的。导致完全覆盖载体且在涂布工艺期间还避免聚合物沉淀的结合物将使用非极性有机溶剂与在载体内的极性不混溶液体。重要的是,需要在涂布工艺期间不干扰嵌段聚合物形貌且在涂布之后可容易地洗掉的填充液体。水作为PES载体用极性填充液体很好地起作用,和甲苯(图4,B和图28,a)或氯苯(图28,b)作为PS-PI-PS-PLA溶剂得到最完全的覆盖率。采用与水混溶的PS-PI-PS-PLA溶剂,例如THF(图28,c)发现最差的覆盖率。
发现可通过由氯苯溶液涂布嵌段聚合物,实现均匀的无缺陷的薄膜。对于PS-PI-PS-PLA来说,通过AFM,薄膜的表面显示出平行的圆柱体。然而,在采用甲苯,一种用于PS,PI和PLA的相对中性的溶剂的情况下,可实现平行和垂直取向的混合物(图5,a)以及PES载体的良好的薄膜覆盖率(图4,b)。在图4,b中的暗的圆形特征是被四嵌段薄膜覆盖的载体孔。这些区域比周围表面更暗,这是因为当四嵌段薄膜下垂到载体孔内且没有破裂时,轻微的高度差所致。
作为流延工序的额外步骤,添加小量(全部聚合物的5wt%)PLA均聚物到PS-PI-PS-PLA溶液中,在旋涂中,在溶剂蒸发期间诱导垂直取向。选择摩尔质量为10kg mol-1的PLA均聚物,因为它比四嵌段聚合物内的PLA嵌段(7kg mol-1)略大。通过AFM分析发现,通过AFM分析,与PS-PI-PS-PLA薄膜相比,由95/5wt/wtPS-PI-PS-PLA(0.21)/PLA共混物(2wt%在甲苯内的全部聚合物;总的fPLA-共混物=0.24)旋涂的薄膜在表面处含有大多数垂直取向的圆柱体(图5b)。因此,可使用均聚物添加到嵌段聚合物薄膜中,以微调本发明的纳米多孔嵌段聚合物薄膜的孔度。当除去溶剂时,受约束然而伸长的均聚物链形成为具有比单独的共聚物高的规整度的垂直共聚物/均聚物圆柱体区域。
使用PS-PI-PS-PLA,PLA和甲苯的溶液以供薄膜流延工艺,制备有序的薄膜作为复合膜。通过旋涂2.3wt%95/5wt/wtPS-PI-PS-PLA/PLA共混物在甲苯内的溶液到水填充的聚醚砜(PES)膜上,制备直接涂布的复合膜(图4,a)。水填充的载体然后被连接到旋涂机上(图26)并用充足的聚合物溶液涂布,以完全覆盖基底且没有使PES表面溢流。一旦被聚合物溶液完全覆盖,则在2000rpm下旋转PES载体,并静置干燥至少1小时,之后除去。在图4(b和c)中示出了在涂布之后,所得薄膜的表面。
对于通过盐板方法制备的复合膜(如图27中详细地阐述的)来说,在氯化钠(NaCl)板上分配相同的甲苯溶液并在2000rpm下旋转。在干燥之后,通过在水中溶解数分钟,将盐板与聚合物薄膜相分离。通过用支持膜从下方铲起(scoop up)薄膜,将所得薄膜抬举离开水(图27)。
通过碱水解在没有反应性离子蚀刻(RIE)情况下除去PLA的早期尝试导致通过SEM,在表面上形成仅仅数个纳米孔。预期这是由于表面润湿层导致的,干燥的复合膜暴露于15秒反应性离子蚀刻(RIE)下,以除去在PLA区域内嵌段的PS或PI的任何表面润湿层。在进行RIE之后,将复合膜暴露于氢氧化钠在水中的稀溶液(0.05M NaOH)下45分钟,水解并除去PLA区域。用纯水漂洗复合膜20分钟,除去任何残留的乳酸或盐。在RIE和PLA水解之后,代表性复合膜的表面的SEM显微图证明通过这一蚀刻工艺生成的纳米孔(图4,d,直接涂布的膜;图29,对于盐板方法来说)。在图4,d中放大了前面提及的载体的高度差。横跨薄膜表面的山和峡谷使得大面积孔难以成像。根据在除去PLA之后,复合膜的表面的SEM显微图,估计平均孔度为15nm。孔度的估计值基于覆盖较大载体孔的可视的纳米孔。这一数值与根据在硅片上涂布的其他蚀刻的PS-PI-PS-PLA/PLA薄膜得到的测量值一致。
尽管难以获得清楚的SEM图像,这是因为载体膜持续地充电(charging),但孔没有跨越薄膜厚度的这一证据来自于SEM研究的结果(显示出孔表面),蚀刻过的膜的渗透率结果(参见下面),和显示在硅片上制备的相关薄膜的底表面处存在孔的相关工作的组合。
实施例3
这一实施例阐述了根据本发明实施方案的纳米多孔膜的一些性能。
膜的评价:在图6中示出了来自纯水的流动实验的结果。对于通过盐板方法制备的膜来说,测量到渗透率为96.9L m-2h-1bar-1(图6a),和对于直接涂布的膜来说,为53.7L m-2h-1bar-1(图30)。尽管对于任何一个膜来说渗透率小于针对在PES载体上纳米多孔PS-PI-PS的理想复合膜所预期的,但它们均与商业的超滤膜相当。
使用通过圆柱体孔隙的Hagen-Poiseuille流体流动,计算针对理想膜的理论渗透率(Dullien,F.A.L.In Porous media:fluidtransport and pore structure;Academic Press:San Diego,1992;第574页):
&nu; = &epsiv; &tau; ( d 2 &Delta; P 32 &mu; l ) - - - ( 1 )
其中流体速率,v,取决于孔径d,薄膜厚度,l,孔隙分数,ε,曲率,τ,和液体速率,μ。使用ε=0.24;l=100nm;τ=1(假设完美的垂直圆柱体校准);μ=l x l0-8bar s(水);和ΔP=1bar,在没有PES载体的情况下,水通过PS-PI-PS选择层的理想渗透率应当为5075L m-2h-1bar-1。由于说明了底下载体的孔隙率(0.06,由二值图像的Image J分析得到的载体表面SEM图像估计,图25),估计具有理想选择层的复合材料的渗透率将为365L m-2h-1bar-1,假设没有抗来自底下载体的流动。假设所观察到的降低的渗透率的差值主要涉及孔密度,则在载体孔上方的表面上赋予“完全”多孔的PLA区域的分数可以相当于所观察到的与所预期的渗透率之比。通过这一分析,对于盐板方法膜来说,约27%的孔是开放的,和对于直接涂布的膜来说,约15%的孔是开放的。根据蚀刻之后复合膜的SEM图像分析,估计在上表面处被纳米孔覆盖的薄膜表面积%对于盐板方法和直接涂布的薄膜二者来说为约5%(相当于约21%的PLA区域开放,这落在27至15%的渗透率估计值内)。
考虑PES载体具有3435L m-2h-1bar-1的测量渗透率,预期该复合膜的渗透率为该数值的一个分数。假设在上述载体孔内所有PLA区域在蚀刻期间被除去,则在膜表面上的所得孔密度应当是选择层的PLA的分数(fPLA=0.24)乘以载体的体积分数(0.06),或0.0144(1.4%的薄膜表面积)。若它被简单地乘以0.24,在顶层内孔的理想体积分数,乘以测量的PES渗透率,则结果类似,为824L m-2h-1bar-1。这假设嵌段聚合物层如此薄,以至于通过其孔的长度的通量(flux)应当对总的渗透率没有贡献。参见Phillip,W.A.,Block Polymer Membranes forSelective Separations.Ph.D.Dissertation,University ofMinnesota,2009.第167页。被考虑的唯一贡献是与底下的载体相连的在薄膜内孔的真实表面积。基于SEM图像分析,对于盐板薄膜来说,纳米孔覆盖约5%的薄膜表面积,和对于直接涂布的膜来说,覆盖约2.5%的薄膜表面积(对于盐板和直接涂布来说,分别相当于约21%和10.5%的潜在孔是开放的)。对于盐板涂布来说,表面积的这种下降应当降低渗透率到172L m-2h-1bar-1,和对于直接涂布的膜来说,应当降低渗透率到86L m-2h-1bar-1,若假设表面孔隙率与薄膜层内的孔隙率匹配并假设薄膜的厚度对复合膜的总渗透率的抗性贡献最小。这些估计值相对接近于测量值。在过滤试验之后的SEM成像证明在多孔薄膜内不存在裂纹或缺陷。此外,葡聚糖超滤试验还证明不存在膜缺陷。二者的这些结果与仅仅根据纳米孔得到的渗透率一致。
主要用于在生物物质和血管内研究渗透率和传输的生物研究中使用四甲基罗丹明-异硫氰酸根合-葡聚糖(TRITC-Dex)TdB ConsultancyWebsite,
www.tdbcons.se/tdbcons2/attachment/tritc_dextran.pdf(2012年11月20日访问)。它们还被用于精确的UF膜选择性表征。Mulherkar,P.van Reis,R.J.Membr.Sci.2004,236,171-182;Bakhshayeshi,M.等人,J.Membr.Sci.2011,379,239-248。选择TRITC-Dex作为在本发明膜上的排斥分析用溶质,因为对于范围为0-0.5mg/mL的浓度来说,它的浓度可以一致地且可再现地通过UV-Vis光谱分析来测定(其中TRITC-Dex取代为0.001-0.0008mol TRITC/mol葡聚糖)。尽管没有具体地测试膜的结垢,但预期对于中性的TRITC-Dex和中性的膜来说,预期结垢有限。参见上文的Mulherkar,P.van Reis,R。
