CN104994953A - 制备用于烃部分氧化成合成气的以耐热合金为基底的多金属氧化物催化剂的方法 - Google Patents

制备用于烃部分氧化成合成气的以耐热合金为基底的多金属氧化物催化剂的方法 Download PDF

Info

Publication number
CN104994953A
CN104994953A CN201380072184.6A CN201380072184A CN104994953A CN 104994953 A CN104994953 A CN 104994953A CN 201380072184 A CN201380072184 A CN 201380072184A CN 104994953 A CN104994953 A CN 104994953A
Authority
CN
China
Prior art keywords
catalyst
oxide
metal
methane
synthesis gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201380072184.6A
Other languages
English (en)
Inventor
S·E·多林斯基
N·Y·尤萨克弗
A·M·普莱莎科夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Aerochemistry Technology Co Ltd
Original Assignee
Aerochemistry Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aerochemistry Technology Co Ltd filed Critical Aerochemistry Technology Co Ltd
Publication of CN104994953A publication Critical patent/CN104994953A/zh
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/89Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with noble metals
    • B01J23/8933Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with noble metals also combined with metals, or metal oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/8993Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with noble metals also combined with metals, or metal oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with chromium, molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/32Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air
    • C01B3/34Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents
    • C01B3/38Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents using catalysts
    • C01B3/40Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents using catalysts characterised by the catalyst
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/02Boron or aluminium; Oxides or hydroxides thereof
    • B01J21/04Alumina
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/06Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/83Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with rare earths or actinides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/84Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/85Chromium, molybdenum or tungsten
    • B01J23/86Chromium
    • B01J23/866Nickel and chromium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/84Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/85Chromium, molybdenum or tungsten
    • B01J23/88Molybdenum
    • B01J23/882Molybdenum and cobalt
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/84Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/85Chromium, molybdenum or tungsten
    • B01J23/88Molybdenum
    • B01J23/883Molybdenum and nickel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/89Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with noble metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/89Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with noble metals
    • B01J23/8933Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with noble metals also combined with metals, or metal oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/894Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with noble metals also combined with metals, or metal oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with rare earths or actinides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/20Carbon compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0215Coating
    • B01J37/0217Pretreatment of the substrate before coating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0215Coating
    • B01J37/0225Coating of metal substrates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/04Mixing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • B01J37/082Decomposition and pyrolysis
    • B01J37/084Decomposition of carbon-containing compounds into carbon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • B01J37/10Heat treatment in the presence of water, e.g. steam
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82BNANOSTRUCTURES FORMED BY MANIPULATION OF INDIVIDUAL ATOMS, MOLECULES, OR LIMITED COLLECTIONS OF ATOMS OR MOLECULES AS DISCRETE UNITS; MANUFACTURE OR TREATMENT THEREOF
    • B82B3/00Manufacture or treatment of nanostructures by manipulation of individual atoms or molecules, or limited collections of atoms or molecules as discrete units
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/89Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with noble metals
    • B01J23/8913Cobalt and noble metals
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/02Processes for making hydrogen or synthesis gas
    • C01B2203/0205Processes for making hydrogen or synthesis gas containing a reforming step
    • C01B2203/0227Processes for making hydrogen or synthesis gas containing a reforming step containing a catalytic reforming step
    • C01B2203/0233Processes for making hydrogen or synthesis gas containing a reforming step containing a catalytic reforming step the reforming step being a steam reforming step
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/02Processes for making hydrogen or synthesis gas
    • C01B2203/0205Processes for making hydrogen or synthesis gas containing a reforming step
    • C01B2203/0227Processes for making hydrogen or synthesis gas containing a reforming step containing a catalytic reforming step
    • C01B2203/0244Processes for making hydrogen or synthesis gas containing a reforming step containing a catalytic reforming step the reforming step being an autothermal reforming step, e.g. secondary reforming processes
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/02Processes for making hydrogen or synthesis gas
    • C01B2203/025Processes for making hydrogen or synthesis gas containing a partial oxidation step
    • C01B2203/0261Processes for making hydrogen or synthesis gas containing a partial oxidation step containing a catalytic partial oxidation step [CPO]
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/10Catalysts for performing the hydrogen forming reactions
    • C01B2203/1041Composition of the catalyst
    • C01B2203/1047Group VIII metal catalysts
    • C01B2203/1064Platinum group metal catalysts
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/10Catalysts for performing the hydrogen forming reactions
    • C01B2203/1041Composition of the catalyst
    • C01B2203/1047Group VIII metal catalysts
    • C01B2203/1064Platinum group metal catalysts
    • C01B2203/107Platinum catalysts
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/10Catalysts for performing the hydrogen forming reactions
    • C01B2203/1041Composition of the catalyst
    • C01B2203/1094Promotors or activators
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Thermal Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Nanotechnology (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Combustion & Propulsion (AREA)
  • General Health & Medical Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Catalysts (AREA)

