CN104992985B - 薄膜晶体管及其制造方法、阵列基板 - Google Patents

薄膜晶体管及其制造方法、阵列基板 Download PDF

Info

Publication number
CN104992985B
CN104992985B CN201510394548.3A CN201510394548A CN104992985B CN 104992985 B CN104992985 B CN 104992985B CN 201510394548 A CN201510394548 A CN 201510394548A CN 104992985 B CN104992985 B CN 104992985B
Authority
CN
China
Prior art keywords
active layer
thin film
film transistor
tft
conductive nano
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201510394548.3A
Other languages
English (en)
Other versions
CN104992985A (zh
Inventor
卢马才
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TCL China Star Optoelectronics Technology Co Ltd
Original Assignee
Shenzhen China Star Optoelectronics Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shenzhen China Star Optoelectronics Technology Co Ltd filed Critical Shenzhen China Star Optoelectronics Technology Co Ltd
Priority to CN201510394548.3A priority Critical patent/CN104992985B/zh
Priority to US14/786,055 priority patent/US9917208B2/en
Priority to PCT/CN2015/083931 priority patent/WO2017004840A1/zh
Publication of CN104992985A publication Critical patent/CN104992985A/zh
Application granted granted Critical
Publication of CN104992985B publication Critical patent/CN104992985B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • H01L29/78696Thin film transistors, i.e. transistors with a channel being at least partly a thin film characterised by the structure of the channel, e.g. multichannel, transverse or longitudinal shape, length or width, doping structure, or the overlap or alignment between the channel and the gate, the source or the drain, or the contacting structure of the channel
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/027Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34
    • H01L21/033Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising inorganic layers
    • H01L21/0334Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising inorganic layers characterised by their size, orientation, disposition, behaviour, shape, in horizontal or vertical plane
    • H01L21/0337Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising inorganic layers characterised by their size, orientation, disposition, behaviour, shape, in horizontal or vertical plane characterised by the process involved to create the mask, e.g. lift-off masks, sidewalls, or to modify the mask, e.g. pre-treatment, post-treatment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/26Bombardment with radiation
    • H01L21/263Bombardment with radiation with high-energy radiation
    • H01L21/265Bombardment with radiation with high-energy radiation producing ion implantation
    • H01L21/266Bombardment with radiation with high-energy radiation producing ion implantation using masks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/3205Deposition of non-insulating-, e.g. conductive- or resistive-, layers on insulating layers; After-treatment of these layers
    • H01L21/321After treatment
    • H01L21/3213Physical or chemical etching of the layers, e.g. to produce a patterned layer from a pre-deposited extensive layer
    • H01L21/32133Physical or chemical etching of the layers, e.g. to produce a patterned layer from a pre-deposited extensive layer by chemical means only
    • H01L21/32134Physical or chemical etching of the layers, e.g. to produce a patterned layer from a pre-deposited extensive layer by chemical means only by liquid etching only
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0657Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape of the body
    • H01L29/0665Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape of the body the shape of the body defining a nanostructure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • H01L29/78651Silicon transistors
    • H01L29/7866Non-monocrystalline silicon transistors
    • H01L29/78663Amorphous silicon transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • H01L29/7869Thin film transistors, i.e. transistors with a channel being at least partly a thin film having a semiconductor body comprising an oxide semiconductor material, e.g. zinc oxide, copper aluminium oxide, cadmium stannate

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Ceramic Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Inorganic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Nanotechnology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Thin Film Transistor (AREA)

Abstract

一种薄膜晶体管及其制造方法、阵列基板,在薄膜晶体管的有源层沟道区域形成相互独立的纳米导电点,使有源层沟道区域被分成多个相互独立的子沟道,从而增加了等效电场强度。等效电场强度越大,载流子迁移率越大。因此,形成的薄膜晶体管的开态电流就越大,有利于制造具有更高解析度和更高开口率的薄膜晶体管。