制备TRITC-Dex,Mw=155kg/mol在水中的稀溶液(0.5mg/mL),并将其加入到过滤池中。基于所报道的尺寸,155kg/mol TRITC-Dex应当具有直径为约17nm的水力半径(Rh),当在水中溶解时。TdBConsultancy Website,www.tdbcons.se/tdbcons2/attachment/ tritc_dextran.pdf(2012年11月20访问);Pharmacos Webpage onDextran Properties。http://www.dextran.net/dextran-physical- properties.html(2012年11月20日访问)。
在0.2bar压力和600rpm的搅拌速度下,将葡聚糖溶液冲刷通过膜。收集滤液,并通过UV-vis分析,以测定葡聚糖的浓度。发现在标准溶液内,在λmax=521nm下,TRITC-Dex的UV-Vis吸光度与前面针对在水中的TRITC-Dex报道的数值一致。Ow,H.等人,U.Nano Lett.2004,5,113-117;Pedone,A.等人,Phys.Chem.Chem.Phys.2009,12,1000-1006。为了比较和校正,对于标准溶液,纯水和在水中中间浓度的TRITC-Dex来说,同样测量UV-vis吸光度(图31)。图6,b示出了针对滤液和标准溶液的吸光度数据。在该实验中纯水的通量作为基线来测量。在λmax=521nm下,根据0.5mg mL-1的标准溶液峰强度(紫色曲线)和滤液(蓝色曲线)的强度之间的差值,计算排斥%。通过UV-Vis光谱法,独立分析样品三次,在数据组之间观察到吸光度小于1%的差别。使用这一方法,发现对于155kg mol-1的MWTRITC-葡聚糖来说,平均排斥为96.9%。此外,对于单独穿过载体的葡聚糖溶液(图32)来说,吸收数据没有显示出葡聚糖排斥。这表明对于复合膜来说,96.9%的排斥率唯一地是由于纳米多孔薄膜涂层导致的。
本文中引证的所有参考文献,其中包括出版物,专利申请,和专利在此通过参考引入,其程度与所指的每一参考文献独立地且具体地通过参考与并在本文中全文列出一样。
在描述本发明的上下文中(特别地在下述权利要求的上下文中),使用术语“一个”,“一种”和“该”和“至少一个”以及类似提到物要解释为覆盖单数和复数两种形式,除非另有说明或者明显与本文冲突。使用术语“至少一个”,接着列出一个或多个项目(例如,“至少一个A和B”)要解释为是指选自所列举的项目(A或B)中的一个项目或者两个或更多个所列举的项目(A和B)的任何组合,除非另有说明或者明显与本文冲突。术语“包括”,“具有”,“包含”,和“含有”要解释为开放式术语(即,意味着“包括,但不限于”),除非另有说明。本文中数值范围的引证仅仅意欲充当单独地提到落在该范围内的每一单独数值的简写方法,除非另有说明,和每一单独的数值在本说明书中引入,如同它被单独地在本文中引证一样。本文中描述的所有方法可按照任何合适的顺序进行,除非另有说明或者明显与本文冲突。使用本文提供的任何和所有实施例或例举的语言(例如,“诸如”)意欲仅仅更好地阐述本发明,且不对本发明的范围构成限制,除非另外要求保护。在本说明书中所有语言不应当被解释为表示实践本发明重要的任何不有要求保护的要素。
本文描述了本发明的优选实施方案,其中包括发明人已知的实施本发明的最佳模式。在阅读前述说明的基础上,这些优选实施方案的变化对于本领域普通技术人员来说是显而易见的。发明人预期熟练的技术人员会合适地使用这种变化,和发明人意欲在本文中具体地描述的以外实施本发明。因此,本发明包括在专利法允许的所附权利要求中引证的主题的所有改性和等价物。而且,本发明涵盖以上所述的要素在其所有可能的变化中的任何组合,除非另有说明或者明显与本文冲突。

Claims (20)

1.一种多孔膜,它包括纳米多孔的交联聚(苯乙烯)-嵌段-聚(异戊二烯)-嵌段-聚(苯乙烯)。
2.权利要求1的膜,其中纳米多孔的交联聚(苯乙烯)-嵌段-聚(异戊二烯)-嵌段-聚(苯乙烯)的厚度范围为约20nm-约500nm。
3.权利要求1或2的膜,包括至少约2nm的孔径。
4.一种复合材料,它包括与微孔载体结合的权利要求1-3任何一项的膜。
5.权利要求4的复合材料,其中微孔载体包括微孔膜。
6.权利要求4或5的复合材料,其中微孔载体包括微孔聚合物膜。
7.权利要求4-6任何一项的复合材料,其中微孔载体包括砜膜。
8.权利要求7的复合材料,其中砜膜包括聚醚砜膜。
9.权利要求4-7任何一项的复合材料,它通过旋涂来制备。
10.权利要求4-7任何一项的复合材料,它通过盐板转移/薄膜转移方法来制备。
11.权利要求1-3任何一项的膜,或者权利要求4-10任何一项的复合材料,其中通过包括下述步骤的方法来生产纳米多孔的交联聚(苯乙烯)-嵌段-聚(异戊二烯)-嵌段-聚(苯乙烯):提供聚(苯乙烯)-嵌段-聚(异戊二烯)-嵌段-聚(苯乙烯)-嵌段-聚(d,l-丙交酯)四嵌段的三元共聚物,和从该三元聚合物中除去聚(d,l-丙交酯)。
12.权利要求11的膜,其中通过水解或者通过反应性离子蚀刻,进行聚(d,l-丙交酯)的除去。
13.权利要求11或12的膜,它通过包括下述步骤的方法来生产:在微孔的液体填充的载体上旋涂聚(苯乙烯)-嵌段-聚(异戊二烯)-嵌段-聚(苯乙烯)-嵌段-聚(d,l-丙交酯)四嵌段的三元共聚物。
14.权利要求11或12的膜,它通过包括下述步骤的方法来生产:在盐板上旋涂聚(苯乙烯)-嵌段-聚(异戊二烯)-嵌段-聚(苯乙烯)-嵌段-聚(d,l-丙交酯)四嵌段的三元共聚物,和将该四嵌段的三元共聚物转移到微孔载体上。
15.权利要求1-3任何一项的膜,其中聚(异戊二烯)嵌段形成连续基体,聚(苯乙烯)嵌段形成分散相。
16.权利要求15的膜,其中分散相包括中空圆柱体。
17.权利要求1-3任何一项的多孔膜的制备方法,该方法包括使羟基封端的聚(苯乙烯)-嵌段-聚(异戊二烯)-嵌段-聚(苯乙烯)嵌段聚合物与d,l-丙交酯反应,形成四嵌段共聚物聚(苯乙烯)-嵌段-聚(异戊二烯)-嵌段-聚(苯乙烯)-聚(d,l-丙交酯),将该四嵌段共聚物形成具有连续基体相和分散相的纳米结构的薄膜,其中连续基体相包括聚(异戊二烯)嵌段、分散相包括聚(苯乙烯)嵌段和聚(d,l-丙交酯)嵌段,和选择性除去至少一部分聚(d,l-丙交酯)嵌段。
18.权利要求17的方法,其中将四嵌段共聚物溶解在溶剂中,和将该四嵌段共聚物溶液以纳米结构的薄膜形式流延。
19.权利要求18的方法,其中四嵌段共聚物溶液进一步含有聚(d,l-丙交酯)均聚物。
20.权利要求19的方法,进一步包括从纳米结构的薄膜中除去至少一部分聚(d,l-丙交酯)均聚物。
CN201480010272.8A 2013-01-31 2014-01-27 纳米多孔滤膜 Pending CN105008410A (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201361758982P 2013-01-31 2013-01-31
US61/758,982 2013-01-31
PCT/US2014/013186 WO2014120605A1 (en) 2013-01-31 2014-01-27 Nanoporous filtration membranes

Publications (1)

Publication Number Publication Date
CN105008410A true CN105008410A (zh) 2015-10-28

Family

ID=51262861

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201480010272.8A Pending CN105008410A (zh) 2013-01-31 2014-01-27 纳米多孔滤膜

Country Status (5)

Country Link
US (1) US20150336058A1 (zh)
KR (1) KR20150109423A (zh)
CN (1) CN105008410A (zh)
SG (1) SG11201506033QA (zh)
WO (1) WO2014120605A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107096390A (zh) * 2017-05-17 2017-08-29 四川理工学院 一种改性共聚物多孔膜的制备方法
CN109722722A (zh) * 2018-11-21 2019-05-07 深圳大学 一种均孔纳米纤维及其制备方法和应用
CN111686588A (zh) * 2020-07-02 2020-09-22 厦门理工学院 层状双金属氢氧化物为改性模板的复合纳滤膜及制备方法
CN113717425A (zh) * 2021-08-06 2021-11-30 华南理工大学 一种多孔材料及其制备方法与应用

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3636696A1 (en) 2011-05-04 2020-04-15 Cornell University Multiblock copolymer films, methods of making same and uses thereof
JP7007365B2 (ja) 2016-04-28 2022-01-24 テラポア テクノロジーズ,インコーポレイテッド 静電分離のための帯電したイソポーラス材料
KR102596197B1 (ko) 2016-11-17 2023-11-02 테라포어 테크놀로지스, 인코포레이티드 고 분자량 친수성 첨가제를 포함하는 이소포러스 자기-조립 블록 공중합체 필름 및 이의 제조방법
KR20200140330A (ko) * 2018-04-04 2020-12-15 테라포어 테크놀로지스, 인코포레이티드 캡슐화 입자 분획 장치 및 시스템과 이의 사용 방법
CN112203750B (zh) * 2018-06-01 2023-01-13 3M创新有限公司 包含三嵌段共聚物的多孔膜

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7666179B2 (en) * 2006-10-10 2010-02-23 Boston Scientific Scimed, Inc. Medical devices having porous regions for controlled therapeutic agent exposure or delivery
US8123948B2 (en) * 2005-09-20 2012-02-28 Aquaporin A/S Biomimetic water membrane comprising aquaporins used in the production of salinity power

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8425982B2 (en) * 2008-03-21 2013-04-23 Micron Technology, Inc. Methods of improving long range order in self-assembly of block copolymer films with ionic liquids

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8123948B2 (en) * 2005-09-20 2012-02-28 Aquaporin A/S Biomimetic water membrane comprising aquaporins used in the production of salinity power
US7666179B2 (en) * 2006-10-10 2010-02-23 Boston Scientific Scimed, Inc. Medical devices having porous regions for controlled therapeutic agent exposure or delivery

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
ELIZABETH A ET AL: "Nanoporous Membranes Derived from Block Copolymers: From Drug Delivery to Water Filtration", 《ACS NANO》 *
IñAKI ZALAKAIN ET AL: "Nanostructuration of self-assembled poly(styrene-b-isoprene-b-styrene) block copolymer thin films in a highly oriented pyrolytic graphite substrate", 《THIN SOLID FILMS》 *

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107096390A (zh) * 2017-05-17 2017-08-29 四川理工学院 一种改性共聚物多孔膜的制备方法
CN107096390B (zh) * 2017-05-17 2019-12-06 四川理工学院 一种改性共聚物多孔膜的制备方法
CN109722722A (zh) * 2018-11-21 2019-05-07 深圳大学 一种均孔纳米纤维及其制备方法和应用
CN109722722B (zh) * 2018-11-21 2022-03-25 深圳大学 一种均孔纳米纤维及其制备方法和应用
CN111686588A (zh) * 2020-07-02 2020-09-22 厦门理工学院 层状双金属氢氧化物为改性模板的复合纳滤膜及制备方法
CN111686588B (zh) * 2020-07-02 2022-04-01 厦门理工学院 层状双金属氢氧化物为改性模板的复合纳滤膜及制备方法
CN113717425A (zh) * 2021-08-06 2021-11-30 华南理工大学 一种多孔材料及其制备方法与应用
CN113717425B (zh) * 2021-08-06 2022-07-26 华南理工大学 一种多孔材料及其制备方法与应用

Also Published As

Publication number Publication date
US20150336058A1 (en) 2015-11-26
WO2014120605A1 (en) 2014-08-07
KR20150109423A (ko) 2015-10-01
SG11201506033QA (en) 2015-08-28

Similar Documents

Publication Publication Date Title
CN105008410A (zh) 纳米多孔滤膜
US11466134B2 (en) Multiblock copolymer films, methods of making same, and uses thereof
Gao et al. Organic solvent resistant membranes made from a cross-linked functionalized polymer with intrinsic microporosity (PIM) containing thioamide groups
Moughton et al. Thermally induced micelle to vesicle morphology transition for a charged chain end diblock copolymer
Mu et al. Remarkable improvement of the performance of poly (vinylidene fluoride) microfiltration membranes by the additive of cellulose acetate
Xu et al. Subnanometer porous thin films by the co-assembly of nanotube subunits and block copolymers
Jackson et al. ABAC tetrablock terpolymers for tough nanoporous filtration membranes
US20160229969A1 (en) Multiblock copolymer films with inorganic nanoparticles, methods of making same, and uses thereof
Vigild et al. Influence of shear on the alignment of a lamellae-forming pentablock copolymer
US10934389B2 (en) Methanesulfonic acid mediated solvent free synthesis of conjugated porous polymer networks
Hendrix et al. Synthesis of modified poly (ether ether ketone) polymer for the preparation of ultrafiltration and nanofiltration membranes via phase inversion
Jayalakshmi et al. Epoxy functionalized poly (ether-sulfone) incorporated cellulose acetate ultrafiltration membrane for the removal of chromium ions
Querelle et al. Ultrafiltration membranes with a thin poly (styrene)-b-poly (isoprene) selective layer
CN105263610A (zh) 多嵌段共聚物及其使用方法
Chang et al. The effect of Tween-20 additive on the morphology and performance of PVDF membranes
AU2011224346A1 (en) Nanostructured polymer membranes for selective alcohol transport
Seo et al. Interfacial polymerization of reactive block polymers for the preparation of composite ultrafiltration membranes
Chan et al. Disordered Triblock Polymers for Nanoporous Materials with Tunable Surface Properties for Ultrafiltration Applications
Shao et al. Self-assembly of luminescent triblock bottlebrush copolymers in solution
Huang et al. Mesoporous phenolic/poss hybrids induced by microphase separation arising from competitive hydrogen bonding interactions
Zhang et al. pH and temperature responsive porous membranes via an in situ bulk copolymerization approach
Sapkota et al. Single-molecule tracking study of the permeability and transverse width of individual cylindrical microdomains in solvent-swollen polystyrene-block-poly (ethylene oxide) films
He et al. Novel amphiphilic graft block azobenzene-containing copolymer with polypeptide block: synthesis, self-assembly and photo-responsive behavior
JP2018193423A (ja) 多孔質構造体、超微粒子捕捉用フィルタ、及び多孔質構造体の製造方法
de Leon et al. Design of hybrid gradient porous surfaces with magnetic nanoparticles

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20151028