Abstract

本发明催化剂可用于烃原料的部分氧化、蒸汽重整和自热重整过程以生产合成气。含包括铂、钯或铑的Ⅷ族金属和氧化促进剂(Al2O3,CeO2和ZrO2)的催化剂的制备方法的特征在于,氧化物-金属组合物是用甲烷进行预处理以形成金属和5-10%(重量)积碳。将此材料与假勃姆石和四烷氧基硅烷的混合物沉积于耐热金属合金上、于惰性气氛下焙烧并进行热蒸汽处理。

Description

制备用于烃部分氧化成合成气的以耐热合金为基底的多金属氧化物催化剂的方法
本发明涉及制备用于通过大气氧或水蒸汽将烃进料部分氧化为合成气的非均相催化剂的方法。在氧气氧化甲烷和乙烷的情况下,化学平衡如下:
СН4+0.5О2=СО+2Н22/СО=2)
С2Н62=2СО+3Н22/СО=1.5)
为了达到最佳用于费-托过程或甲醇合成Н2/СО比等于2,必须在反应混合物中注入水蒸汽以增加该比率:
С2Н6+2Н2О→2СО+5Н22/СО=2.5).
本发明更大程度地涉及含低Н/С比化合物的烃原料。
开发能够加速烃类混合物(表1)的蒸汽氧化转化而无需预分离的高性能催化剂不仅是重要的科学任务且具有巨大的经济意义。此问题的迫切性是由以下事实决定的:仅在俄联邦,由于缺乏必要的基础设施,在石油生产基地燃烧的伴生油气(APG)的数量巨大(超过50亿m3/年)导致严重经济损失和对环境造成威胁。有效催化体系的获得将允许开发能够与运转的油井流速相称的紧凑型移动装置,这将为在偏远地区实际利用APG铺平道路。
表1.来源于不同油田的APG平均组成(%wt.)[Solovyanov A.A.,Andreeva N.N.,Kryukov V.A.,Lyats K.G.俄联邦伴生油气利用战略,Moscow:ZAO“Newspaper“Quarum”EditorialOffice”,2008,320页]
APG处理成合成气的困难之处很大程度上是因其包含有反应性显著不同的烃的情况所决定的。例如,在正烷烃С17系列中,其形成常数值下降了许多数量级(表2),提供了它们稳定性降低和碳形成的可能性的证据。
表2. 1000K下低级正构烷烃形成的lgK*
甲烷 乙烷 丙烷 丁烷 戊烷 己烷 庚烷
-1.0 -5.71 -9.98 -14.10 -18.40 -22.64 -26.89
*)K=[CnH(2n+2)]/[H2](n+1)
这导致在催化剂表面密集积炭和其快速失活。
此问题解决方案的复杂性是由烃转化为合成气反应和其裂解反应包含相同活性成分-VIII族金属-的情况决定的。最常用的减少碳形成的方法包括优化工艺条件(温度状况、压力、接触时间、不同的氧化剂组合的选择)。在开发新催化体系过程中获得了重要成果。
为提高碳从催化剂表面的消除速率,在其组合物中引入一些在氧化反应中具有高活性的组分。氧化铈可以实现最大效力,在混合氧化物如Ce-Zr-O中其自身有很强的表现。催化剂中活性金属的分散性是影响积碳的因素之一,因为此过程似乎是一个结构敏感过程。碳累积是随着尺寸相当于形成碳纳米管直径的足够大金属颗粒的参与而发生的。使用能与活性相强烈相互作用的载体来避免金属簇团聚。碳形成速率取决于活性金属性质。催化剂中存在铂族金属会显著减速此过程。
作者【Hotz N.等人在AIChE Journal,55(7),1849-1859,2009发表的文章】建议通过原位采用Rh/Ce-Zr-O纳米颗粒的溶胶-凝胶法来制备多孔性陶瓷催化剂。此体系在丁烷氧化转化为合成气的反应中表现出高热和催化稳定性。当CeO2引入载体为Pt/CeO2/Al2O3和Pt/CeZrO2/Al2O3体系的情况下,氧化铈也表现出积极作用【F.A.Silva等人在Appl.Catal.A:General 335(2008)145-152发表的文章】。
除了相关催化剂化学组成的问题,催化剂的状态和形式是另一个非常重要的问题。这些参数的变动为合成气生产技术优化所需的传质和传热的结果导向调整铺平了道路。在这方面,具有低气动阻力的在耐热材料(陶瓷,金属合金及其组合)基底上的多孔单块催化剂似乎是非常有前途的。
使用金属载体像发泡材料、金属网、穿孔或波纹状金属片(RU2204434,RU2248932,RU2268087,RU2292237,RU2320408)可因其高导热性而防止催化剂局部过热,从而延长催化剂的使用寿命。
制备沉积于具有大表面积金属上的催化剂的方法通常包括载体预先氧化处理来大大增加它们的粘合性以维持该体系的稳定性。改进复合材料效力的另一个操作是将氧化气氛下焙烧的金属(合金)上包覆一层主要试剂如假勃姆石,在此层中引入活性组分。
例如,在一篇著作(Bobrova L.,Vernikovskaya N.,Sadykov V.//Catal.Today.2009.V.144.P.185)中建议了催化剂LaCeZrOx(5.3wt%)//LaNiPt(2wt%)负载于2mm直径金属丝制成的fechral网上。其制备方法包括在金属网上喷涂一层刚玉层,之后由相应的悬浮液进行γ-Al2О3(3.6wt%)的沉积。通过用LaCeZrOx悬浮液涂覆和用La、Ni和Pt化合物溶液浸渍的方法形成活性相。
按照专利US5130114,烃蒸汽重整催化剂包括载体-氧化锆、主要活性元素-Rh和/或Ru与助催化剂-选自Ni、Cr、Mg、Ca、Y和其他稀土元素的至少一种元素。催化剂高活性和低的碳形成速率与氧化锆载体的性质相关。在说明书中,允许氧化锆以与其它载体如SiO2、Al2O3、沸石的混合物或组合物形式使用。多孔性载体可沉积于金属床上。
借助各种方法可以实现催化剂活性粒子在载体上分布的均匀性。例如,在按US6103660的催化剂制备方法中,是通过将活性组分前体粒子慢速均匀沉积于载体颗粒上实现的。借助毛细管注入技术在连续搅拌条件下将活性组分前体溶液引入载体颗粒悬浮液。γ-А12О3或用镧稳定化的γ-А12О3混合物用作载体,Ce/Zr氧化物和Ce、Zr、Ba醋酸盐混合物则沉积其上。
按照专利EP1759764,烃分解催化剂包含通过任何常规方法(沉积,浸渍,平衡吸附等)将尺寸为0.5-50nm的活性金属颗粒(贵金属,以及Cr、Mn、Ti、Cu、Co、V和其它一些,催化剂的0.025-10wt%)沉积于尺寸为0.05-0.4μm的焙烧后载体颗粒上。载体的主要组分是混合氧化物形式的Mg、Al、Ni(催化剂的0.1-40wt%)、Si(催化剂的0.001-20wt%)。通过碱性环境下由水溶性盐及氧化物(Si-来自硅酸钠)形成的氢氧化物混合物的热分解反应得到载体。催化剂中镍颗粒的尺寸为1-20nm。
在专利申请US20120258857中,描述了获得自热重整催化剂的方法,所述催化剂似乎是由尺寸40-300nm的镁,镍和铝混合氧化物构成,其包括从相应金属的盐溶胶-凝胶合成的Mg、Ni和Аl层状氢氧化物前体,将其干燥,在500-600℃温度下至少部分分解和在Н2-N2环境中于450-700℃温度下还原以得到纳米尺寸的颗粒。该催化剂的特点为慢速结焦和高活性。
最接近我们要求保护的催化剂制备方法是专利RU2320408和RU2356628。这些文献所建议的催化剂似乎是一种耐热铠装载体,借助于浸渍随后加热处理方法将钡、锰和钴混合氧化物沉积于所述载体上。混合氧化物是由几微米尺寸的粗晶团聚物和100-200nm的初级粒子构成。载体是Х23Ю5Т等级(fechral)的网格材料。催化剂操作的最佳条件是:O2/碳比=0.5-0.6,H2O/碳比=1.5-1.7,停留时间0.3-0.4秒,温度800-950℃。反应产物包含(vol%):氢-32,甲烷-1,二氧化碳-12,一氧化碳-11,氮-44,水/碳比变化范围1.2-2.2,得到H2/CO比=2.3-3.65的合成气。此催化剂在至少持续100小时的测试中是抗碳形成的。
在专利申请OOO“Gazohim Techno”(原型)中,烃气体氧化转化为一氧化碳和氢气的催化剂包含铂族金属和氧化组合物,不同点在于铂族金属包括Pt、Pd和Rh,同时氧化物组合物是从Al、Si和Zr的氢氧化物溶胶混合物与由Ni、Mg和/或Ce盐溶液的喷雾热解形成的5-30nm尺寸的Ni、Mg和/或Ce氧化物颗粒得到的。优选的催化剂组成(以下列各元素的总摩尔%表示)如下:Pd、Pt、Rh-0.5-2,А1-20-60,Si-20-45,Zr-2-10,Ni-5-25,Mg-3-7和/或Ce-3-6。
优选的可选用催化剂-是在耐热金属网上的多孔性层形式。耐热金属网上的催化剂氧化物组合物是通过将沉积于此金属网上的Al、Si和Zr氢氧化物凝胶与Ni、Mg和/或Ce氧化物纳米颗粒的混合物进行热蒸汽处理得到的。
催化剂的制备包括如下阶段:
1.由铝羟基氧化物水凝胶和硝酸氧锆来制备铝-锆混合羟基氧化物溶胶的溶胶。
2.通过原硅酸四烷基酯的水解制备原硅酸水溶胶。
3.通过喷雾热解法制备Ni、Mg和/或Ce氧化物的混合物。
4.制备确定配方的Al、Si和Zr氢氧化物溶胶与氧化物粒子的均匀混合物。
5.在基底型载体上形成多孔型氧化物包覆层:将所述均匀混合物沉积于基底型载体上,干燥,热蒸汽处理。
6.在基底型载体的多孔氧化物包覆层上接下来沉积至少一种铂族金属:Pd、Pt、Rh。
要通过本发明解决的技术任务是开发能在短停留时间(小于1秒)条件下用空气或空气-蒸汽混合物将烃部分氧化的高效、易于制备的通用非均相催化剂。
此任务是通过使用非均相催化剂完成的,所述非均相催化剂是耐热铝、锆和铈氧化物与分散其中的被铂系金属促进和避免碳化的活性组分(纳米镍和钴簇及它们的化合物)的多孔性混合物的复杂复合物。各组分以催化剂物质形式沉积在发泡镍铬合金上。
催化剂制备方法包括下述阶段:
1.将镍和钴氧化物用含相应量Al、Ce和硝酸氧锆以及钯(Pd(NH3)4Cl2)、铂(H2[PtCl6]·6H2O)和铑(Н3[RhCl6])化合物的溶液机械处理成混合物,溶液中总元素浓度为5-20%。将所得悬浮液干燥并于空气中以100℃/小时的速率加热到500℃。
2.所得粉末状材料在550℃下于甲烷流中进行碳化处理1小时,使NiO和Co3O4氧化物以及钯、铂和铑化合物完全还原成金属和5-10%的积碳。
3.由碳化试样、假勃姆石(Н2О含量70wt%)和四异丙氧基硅烷和水制备浆液,同时搅拌直到形成液体催化剂物质。碳化试样/氧化铝/二氧化硅的质量比是8/87/5。
4.将催化剂物质放入一个预先在空气中于900℃下焙烧2小时的发泡镍铬合金圆筒(直径0.5cm,高1.2cm,重0.5克)中。发泡镍铬合金具有开放的互连孔隙(75%),比表面积为250m2/g和密度为2.1g/cm3。孔填充后将所述圆筒的温度保持在80℃直到恒重并在1300℃和氩气氛下焙烧3小时,然后在600℃下用水蒸汽处理3小时。
所开发方法与原型所代表方法的不同之处在于催化剂制备过程不包括获得混合的铝羟基氧化物溶胶和通过原硅酸四烷基酯水解的原硅酸溶胶以及将铂族金属沉积于基底型载体的氧化物包覆层上的特定阶段。催化剂制备的简易性还在于使用镍和钴的氧化物,而不是硝酸盐,这使氮氧化物的排放很大程度地减少。此外,通过喷雾热解法获得氧化物混合物的阶段替换为在相对温和的条件下用甲烷还原氧化物的阶段。
催化剂物质中的颗粒尺寸是由X射线相分析获得的数据来确定的,所述X射线相分析是在Dron-3M衍射仪(CuKα射线,镍过滤器)操作的,以1度/分钟的速率在5-50°的2θ角范围进行扫描,Rietveld分析是借助于RIETAN 2000软件【F.Izumi,T.Ikeda,Mater.Sci.Forum,2000,198,321】进行操作的。
促进的镍钴体系及其活性成分的X射线相分析谱示于图1。通过硝酸盐分解得到的Ni和Co氧化物粒径超过150nm,而促进的镍钴体系的同一参数不超过30nm。这些尺寸方面的差异也发生在被甲烷还原的样品中。使用粒径>150nm的Ni和Co氧化物来制备镍钴体系,事实表明原颗粒的显著分散。这对催化反应过程中实现氧化还原转化的可逆性是一个必要条件。
所提出方法的一个显着特点是以下事实:使用通过甲烷处理的金属氧化物体系来制备催化剂,处理条件应能提供形成金属和确定量积碳。当在惰性气氛中焙烧带有一层催化剂物质的发泡镍铬合金时形成一硬包覆层,根据X射线相分析数据,是由其中引入纳米镍和钴颗粒的α-Al2O3与莫来石的混合物构成。
图1.含Ni和Co氧化物的样品的X-射线相分析谱图。1-镍氧化物,2-钴氧化物,3-500℃下焙烧的NiCo体系,4-800℃下焙烧的NiCo体系,5-800℃下用甲烷还原Ni和Co氧化物后的样品,6-800℃下用甲烷还原后的NiCo体系,7-800℃下用甲烷还原和碳化后的NiCo体系样品,8-800℃下用空气再生的样品7,9-800℃下用水蒸汽处理的样品7。
在氩气流下焙烧样品排除了碳氧化反应和形成源自Ni和Co氧化物及Al2O3的惰性尖晶石。接下来用蒸汽进行碳消除反应得以形成总体积占载体体积近4%的传输通道。这可以通过碳管的浓度和密度(约1g/cm3)和α-Al2O3的密度(约4g/cm3)来确定。催化剂物质的总比表面积在15-25m3/g范围,是通过低温氮吸附法确定的。刚玉颗粒中的空隙可能对此值有部分贡献。
通过下述实施例来确认本发明。
实施例1.根据上述技术,变动组分浓度比和铂金属性质制备一系列以发泡镍铬合金为基底的含5-10wt%催化剂包覆层的体系,所述催化剂包覆层的组成列于表3中。
表3.沉积于发泡镍铬合金上的催化剂层的组成
因此,以发泡镍铬合金为基底的催化剂包覆层的组成可由下列通式表示:(0-2%)Pd-(0-1,5%)Pt-(0-1,5%)Rh-(15-60%)NiO-(15-60%)Co3O4-(0-15%)Al2O3-(0-8%)CeO2-(0-18%)ZrO2
实施例2.为证实过渡金属氧化物在甲烷流中还原和使其碳化的必要性,制备了具有如下组成(wt.%)的催化剂No.11:1,5Rh 60,5NiO-15,0Co3O4-14,0Al2O3-7,0CeO2-2,0ZrO2。此体系不经历甲烷流中还原和碳化过程。不沉积于发泡镍铬合金所得到的此组成样品看起来是一个玻璃状物质,其比表面小于1m3/g。
实施例3.测试用空气氧进行甲烷氧化转化过程中反应混合物中不同水蒸汽浓度条件下的催化剂。
表4中示出了甲烷氧化转化的结果。采用外部加热到800-810℃进行实验,然而也要考虑过程的放热,可能在СН42比为0.5的反应区中温度要高得多。为获得具有实验运行过程中所观察的最佳组成(Н2/СО=2)的合成气这是必要的。反应混合物中存在少量水蒸汽(2.3vol%)并不显著影响所形成合成气的组成。
无铂系合金的催化剂No.1的活性要比与含贵金属体系的略低。结果有一些离散也可用促进添加剂的比例不同来解释。应当指出的是实验后催化剂维持其质量表明催化剂包覆层具有高强度。
表4.甲烷氧化转化(20th小时数据)
Т=800-810℃*;V甲烷=1l/小时;V空气=2.5l/小时;Н2О蒸汽含量=2.3vol%;τ=0.25秒
*)外加热器的温度。
**)体系未经历在甲烷流中还原和碳化。
显而易见的事实是,与催化剂No.10组成相同但未经历在甲烷流中还原和碳化的样品No.11的活性非常低。因此,此事实能证明将过渡金属氧化物还原并使其碳化以形成多孔结构活性相的必要性。
甲烷+空气混合物中Н2О蒸汽含量从2.3增加到7.3vol%,对甲烷氧化转化产物组成有一定影响(见表5)。氧转化率和一氧化碳形成选择性有一定程度的降低。同时甲烷转化率和氢气选择性有所提高。很显然,是与Н2О发生的反应有关:
СН42О→СО+3Н2
СО+Н2О→Н2+СО2.
表5.甲烷氧化转化(20th小时数据).
Т=800-810℃;V甲烷=1l/小时;V空气=2.5l/小时;Н2О蒸汽含量=7.3vol%;τ=0.25秒
实施例4.甲烷+乙烷混合物的氧化-蒸汽转化
使用空气氧进行甲烷+乙烷混合物(体积比2/1)的氧化转化的数据总结于表6中。
此过程可用下式表示:
2СН42Н6+2О2+8N2→4СО+7Н2+8N22/СО=1.75mole).
在所有情况下氢气转化率为94-97%。乙烷转化程度接近100%,而甲烷转化程度略有降低,这似乎与这些烃的反应活性不同有关。所形成的氢气和一氧化碳体积是根据以下反应方程式确定的::
V(Н2)=2S(Н2)·[4K(СН4)+3K(С2Н6)]
V(СО)=S(СО)·[2K(СН4)+2K(С2Н6)].
在所选条件下观察到的Н2/СО比在1.69-1.76范围,对应于指定组成的甲烷+乙烷混合物的氧化转化率。
表6.甲烷+乙烷混合物的氧化转化(20th小时数据)
Т=800-810℃;V混合物=1l/小时;V空气=3.3l/小时;Н2О蒸汽含量=2.3vol%.;τ=0.31秒
接下来用含9vol%水蒸汽的甲烷+乙烷+空气混合物进行一系列实验(表7)。所得数据证明在所研究的催化剂上不仅发生了烃氧化转化反应而且发生了烷烃与Н2О的相互反应。反应混合物中引入9vol%量的水蒸汽使Н2/СО摩尔比增加到接近2。
表7.甲烷+乙烷混合物的氧化转化(20th小时数据)
Т=800-810℃;V混合物=1l/小时;V空气=2.5l/小时;Н2О蒸汽含量=9vol%;τ=0.25秒
上述数据证明所开发的以发泡镍铬合金为基底的催化剂在甲烷和甲烷+乙烷混合物蒸汽氧化转化为合成气的反应中与原型所权利要求的体系同样有效。同时,所提出的制备方法的不同之处是简化了步骤,这一点可通过省去了一些阶段而体现出来,原因是使用了用甲烷处理的氧化物-金属体系,所述处理条件应能形成金属和5-10wt%积碳。本方法可应用于各种各样的催化体系,只要它允许在不同的单和混合氧化物中生成所期望的多孔结构以及避免可能会在活性成分与载体之间形成稳定化合物。

Claims (3)

1.制备用于烃的蒸汽氧化转化为一氧化碳和氢气的含铂族金属的多金属氧化物催化剂的方法,特征在于,为防止由Ni和Co氧化物和Al2O3形成惰性尖晶石并为了形成传输通道,使用了甲烷处理的氧化物-金属体系,所述处理条件确保形成金属和5-10wt%积碳。
2.权利要求1的催化剂,特征在于它们包含(wt%):
(0-2%)Pd-(0-1,5%)Pt-(0-1,5%)Rh-(15-60%)NiO-(15-60%)Co3O4-(0-15%)Al2O3-(0-8%)CeO2-(0-18%)ZrO2
3.权利要求1的催化剂,特征在于氧化物组合物是以耐热金属合金上的多孔性包覆层形式获得的,所述多孔性包覆层的形成过程是将沉积于此合金上的氢氧化物悬浮液与碳化的金属与氧化物混合物的颗粒在惰性气氛下焙烧然后进行热蒸汽处理。
CN201380072184.6A 2013-11-19 2013-12-02 制备用于烃部分氧化成合成气的以耐热合金为基底的多金属氧化物催化剂的方法 Pending CN104994953A (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
RU2013151143 2013-11-19
RU2013151143/04A RU2552639C1 (ru) 2013-11-19 2013-11-19 Способ приготовления оксидно-полиметаллических катализаторов на основе жаропрочных сплавов для парциального окисления углеводородов в синтез-газ
PCT/RU2013/001081 WO2015076696A1 (ru) 2013-11-19 2013-12-02 Способ приготовления оксидно-полиметаллических катализаторов на основе жаропрочных сплавов для парциального окисления углеводородов в синтез-газ

Publications (1)

Publication Number Publication Date
CN104994953A true CN104994953A (zh) 2015-10-21

Family

ID=53179861

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201380072184.6A Pending CN104994953A (zh) 2013-11-19 2013-12-02 制备用于烃部分氧化成合成气的以耐热合金为基底的多金属氧化物催化剂的方法

Country Status (6)

Country Link
US (1) US9346039B2 (zh)
EP (1) EP2923757A4 (zh)
CN (1) CN104994953A (zh)
EA (1) EA024461B1 (zh)
RU (1) RU2552639C1 (zh)
WO (1) WO2015076696A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1130150A (zh) * 1995-02-28 1996-09-04 中国科学院大连化学物理研究所 甲烷部分氧化制取合成气反应及催化剂
RU2087187C1 (ru) * 1994-05-10 1997-08-20 Институт катализа им.Г.К.Борескова СО РАН Катализатор для селективного гидрирования и способ его получения
CN101049566A (zh) * 2007-05-23 2007-10-10 天津大学 用于甲烷部分氧化制合成气的Ni基催化剂及其制备方法
RU2320408C1 (ru) * 2006-12-06 2008-03-27 Институт Катализа Им. Г.К. Борескова Сибирского Отделения Российской Академии Наук Катализатор, способ его приготовления и способ получения синтез-газа
CN102612407A (zh) * 2009-08-04 2012-07-25 英弗勒科技有限公司 放热工艺催化剂的载体及其制备的催化剂

Family Cites Families (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0495534A3 (en) * 1988-03-12 1992-10-07 Akira C/O Kohgakuin University Igarashi Catalyst for steam reforming of hydrocarbon
US6293979B1 (en) * 1994-12-19 2001-09-25 Council Of Scientific & Industrial Research Process for the catalytic conversion of methane or natural gas to syngas or a mixture of carbon monoxide and hydrogen
US6149693A (en) * 1996-02-06 2000-11-21 Ethox Chemicals, Inc. Hydrocarbon gels useful in formation fracturing
DE19714732A1 (de) 1997-04-09 1998-10-15 Degussa Verfahren zum Abscheiden von katalytisch aktiven Komponenten auf hochoberflächigen Trägermaterialien
FR2767722B1 (fr) * 1997-08-29 1999-12-31 Inst Francais Du Petrole Nouveau catalyseur utilisable dans les reactions de transformation de composes organiques
DE19847008A1 (de) * 1998-10-13 2000-04-20 Degussa Stickoxid-Speicherkatalysator
AU762504B2 (en) * 1999-10-01 2003-06-26 Bp Corporation North America Inc. Preparing synthesis gas using hydrotalcite-derived nickel catalysts
US6409940B1 (en) * 1999-10-18 2002-06-25 Conoco Inc. Nickel-rhodium based catalysts and process for preparing synthesis gas
DE19955456A1 (de) * 1999-11-17 2001-05-23 Degussa Verfahren zur Herstellung eines Stickoxid-Speichermaterials und damit hergestelltes Speichermaterial
RU2204434C2 (ru) 2001-05-08 2003-05-20 Институт катализа им. Г.К. Борескова СО РАН Катализатор и способ получения смеси водорода и оксида углерода
RU2248932C1 (ru) 2003-10-13 2005-03-27 Институт Катализа Им. Г.К. Борескова Сибирского Отделения Российской Академии Наук Катализатор (варианты), способ его приготовления (варианты) и способ получения синтез-газа
RU2244589C1 (ru) * 2003-10-13 2005-01-20 Институт катализа им. Г.К. Борескова Сибирского отделения РАН Катализатор, способ его приготовления и способ получения синтез-газа
WO2005046855A2 (en) * 2003-10-16 2005-05-26 Conocophillips Company Silica-alumina catalyst support, catalysts made therefrom and methods of making and using same
RU2268087C1 (ru) 2004-10-14 2006-01-20 Институт Катализа Им. Г.К. Борескова Сибирского Отделения Российской Академии Наук Катализатор, способ его приготовления и способ получения синтез-газа
RU2292237C1 (ru) 2005-07-29 2007-01-27 Институт Катализа Им. Г.К. Борескова Сибирского Отделения Российской Академии Наук Катализатор, способ его приготовления и способ получения синтез-газа
KR101319137B1 (ko) 2005-08-11 2013-10-17 도다 고교 가부시끼가이샤 탄화수소를 분해하는 촉매, 상기 촉매를 이용한 탄화수소의분해 방법 및 수소의 제조 방법, 및 발전 시스템
RU2356628C1 (ru) * 2008-01-09 2009-05-27 Институт Катализа Им. Г.К. Борескова Сибирского Отделения Российской Академии Наук Катализатор, способ его приготовления и способ получения синтез-газа из биодизельного топлива
JP5292194B2 (ja) * 2008-07-04 2013-09-18 日揮株式会社 炭化水素の接触部分酸化用の触媒及び合成ガスの製造方法
CN102186582B (zh) * 2008-10-17 2015-05-13 优美科触媒日本有限公司 废气净化用催化剂以及使用该催化剂的净化方法
US8530372B2 (en) * 2009-07-22 2013-09-10 Basf Corporation Oxygen storage catalyst with decreased ceria reduction temperature
US8475755B2 (en) * 2009-08-21 2013-07-02 Sub-Chemie Inc. Oxidation catalyst and method for destruction of CO, VOC and halogenated VOC
US9745191B2 (en) * 2011-04-11 2017-08-29 Saudi Arabian Oil Company Auto thermal reforming (ATR) catalytic structures
US8835346B2 (en) * 2012-07-27 2014-09-16 Basf Corporation Catalyst materials
US8545780B1 (en) * 2012-07-27 2013-10-01 Basf Corporation Catalyst materials
CN104968431A (zh) * 2012-11-29 2015-10-07 巴斯夫欧洲公司 包含钯、金和氧化铈的柴油机氧化催化剂
RU2532924C1 (ru) * 2013-07-10 2014-11-20 Общество с ограниченной ответственностью "Газохим Техно" Катализатор окислительной конверсии углеводородных газов с получением оксида углерода и водорода

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2087187C1 (ru) * 1994-05-10 1997-08-20 Институт катализа им.Г.К.Борескова СО РАН Катализатор для селективного гидрирования и способ его получения
CN1130150A (zh) * 1995-02-28 1996-09-04 中国科学院大连化学物理研究所 甲烷部分氧化制取合成气反应及催化剂
RU2320408C1 (ru) * 2006-12-06 2008-03-27 Институт Катализа Им. Г.К. Борескова Сибирского Отделения Российской Академии Наук Катализатор, способ его приготовления и способ получения синтез-газа
CN101049566A (zh) * 2007-05-23 2007-10-10 天津大学 用于甲烷部分氧化制合成气的Ni基催化剂及其制备方法
CN102612407A (zh) * 2009-08-04 2012-07-25 英弗勒科技有限公司 放热工艺催化剂的载体及其制备的催化剂

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
BAOHUA YUE,ET.AL.: "Influence of transition metals (Cr, Mn, Fe, Co and Ni) on the methane combustion over Pd/Ce–Zr/Al2O3 catalyst", 《APPLIED SURFACE SCIENCE》 *
I. M. GERZELIEV: "Partial oxidation of lower alkanes by active lattice oxygen of metal oxide systems: 2. Synthesis of solid contacts and syngas production in a pilot plant with a riser reactor", 《PETROLEUM CHEMISTRY》 *

Also Published As

Publication number Publication date
EA024461B1 (ru) 2016-09-30
US20160001271A1 (en) 2016-01-07
EP2923757A1 (en) 2015-09-30
RU2552639C1 (ru) 2015-06-10
US9346039B2 (en) 2016-05-24
EP2923757A4 (en) 2016-07-20
EA201500499A1 (ru) 2015-08-31
WO2015076696A1 (ru) 2015-05-28

Similar Documents

Publication Publication Date Title
Han et al. Reducing carbon deposition and enhancing reaction stability by ceria for methane dry reforming over Ni@ SiO2@ CeO2 catalyst
Fan et al. Recent trends in developments of active metals and heterogenous materials for catalytic CO2 hydrogenation to renewable methane: A review
Sharifianjazi et al. A review on recent advances in dry reforming of methane over Ni-and Co-based nanocatalysts
Aghamohammadi et al. Sequential impregnation vs. sol-gel synthesized Ni/Al2O3-CeO2 nanocatalyst for dry reforming of methane: Effect of synthesis method and support promotion
Li et al. A crucial role of O2− and O22− on mayenite structure for biomass tar steam reforming over Ni/Ca12Al14O33
Wang et al. Syngas production from CO2 reforming with methane over core-shell Ni@ SiO2 catalysts
CN103203238B (zh) 一种费托合成催化剂及其制备和应用
Cai et al. Autothermal reforming of ethanol for hydrogen production over an Rh/CeO2 catalyst
AU2003203604A1 (en) Metal catalyst and method of preparation and use
US20030096880A1 (en) Combustion deposited metal-metal oxide catalysts and process for producing synthesis gas
EP1663856B1 (en) Catalytic partial oxidation process for producing synthesis gas
Sajjadi et al. Impregnation vs. sol-gel and sol-gel-plasma dispersion of nickel nanoparticles over Al2O3 employed in combined dry reforming and partial oxidation of greenhouse gases to syngas
US9399209B2 (en) Catalyst for the oxidative conversion of hydrocarbon gases to produce carbon monoxide and hydrogen
RU2292237C1 (ru) Катализатор, способ его приготовления и способ получения синтез-газа
Wang et al. Temperature hysteresis in dry reforming of methane on Ni/SBA-15 catalyst: Low temperature activity originated from the synergy of Ni0 and carbon nanotubes
Chava et al. Reforming of model biogas using Ni/CeO2/γ-Al2O3 monolith catalyst
Zhang et al. Highly dispersible cerium-oxide modified Ni/SBA-15 for steam reforming of bio-mass based JP10
CN108654641B (zh) 一种二氧化碳甲烷重整催化剂及其制备方法
Yang et al. Oxygen vacancies enriched Ni-Co/SiO2@ CeO2 redox catalyst for cycling methane partial oxidation and CO2 splitting
Liu et al. Synthesis of Ni/NiAlOx catalysts for hydrogenation saturation of phenanthrene
Li et al. β-Si4Al2O2N6 supported Ni catalyst for enhanced ethanol steam reforming: tuning metal-support interaction by high-temperature solution of Si3N4 with Al2O3
Zhong et al. Tuning the catalytic performance of Fischer-Tropsch synthesis by regulating the Al2O3-layer over Co/Al2O3/Al catalysts
JP4644798B2 (ja) 金属担持ナノ炭素繊維触媒
Zhao et al. Promotional Effect of Ni− Sn Interaction over Ni Supported on Sn‐incorporated MCM‐41 Catalysts for CO2 Reforming of CH4
CN104994953A (zh) 制备用于烃部分氧化成合成气的以耐热合金为基底的多金属氧化物催化剂的方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20151021

WD01 Invention patent application deemed withdrawn after publication