Description

薄膜晶体管及其制造方法、阵列基板
技术领域
本发明涉及电子器件技术领域,尤其涉及一种薄膜晶体管,还涉及一种具有该薄膜晶体管的阵列基板以及用于制造该薄膜晶体管的方法。
背景技术
薄膜场效应晶体管(Thin Film Transistor,TFT)是晶体管的种类之一,被广泛应用于显示领域。现有技术中的薄膜晶体管包括栅极、栅极绝缘层、有源层、源极和漏极。
显示面板一般包括阵列基板。阵列基板上形成有多个像素,且每一个像素对应一个薄膜晶体管,从而通过薄膜晶体管控制相应像素进行显示。随着显示行业的发展,对薄膜晶体管特性的要求也日益提高,需要薄膜晶体管具有较大的开态电流。薄膜晶体管开态电流Ids的计算式为其中u表示有源层的载流子迁移率,COX表示单位面积的绝缘层电容,W表示薄膜晶体管的沟道宽度,L表示薄膜晶体管的沟道长度,Vgs表示栅极相对于源极的电压,Vth表示阈值电压。根据开态电流的计算式可知,u、W和L都是影响薄膜晶体管开态电流的主要因素。在薄膜晶体管中,L值过小容易导致源漏极金属发生短路,W过大会导致开口率降低以及源漏极与栅极的直接耦合电容增加。增加u是提高薄膜晶体管开态电流的最为有效的方法之一。因此,亟需一种具有较高的载流子迁移率的薄膜晶体管。
发明内容
本发明所要解决的技术问题是:现有技术中不存在具有较高的载流子迁移率的薄膜晶体管。
为了解决上述技术问题,本发明提供了一种薄膜晶体管及其制造方法、阵列基板。
根据本发明的第一个方面,提供了一种薄膜晶体管,其包括栅极、绝缘层、源极、漏极和有源层,所述有源层包括相互独立的纳米导电点。
优选的是,所述纳米导电点的直径为
优选的是,所述薄膜晶体管为底栅型薄膜晶体管或者顶栅型薄膜晶体管。
根据本发明的第二个方面,提供了一种具有上述薄膜晶体管的阵列基板。
根据本发明的第三个方面,提供了一种用于制造薄膜晶体管的方法,其包括:
形成包括栅极、绝缘层、源极、漏极和有源层在内的多层结构,并使所述有源层包括相互独立的纳米导电点。
优选的是,形成包括栅极、绝缘层、源极、漏极和有源层在内的多层结构,并使所述有源层包括相互独立的纳米导电点,包括:
形成栅极;
在所述栅极上形成所述绝缘层;
在所述绝缘层上形成所述有源层;
在所述有源层上形成具有所述源极和所述漏极的图形,所述图形由金属合金形成;
采用脱合金化方法在所述图形对应所述有源层的区域形成纳米点掩膜;
利用所述纳米点掩膜,在所述有源层上形成所述相互独立的纳米导电点。
优选的是,采用离子注入的方法,利用所述纳米点掩膜,在所述有源层上形成所述相互独立的纳米导电点。
优选的是,形成包括栅极、绝缘层、源极、漏极和有源层在内的多层结构,并使所述有源层包括相互独立的纳米导电点,包括:
形成所述有源层;
在所述有源层上形成具有所述源极和所述漏极的图形,所述图形由金属合金形成;
采用脱合金化方法在所述图形对应所述有源层的区域形成纳米点掩膜;
利用所述纳米点掩膜,在所述有源层上形成所述相互独立的纳米导电点;
去除所述纳米点掩膜;
在具有所述纳米导电点的有源层及所述图形上形成所述绝缘层;
在所述绝缘层上形成所述栅极。
优选的是,采用离子注入的方法,利用所述纳米点掩膜,在所述有源层上形成所述相互独立的纳米导电点。
优选的是,所述纳米导电点的直径为
与现有技术相比,上述方案中的一个或多个实施例可以具有如下优点或有益效果:
本发明在有源层沟道区域形成相互独立的纳米导电点,使得有源层沟道区域被分成多个相互独立的子沟道,从而增加了等效电场强度。等效电场强度越大,载流子迁移速度和载流子迁移率越大。因此,形成的薄膜晶体管的开态电流就越大,有利于制造具有更高解析度和更高开口率的薄膜晶体管,提高了薄膜晶体管的性能。
本发明的其它特征和优点将在随后的说明书中阐述,并且部分地从说明书中变得显而易见,或者通过实施本发明而了解。本发明的目的和其他优点可通过在说明书、权利要求书以及附图中所特别指出的结构来实现和获得。
附图说明
附图用来提供对本发明的进一步理解,并且构成说明书的一部分,与本发明的实施例共同用于解释本发明,并不构成对本发明的限制。在附图中:
图1示出了本发明实施例底栅型薄膜晶体管的结构示意图;
图2示出了本发明实施例用于制造底栅型薄膜晶体管的方法的流程示意图;
图3a示出了本发明实施例中在衬底基板上形成栅极后的示意图;
图3b示出了本发明实施例中在栅极上形成绝缘层和有源层后的示意图;
图3c示出了本发明实施例中在有源层上形成具有源极和漏极的图形后的示意图;
图3d示出了本发明实施例中在具有源极和漏极的图形上形成光阻后的示意图;
图3e示出了本发明实施例中使所述图形的部分区域形成纳米点掩膜后的示意图;
图3f示出了本发明实施例中利用纳米点掩膜在有源层上形成纳米导电点后的示意图;以及
图4示出了本发明实施例中用于制造顶栅型薄膜晶体管的方法的流程示意图。
具体实施方式
以下将结合附图及实施例来详细说明本发明的实施方式,借此对本发明如何应用技术手段来解决技术问题,并达成技术效果的实现过程能充分理解并据以实施。需要说明的是,只要不构成冲突,本发明中的各个实施例以及各实施例中的各个特征可以相互结合,所形成的技术方案均在本发明的保护范围之内。
为解决现有技术中不存在具有较高的载流子迁移率的薄膜晶体管的技术缺陷,本发明实施例提供了一种具有较高的截流子迁移率的薄膜晶体管。本发明实施例的薄膜晶体管主要包括栅极、绝缘层、源极、漏极和有源层。栅极和源极同时加载信号,使得有源层导通源极和漏极。有源层包括相互独立的纳米导电点。
应用本实施例所述的薄膜晶体管,在有源层沟道区域形成相互独立的纳米导电点,使得有源层沟道区域被分成多个相互独立的子沟道,从而增加了等效电场强度。等效电场强度越大,载流子迁移速度和载流子迁移率越大。因此,形成的薄膜晶体管的开态电流就越大,有利于制造具有更高解析度和更高开口率的薄膜晶体管,提高了薄膜晶体管的性能。
为了进一步增加有源层的载流子迁移率,本发明优选的实施例将纳米导电点的直径限定在
另外,源极、漏极和栅极是薄膜晶体管的三个电极。根据各个电极的位置关系将薄膜晶体管分为两类。一类是栅极位于源极和漏极的下面,这类薄膜晶体管被称为底栅型薄膜晶体管。另一类是栅极位于源极和漏极的上面,这类薄膜晶体管被称为顶栅型薄膜晶体管。本发明实施例提供的薄膜晶体管可以是顶栅型薄膜晶体管,也可以是底栅型薄膜晶体管。本发明实施例及附图首先以底栅型薄膜晶体管为例进行详细说明。
图1示出了本发明实施例底栅型薄膜晶体管的结构示意图。如图1所示,本实施例的底栅型薄膜晶体管包括衬底基板1、栅极2、绝缘层3、有源层4、源极和漏极。
具体地,栅极2形成在衬底基板1上。绝缘层3形成在栅极2上。有源层4形成在绝缘层3上,并且该有源层4包括相互独立的纳米导电点7。具有源极和漏极的图形5形成在有源层4上。另外,在具有源极和漏极的图形5上还依次形成有钝化层和像素电极。像素电极通过钝化层具有的过孔连接具有源极和漏极的图形5。
本发明实施例还提供了一种具有上述薄膜晶体管的阵列基板。阵列基板可应用于液晶显示技术领域。
另外,本发明实施例还提供了一种用于制造上述薄膜晶体管的方法。本实施例的制造方法为:形成包括栅极2、绝缘层3、源极、漏极和有源层4在内的多层结构,并使有源层4包括相互独立的纳米导电点7。
应用本实施例所述的用于制造薄膜晶体管的方法,在有源层4沟道区域形成相互独立的纳米导电点7,使得有源层4沟道区域被分成多个相互独立的子沟道,从而增加了等效电场强度。等效电场强度越大,载流子迁移速度和载流子迁移率越大。因此,形成的薄膜晶体管的开态电流就越大,有利于制造具有更高解析度和更高开口率的薄膜晶体管,提高了薄膜晶体管的性能。
应用本实施例所述的方法制造出来的薄膜晶体管既可以是顶栅型薄膜晶体管,也可以是底栅型薄膜晶体管。
如图2所示,是本发明实施例中用于制造底栅型薄膜晶体管的方法的流程示意图。本实施例的制造方法主要包括步骤101至步骤106。
在步骤101中,提供衬底基板1并在衬底基板1上形成栅极2。
具体地,首先在衬底基板1上沉积金属层,并在金属层上涂覆光阻。这里,金属层可为钼铝(MoAl)叠层结构、钛铝(TiAl)叠层结构或者其它单层金属结构。然后经曝光显影及刻蚀操作后形成如图3a所示的栅极2图案。
在步骤102中,在栅极2上形成绝缘层3。
在步骤103中,在绝缘层3上形成有源层4。
具体地,首先在绝缘层3上沉积氢化非晶硅(a-Si:H)或者氧化铟镓锌(IGZO,Indium Gallium Zinc Oxide)等半导体材料,并在半导体材料上涂覆光阻6。然后,经曝光显影及刻蚀后形成如图3b所示的有源层4图案。
在步骤104中,在有源层4上形成具有源极和漏极的图形5,该图形5由金属合金形成。
具体地,参照图3c,在有源层4上沉积源漏极(S/D)金属电极层。此金属电极层可为钼铝、钼钛等金属合金形成。
在步骤105中,采用脱合金化方法在所述图形5对应有源层4的区域形成纳米点掩膜51。
具体地,首先在具有源极和漏极的图形5上涂覆光阻,经过曝光显影去掉对应有源层4的光阻。参照图3d,是去掉对应有源层4的光阻后的示意图。然后在上述图形5的未被光阻6覆盖的部分应用脱合金化方法,以使此部分图形5形成如图3e中所示的具有纳米级微孔的纳米点掩膜51。
这里,脱合金化方法用于选择性地溶解上述部分图形5(金属合金)中的某一组分。
在步骤106中,利用纳米点掩膜51,在有源层4上形成相互独立的纳米导电点7。
具体地,采用离子注入或类似方法,利用步骤105形成的纳米点掩膜51,在有源层4上形成如图3f所示的多个彼此独立的纳米导电点7。值得说明的是,通过控制金属合金的成份以及脱合金化方法来调节所形成的纳米点掩膜51的结构,从而调节各个纳米导电点7的尺寸大小及间距。特别地,形成的纳米导电点7的直径为
形成纳米导电点7后,利用灰化工艺去除剩余的光阻6,并去除纳米点掩膜51后,即形成如图1所示的底栅型薄膜晶体管。
如图4所示,是本发明实施例中用于制造顶栅型薄膜晶体管的方法的流程示意图。本实施例的制造方法主要包括步骤201至步骤206。
在步骤201中,提供衬底基板1并在衬底基板1上形成有源层4。
具体地,首先提供衬底基板1,然后在衬底基板1上沉积氢化非晶硅(a-Si:H)或者氧化铟镓锌(IGZO,Indium Gallium Zinc Oxide)等半导体材料,并在半导体材料上涂覆光阻。然后,经曝光显影及刻蚀后形成有源层4图案。
在步骤202中,在有源层4上形成具有源极和漏极的图形5,该图形5由金属合金形成。
具体地,在有源层4上沉积源漏极(S/D)金属电极层。此金属电极层可为钼铝、钼钛等金属合金形成。
在步骤203中,采用脱合金化方法在所述图形5对应有源层4的区域形成纳米点掩膜51。
具体地,首先在具有源极和漏极的图形5上涂覆光阻,经过曝光显影去掉对应有源层4的光阻。然后在所述图形5未被光阻6覆盖的部分应用脱合金化方法,以使此部分图形5形成具有纳米级微孔的纳米点掩膜51。
在步骤204中,利用纳米点掩膜51,在有源层4上形成相互独立的纳米导电点7。
具体地,采用离子注入或类似方法,利用步骤203形成的纳米点掩膜51,在有源层4上形成多个彼此独立的纳米导电点7。值得说明的是,通过控制金属合金的成份以及脱合金化方法来调节所形成的纳米点掩膜51的结构,从而调节各个纳米导电点7的尺寸大小及间距。特别地,形成的纳米导电点7的直径为
在步骤205中,去除所述纳米点掩膜。
在步骤206中,在具有纳米导电点7的有源层4及所述图形5上形成绝缘层3。
在步骤207中,在绝缘层3上形成栅极2。
具体地,首先在绝缘层3上沉积金属层,并在金属层上涂覆光阻。这里,金属层可为钼铝(MoAl)叠层结构、钛铝(TiAl)叠层结构或者其它单层金属结构。然后经曝光显影及刻蚀操作后形成栅极2图案。
形成栅极后,利用灰化工艺去除剩余的光阻,即形成顶栅型薄膜晶体管。
虽然本发明所公开的实施方式如上,但所述的内容只是为了便于理解本发明而采用的实施方式,并非用以限定本发明。任何本发明所属技术领域内的技术人员,在不脱离本发明所公开的精神和范围的前提下,可以在实施的形式上及细节上作任何的修改与变化,但本发明的保护范围,仍须以所附的权利要求书所界定的范围为准。

Claims (4)

1.一种用于制造薄膜晶体管的方法,其特征在于,包括:
形成包括栅极、绝缘层、源极、漏极和有源层在内的多层结构,并使所述有源层包括相互独立的纳米导电点,还使所述纳米导电点的直径为
其中,形成包括栅极、绝缘层、源极、漏极和有源层在内的多层结构,并使所述有源层包括相互独立的纳米导电点,包括:
形成栅极;
在所述栅极上形成所述绝缘层;
在所述绝缘层上形成所述有源层;
在所述有源层上形成具有所述源极和所述漏极的图形,所述图形由金属合金形成;
采用脱合金化方法在所述图形对应所述有源层的区域形成纳米点掩膜;
利用所述纳米点掩膜,在所述有源层上形成所述相互独立的纳米导电点。
2.根据权利要求1所述的方法,其特征在于,采用离子注入的方法,利用所述纳米点掩膜,在所述有源层上形成所述相互独立的纳米导电点。
3.一种用于制造薄膜晶体管的方法,其特征在于,包括:
形成包括栅极、绝缘层、源极、漏极和有源层在内的多层结构,并使所述有源层包括相互独立的纳米导电点,还使所述纳米导电点的直径为
其中,形成包括栅极、绝缘层、源极、漏极和有源层在内的多层结构,并使所述有源层包括相互独立的纳米导电点,包括:
形成所述有源层;
在所述有源层上形成具有所述源极和所述漏极的图形,所述图形由金属合金形成;
采用脱合金化方法在所述图形对应所述有源层的区域形成纳米点掩膜;
利用所述纳米点掩膜,在所述有源层上形成所述相互独立的纳米导电点;
去除所述纳米点掩膜;
在具有所述纳米导电点的有源层及所述图形上形成所述绝缘层;
在所述绝缘层上形成所述栅极。
4.根据权利要求3所述的方法,其特征在于,采用离子注入的方法,利用所述纳米点掩膜,在所述有源层上形成所述相互独立的纳米导电点。
CN201510394548.3A 2015-07-07 2015-07-07 薄膜晶体管及其制造方法、阵列基板 Active CN104992985B (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201510394548.3A CN104992985B (zh) 2015-07-07 2015-07-07 薄膜晶体管及其制造方法、阵列基板
US14/786,055 US9917208B2 (en) 2015-07-07 2015-07-14 Thin film transistor and method for manufacturing the same, and array substrate
PCT/CN2015/083931 WO2017004840A1 (zh) 2015-07-07 2015-07-14 薄膜晶体管及其制造方法、阵列基板

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201510394548.3A CN104992985B (zh) 2015-07-07 2015-07-07 薄膜晶体管及其制造方法、阵列基板

Publications (2)

Publication Number Publication Date
CN104992985A CN104992985A (zh) 2015-10-21
CN104992985B true CN104992985B (zh) 2018-08-21

Family

ID=54304770

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201510394548.3A Active CN104992985B (zh) 2015-07-07 2015-07-07 薄膜晶体管及其制造方法、阵列基板

Country Status (3)

Country Link
US (1) US9917208B2 (zh)
CN (1) CN104992985B (zh)
WO (1) WO2017004840A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106601621B (zh) * 2017-01-12 2019-04-12 上海大学 薄膜晶体管的制备方法及具有导电孤岛的薄膜晶体管
CN106876479B (zh) * 2017-04-19 2020-03-06 京东方科技集团股份有限公司 薄膜晶体管及其制备方法、阵列基板及其制备方法、显示面板
CN109713043A (zh) * 2017-10-25 2019-05-03 京东方科技集团股份有限公司 薄膜晶体管及其制造方法、阵列基板、电子装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1804122A (zh) * 2005-12-08 2006-07-19 复旦大学 一种可移植超薄纳米孔金膜及其制备方法
CN101596598A (zh) * 2009-07-01 2009-12-09 济南大学 一种整体连续纳米多孔铜的制备方法
CN102943187A (zh) * 2012-11-19 2013-02-27 河北工业大学 纳米多孔铜的制备方法
CN104157698A (zh) * 2014-08-05 2014-11-19 京东方科技集团股份有限公司 一种薄膜晶体管及其制作方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5949188A (en) 1996-12-18 1999-09-07 Hage Gmbh & Co. Kg Electroluminescent display device with continuous base electrode
US20050139867A1 (en) * 2003-12-24 2005-06-30 Saito Shin-Ichi Field effect transistor and manufacturing method thereof
CN101689607A (zh) * 2007-06-28 2010-03-31 3M创新有限公司 结合界面导电簇的薄膜晶体管
US8729529B2 (en) * 2011-08-03 2014-05-20 Ignis Innovation Inc. Thin film transistor including a nanoconductor layer
CN102856211A (zh) * 2012-09-27 2013-01-02 中国科学院苏州纳米技术与纳米仿生研究所 一种碳纳米管场效应晶体管有源层的制备方法
TWI508305B (zh) * 2013-05-06 2015-11-11 E Ink Holdings Inc 主動元件
CN104538396B (zh) * 2015-01-16 2017-06-30 京东方科技集团股份有限公司 半导体层、半导体器件、阵列基板和显示装置的制备方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1804122A (zh) * 2005-12-08 2006-07-19 复旦大学 一种可移植超薄纳米孔金膜及其制备方法
CN101596598A (zh) * 2009-07-01 2009-12-09 济南大学 一种整体连续纳米多孔铜的制备方法
CN102943187A (zh) * 2012-11-19 2013-02-27 河北工业大学 纳米多孔铜的制备方法
CN104157698A (zh) * 2014-08-05 2014-11-19 京东方科技集团股份有限公司 一种薄膜晶体管及其制作方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Technology for nanoperiodic doping of a metal-oxide-semiconductor field-effect transistor channel using a self-forming wave-ordered structure;V K Smirnov etc;《Nanotechnology》;20030501;第14卷(第7期);第710-712页 *

Also Published As

Publication number Publication date
US9917208B2 (en) 2018-03-13
WO2017004840A1 (zh) 2017-01-12
CN104992985A (zh) 2015-10-21
US20170162712A1 (en) 2017-06-08

Similar Documents

Publication Publication Date Title
CN104393000B (zh) 一种阵列基板及其制作方法、显示装置
CN107799570A (zh) 顶栅自对准金属氧化物半导体tft及其制作方法
CN105280717B (zh) Tft及其制作方法、阵列基板及显示装置
CN106531692A (zh) 阵列基板的制备方法、阵列基板及显示装置
CN103915490A (zh) 薄膜晶体管、包括其的薄膜晶体管阵列面板及其制造方法
CN104681631B (zh) 薄膜晶体管及其制作方法、阵列基板及显示装置
CN106024909A (zh) 薄膜晶体管及其制备方法、阵列基板和显示装置
CN106941121B (zh) 一种薄膜晶体管及其制备方法、阵列基板和显示装置
CN105789120B (zh) Tft基板的制作方法及tft基板
CN105702744A (zh) 薄膜晶体管及其制作方法、阵列基板、显示装置
CN104992985B (zh) 薄膜晶体管及其制造方法、阵列基板
CN109524419A (zh) Tft阵列基板的制作方法
CN106158883B (zh) 显示面板、显示装置、阵列基板及其制作方法
CN102916051A (zh) 一种薄膜晶体管及其制作方法、阵列基板和显示装置
CN104932159A (zh) 显示基板及其制造方法、驱动方法和显示装置
CN106449653B (zh) 一种显示基板及其制备方法、显示面板、显示装置
CN103018977A (zh) 一种阵列基板及其制造方法
WO2017156885A1 (zh) 薄膜晶体管、阵列基板及其制作和驱动方法、显示装置
US10134765B2 (en) Oxide semiconductor TFT array substrate and method for manufacturing the same
CN104810375B (zh) 一种阵列基板及其制作方法和一种显示装置
CN102629589B (zh) 一种阵列基板及其制作方法和显示装置
CN106328717A (zh) 薄膜晶体管及其制造方法、显示面板
CN104617049B (zh) 一种阵列基板及其制作方法、显示装置
CN206619596U (zh) 阵列基板和显示面板
CN103915380A (zh) 一种阵列基板的制作方法、阵列基板及显示装置

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant