CN105006376B - 一种碳纳米管与氧化镍复合材料的制备方法 - Google Patents

一种碳纳米管与氧化镍复合材料的制备方法 Download PDF

Info

Publication number
CN105006376B
CN105006376B CN201510404605.1A CN201510404605A CN105006376B CN 105006376 B CN105006376 B CN 105006376B CN 201510404605 A CN201510404605 A CN 201510404605A CN 105006376 B CN105006376 B CN 105006376B
Authority
CN
China
Prior art keywords
nickel oxide
composite material
nickel
carbon nanotube
argon gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201510404605.1A
Other languages
English (en)
Other versions
CN105006376A (zh
Inventor
李美成
陈杰威
王宇
王帅
崔鹏
邵笑言
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
North China Electric Power University
Original Assignee
North China Electric Power University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by North China Electric Power University filed Critical North China Electric Power University
Priority to CN201510404605.1A priority Critical patent/CN105006376B/zh
Publication of CN105006376A publication Critical patent/CN105006376A/zh
Application granted granted Critical
Publication of CN105006376B publication Critical patent/CN105006376B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/46Metal oxides
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/158Carbon nanotubes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/32Carbon-based
    • H01G11/36Nanostructures, e.g. nanofibres, nanotubes or fullerenes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/84Processes for the manufacture of hybrid or EDL capacitors, or components thereof
    • H01G11/86Processes for the manufacture of hybrid or EDL capacitors, or components thereof specially adapted for electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Materials Engineering (AREA)
  • Electrochemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Nanotechnology (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Organic Chemistry (AREA)
  • Composite Materials (AREA)
  • Manufacturing & Machinery (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

本发明公开了一种碳纳米管与氧化镍复合材料的制备方法,属于纳米材料技术领域。本发明首先通过水热法,利用Ni(NO3)2·6H2O和D‑葡萄糖混合溶液制备出了氢氧化镍球形结构。将制得的球形结构氢氧化镍放在硅基板上,在化学气相沉积系统(CVD)中,通氩气,然后加热,使得氢氧化镍转变成氧化镍;再同时通氢气,将氧化镍球部分还原成镍单质,然后通乙烯气体,在部分还原的氧化镍球表面原位催化生长碳纳米管。通过这种方法,可以简单高效地一步制备氧化镍与碳管的复合材料。相比于传统复合方法而言,这种方法还能使氧化镍与碳管结合得更加紧密,导电性更好,更加稳定,从而能更有效地提高该复合材料的性能。该复合材料在制备超级电容器和锂电池等电化学器件上有广泛的应用前景。

Description

一种碳纳米管与氧化镍复合材料的制备方法
技术领域
本发明属于纳米材料技术领域,特别涉及一种碳纳米管与氧化镍复合材料的制备方法,该材料可作为催化剂应用于超级电容器和锂电池等电化学设备。
背景技术
碳纳米管作为一种新型的纳米材料,由于其独特的中空结构和纳米尺寸,以及其高比表面积、高导电性等特点,使其在复合材料增强、催化剂场发射等领域具有潜在的价值,由于其高表面积和良好导电性,碳纳米管被认为是超级电容器的理想材料。尽管碳纳米管表面积较高、导电性好,但其仍存在电容量小的缺点。将碳纳米管与过渡金属氧化物复合,可以有效地克服此缺点。氧化镍的易制备、低成本、环境友好及高电容量的优点,使其成为金属氧化物电容器的重要选择。NiO/CNTs的核壳结构,充分发挥碳纳米管导电性的同时,能有效缓解充放电过程中体积的膨胀。
发明内容
本发明的目的是提出一种制备碳纳米管与氧化镍复合材料的的方法。本发明提供的方法,先利用水热法制备氧化镍球。然后利用CVD,将氧化镍球表面还原成镍,采用简单的一步水热合成方法制备松塔状TiO2纳米结构。具体的制备方法包括如下步骤:
1、将0.7~0.9gNi(NO3)2·6H2O、0.8~1.1g D-葡萄糖和20ml去离子水,放入50ml烧杯中,磁力搅拌30min;
2、将溶液转移至内衬为聚四氟乙烯的高压反应釜中在130~140℃条件下反应16~18小时,然后自然冷却至室温;
3、将所得固体产物用去离子水洗涤、抽滤,至滤液为中性后,在50℃~60℃下干燥一段时间后获得氢氧化镍球;
4、将0.1~0.3g所制得的氢氧化镍球均匀铺洒于硅片基板上,然后将样品放置于石英管内。抽真空,同时引入氩气。升温至500℃,保持3小时,得到氧化镍球样品;
5、同时引入氢气和氩气,调节它们的流量比例为1:3。升温至650℃后,保持0.5小时;
6、升温至750~770℃,引入甲烷并保持30~40分钟。三种气源的流量比例控制为甲烷:氢气:氩气等于1:(4~5):(8~10);
7、在Ar氛围下自然降温至室温后,取出样品,可得到碳纳米管与氧化镍复合材料。
所述步骤1中,所用的Ni(NO3)2·6H2O为0.7~0.9g、所用D-葡萄糖为0.8~1.1g,所用水为20ml;
所述步骤2中,反应温度为130~140℃,反应时间为16~18小时;
所述步骤3中,干燥温度为50~60℃,煅烧时间为15~17小时;
所述步骤4中,所用氢氧化镍的质量为0.1~0.3g;
所述步骤5中,引入的氢气和氩气比例为(1:10)~(2:7);温度升高到600~650℃,保持时间为0.4~0.5小时;
所述步骤6中,温度升温至750~770℃,保持30~40分钟,三种气源的流量比例控制为甲烷:氢气:氩气等于1:(4~5):(8~10)。
本发明的有益效果是,通过水热法,利用Ni(NO3)2·6H2O和D-葡萄糖混合溶液制备出了球形结构纳米NiO,非常简便。在CVD系统中,分别通氢气,氩气和甲烷,可以将氧化镍球部分还原成镍单质,并原位催化生长碳纳米管。通过这种方法,可以简单高效地一步制备氧化镍与碳管复合材料。相比于传统复合方法而言,这种方法还能使氧化镍与碳管结合得更加紧密,从而更加稳定。
由于该复合材料结合了氧化镍与碳管的优点,在超级电容器、锂离子电池等电化学设备上有广泛的应用前景。
附图说明
图1是本发明实例1中合成的氢氧化镍球。
图2是本发明实例1中经过加热处理得到的氧化镍球。
图3是本发明实例1中碳纳米管与氧化镍复合材料的扫描电镜图。
图4是本发明实例2中碳纳米管与氧化镍复合材料的扫描电镜图。
具体实施方式
本发明提出的一种制备碳纳米管与氧化镍复合材料的方法可通过如下的方法实施,具体的制备方法包括如下步骤:
实施例1
1、将0.7gNi(NO3)2·6H2O、0.9g D-葡萄糖和20ml去离子水,放入50ml烧杯中,磁力搅拌30min;
2、将溶液转移至内衬为聚四氟乙烯的高压反应釜中在140℃条件下反应18小时,然后自然冷却至室温;
3、将所得固体产物用去离子水洗涤、抽滤,至滤液为中性后,在50℃下干燥15小时后获得氢氧化镍球;
4、将0.1g所制得的氢氧化镍球均匀铺洒于硅片基板上,然后将样品放置于石英管内。抽真空,同时引入氩气。升温至500度,保持3小时,得到氧化镍球样品;
5、同时引入氢气和氩气,调节它们的流量比例为1:3。升温至650℃后,保持0.5小时;
6、升温至750℃,引入甲烷并保持30分钟。三种气源的比例控制为甲烷:氢气:氩气等于1:4:8;
7、在Ar氛围下自然降温至室温后,取出样品,可得到碳纳米管与氧化镍的复合结构。
实施例2
1、将0.9gNi(NO3)2·6H2O、1.1g D-葡萄糖和20ml去离子水,放入50ml烧杯中,磁力搅拌30min;
2、将溶液转移至内衬为聚四氟乙烯的高压反应釜中在135℃条件下反应17小时,然后自然冷却至室温;
3、将所得固体产物用去离子水洗涤、抽滤至滤液为中性后,在70℃下干燥24小时。然后利用马弗炉在400℃下锻烧5小时后,获得纳米氧化镍球;
4、将0.25g所制得的氢氧化镍球均匀铺洒于硅片基板上,然后将样品放置于石英管内。抽真空,同时引入氢气和氩气,调节它们的比例为1:8;
5、升温至620℃后,保持0.5小时;
6、升温至760℃,引入甲烷并保持35分钟。三种气源的比例控制为甲烷:氢气:氩气等于1:4:10;
7、在Ar氛围下自然降温至室温后,取出样品,可得到碳纳米管与氧化镍的复合结构。

Claims (1)

1.一种碳纳米管与氧化镍复合材料的制备方法,其特征在于,包括步骤如下:
(1)将0.7~0.9g Ni(NO3)2·6H2O、0.8~1.1g D-葡萄糖和20ml去离子水,放入50ml烧杯中,磁力搅拌30min;
(2)将溶液转移至内衬为聚四氟乙烯的高压反应釜中在120℃~140℃条件下反应10~15小时,然后自然冷却至室温;
(3)将所得固体产物用去离子水洗涤、抽滤至滤液为中性后,在50℃~60℃下干燥15小时后获得氢氧化镍球;
(4)将0.1~0.3g所制得的氢氧化镍球均匀铺洒于硅片基板上,然后将样品放置于石英管内;
抽真空,同时引入氩气;升温至500℃,保持3小时,得到氧化镍球样品;
(5)同时引入氢气和氩气,调节它们的流量比例为1:3;升温至650℃后,保持0.5小时;
(6)升温至750℃~770℃,引入甲烷并保持30~40分钟;三种气源的流量比例控制为甲烷:氢气:氩气等于1:(4~5):(8~10);
(7)在Ar氛围下自然降温至室温后,取出样品,可得到碳纳米管与氧化镍复合材料。
CN201510404605.1A 2015-07-13 2015-07-13 一种碳纳米管与氧化镍复合材料的制备方法 Active CN105006376B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201510404605.1A CN105006376B (zh) 2015-07-13 2015-07-13 一种碳纳米管与氧化镍复合材料的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201510404605.1A CN105006376B (zh) 2015-07-13 2015-07-13 一种碳纳米管与氧化镍复合材料的制备方法

Publications (2)

Publication Number Publication Date
CN105006376A CN105006376A (zh) 2015-10-28
CN105006376B true CN105006376B (zh) 2018-12-21

Family

ID=54379008

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201510404605.1A Active CN105006376B (zh) 2015-07-13 2015-07-13 一种碳纳米管与氧化镍复合材料的制备方法

Country Status (1)

Country Link
CN (1) CN105006376B (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106024424A (zh) * 2016-07-01 2016-10-12 东华大学 一种氢氧化镍/石墨烯卷-碳纳米管复合碳气凝胶及其制备和应用
CN106206062B (zh) * 2016-08-10 2018-10-02 哈尔滨工业大学 一种利用水热法制备氧化钛纳米管/碳/氧化镍复合材料的方法
CN106340401B (zh) * 2016-11-28 2018-05-08 中物院成都科学技术发展中心 一种复合电极材料的制备方法及其应用
CN109651554B (zh) * 2017-10-11 2021-03-26 中国石油化工股份有限公司 强碱性三元复合的纳米无机氧化物-纳米碳管-离子交换树脂材料
CN110137483B (zh) * 2019-06-18 2022-03-22 贵州梅岭电源有限公司 一种镍钴锰酸锂复合材料及其制备方法与应用
RU2744480C1 (ru) * 2020-03-05 2021-03-10 Акционерное общество "Энергия" Способ изготовления коллектора тока для электрохимических конденсаторов

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102296281A (zh) * 2010-06-22 2011-12-28 中国人民解放军军事医学科学院卫生装备研究所 碳纳米管、镍和铝复合粉末增强聚乙烯基复合材料的制备方法
CN102296279A (zh) * 2010-06-22 2011-12-28 中国人民解放军军事医学科学院卫生装备研究所 碳纳米管-氧化铝复合结构增强聚氨酯基复合材料的制备方法
CN103332937A (zh) * 2013-06-05 2013-10-02 武汉理工大学 一种利用原位合成方法制备碳纳米管均匀分散的Al2O3复合粉体的方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1140448C (zh) * 2000-03-07 2004-03-03 天津大学 镍催化裂解甲烷制备碳纳米管的方法
RU2419907C1 (ru) * 2010-04-23 2011-05-27 ЮГ Инвестмент Лтд. Многоэлементный электрохимический конденсатор и способ его изготовления
CN103560018B (zh) * 2013-11-13 2018-08-17 北京化工大学 一种碳纳米管/氧化镍复合材料及其超级电容器
CN104299793B (zh) * 2014-10-08 2017-06-13 同济大学 一种氧化镍/多壁碳纳米管电极材料的制备方法
CN104692468A (zh) * 2015-03-06 2015-06-10 华北电力大学 一种三维多壁空心球NiO纳米材料的制备方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102296281A (zh) * 2010-06-22 2011-12-28 中国人民解放军军事医学科学院卫生装备研究所 碳纳米管、镍和铝复合粉末增强聚乙烯基复合材料的制备方法
CN102296279A (zh) * 2010-06-22 2011-12-28 中国人民解放军军事医学科学院卫生装备研究所 碳纳米管-氧化铝复合结构增强聚氨酯基复合材料的制备方法
CN103332937A (zh) * 2013-06-05 2013-10-02 武汉理工大学 一种利用原位合成方法制备碳纳米管均匀分散的Al2O3复合粉体的方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
"Ethylenediamine-assisted preparation of carbon nanofiber supported nickel oxide electrocatalysts for sensitive and durable dtection of insulin";Li Zhang等;《RSC Advances》;20150501;第5卷;全文 *
"Selective growth of vertically aligned carbon nanotubes on nickel oxide nanostructures created by atomic force mictroscope nano-oxidation";heh-Nan Lin等;《Chemical Physics Letters》;20041106;第399卷;全文 *
"碳纳米管表面沉积氧化镍及其超级电容器的电化学行为";王晓峰等;《无机材料学报》;20030331;第18卷(第2期);全文 *

Also Published As

Publication number Publication date
CN105006376A (zh) 2015-10-28

Similar Documents

Publication Publication Date Title
CN105006376B (zh) 一种碳纳米管与氧化镍复合材料的制备方法
Wu et al. Integrating the active OER and HER components as the heterostructures for the efficient overall water splitting
An et al. Porous NiCo2O4 nanostructures for high performance supercapacitors via a microemulsion technique
Chen et al. Porous α-Fe2O3 nanorods supported on carbon nanotubes-graphene foam as superior anode for lithium ion batteries
CN106315695B (zh) 一种杨梅状钴酸镍纳米材料及其制备方法
Li et al. Bowl-like 3C-SiC nanoshells encapsulated in hollow graphitic carbon spheres for high-rate lithium-ion batteries
CN108855159B (zh) 一种以普鲁士蓝衍生物合成的磷化钴及其制备方法和应用
CN110117009B (zh) 一种铁氮共掺杂磁性多孔石墨化纳米碳气凝胶的制备方法
Wang et al. Hydrothermal synthesis and electrochemical performance of NiO microspheres with different nanoscale building blocks
CN109304187B (zh) 一种中空纳米复合材料、制备方法及其应用
CN106910640A (zh) 一种形态可控的石墨烯纳米片电极材料及其制备方法和应用
CN110681409A (zh) 一种碳管担载超小vn产氢电催化剂、合成方法及应用
CN109569609A (zh) 一种新型镍基复合材料的制备方法
CN109876869A (zh) 核壳结构的二硼化钛表面包覆功能膜材料及其制备方法与应用
CN104167298A (zh) 一类石墨烯-蛋白质衍生碳超级电容器材料及其制备方法
Zhu et al. Design and synthesis of MOF-derived CuO/gC 3 N 4 composites with octahedral structures as advanced anode materials for asymmetric supercapacitors with high energy and power densities
CN109534412B (zh) 一种三维多孔NiMn2O4的制备方法及在超级电容器正极材料中的应用
CN110117797A (zh) 一种电解池及其在电解水制氢中的应用
Wang et al. Vertically aligned ZnCo 2 O 4 nanoplates on Ti 3 C 2 for high-efficiency hybrid supercapacitors
Liu et al. Graphitic mesoporous carbon based on aromatic polycondensation as catalyst support for oxygen reduction reaction
CN106602080B (zh) 一种基于十六烷基三甲基溴化铵为碳材料造孔剂的三维多孔Fe-N-C催化剂及制备方法
CN106783233B (zh) CuCo2S4纳米粒子的制备方法
Tian et al. In Situ Formation of CoP/Co3O4 Heterojunction for Efficient Overall Water Splitting
CN111943162B (zh) 一种微藻生物基氮掺杂碳材料及其制备方法与应用
CN108928816B (zh) 一种具有超微孔结构的氮掺杂石墨化碳微球及其制备方法和应用

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant