CN104991051B - 一种基于混合模型的混凝土强度预测方法 - Google Patents
一种基于混合模型的混凝土强度预测方法 Download PDFInfo
- Publication number
- CN104991051B CN104991051B CN201510372029.7A CN201510372029A CN104991051B CN 104991051 B CN104991051 B CN 104991051B CN 201510372029 A CN201510372029 A CN 201510372029A CN 104991051 B CN104991051 B CN 104991051B
- Authority
- CN
- China
- Prior art keywords
- concrete
- concrete strength
- strength
- artificial neural
- support vector
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 239000004567 concrete Substances 0.000 title claims abstract description 102
- 238000000034 method Methods 0.000 title claims abstract description 34
- 238000013528 artificial neural network Methods 0.000 claims abstract description 23
- 238000012706 support-vector machine Methods 0.000 claims abstract description 21
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 18
- 238000005457 optimization Methods 0.000 claims abstract description 15
- 238000002474 experimental method Methods 0.000 claims abstract description 13
- 230000006870 function Effects 0.000 claims abstract description 13
- 238000012549 training Methods 0.000 claims abstract description 13
- 239000004568 cement Substances 0.000 claims abstract description 12
- 230000003044 adaptive effect Effects 0.000 claims abstract description 10
- 239000010881 fly ash Substances 0.000 claims abstract description 10
- 239000003638 chemical reducing agent Substances 0.000 claims abstract description 9
- 239000000843 powder Substances 0.000 claims abstract description 9
- 239000002893 slag Substances 0.000 claims abstract description 9
- 238000001514 detection method Methods 0.000 claims abstract description 5
- 239000000203 mixture Substances 0.000 claims description 20
- 238000012360 testing method Methods 0.000 claims description 14
- 238000004422 calculation algorithm Methods 0.000 claims description 5
- 230000004044 response Effects 0.000 claims description 5
- 238000004364 calculation method Methods 0.000 claims description 4
- 238000013507 mapping Methods 0.000 claims description 3
- 230000008569 process Effects 0.000 claims description 3
- 238000013461 design Methods 0.000 abstract description 8
- 230000000694 effects Effects 0.000 abstract description 4
- 238000003908 quality control method Methods 0.000 abstract description 4
- 230000009286 beneficial effect Effects 0.000 description 4
- 239000002994 raw material Substances 0.000 description 3
- 238000010276 construction Methods 0.000 description 2
- 230000007812 deficiency Effects 0.000 description 2
- 238000013277 forecasting method Methods 0.000 description 2
- 229910052500 inorganic mineral Inorganic materials 0.000 description 2
- 239000011707 mineral Substances 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000011160 research Methods 0.000 description 2
- 239000004576 sand Substances 0.000 description 2
- 238000004088 simulation Methods 0.000 description 2
- 239000004575 stone Substances 0.000 description 2
- BIPPRIIKDXIPOI-UHFFFAOYSA-O CC[NH+]1C(C2)CC2C1 Chemical compound CC[NH+]1C(C2)CC2C1 BIPPRIIKDXIPOI-UHFFFAOYSA-O 0.000 description 1
- 238000001311 chemical methods and process Methods 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 230000002068 genetic effect Effects 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 238000007655 standard test method Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- -1 that is Substances 0.000 description 1
- 239000002699 waste material Substances 0.000 description 1
Landscapes
- Management, Administration, Business Operations System, And Electronic Commerce (AREA)
Abstract
Description
Claims (1)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201510372029.7A CN104991051B (zh) | 2015-06-30 | 2015-06-30 | 一种基于混合模型的混凝土强度预测方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201510372029.7A CN104991051B (zh) | 2015-06-30 | 2015-06-30 | 一种基于混合模型的混凝土强度预测方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN104991051A CN104991051A (zh) | 2015-10-21 |
CN104991051B true CN104991051B (zh) | 2017-02-22 |
Family
ID=54302890
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201510372029.7A Active CN104991051B (zh) | 2015-06-30 | 2015-06-30 | 一种基于混合模型的混凝土强度预测方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN104991051B (zh) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP7596299B2 (ja) | 2019-04-03 | 2024-12-09 | ぺリ ソシエタス ヨーロピア | 建設現場における少なくとも1つの使用目的に対するコンクリートの有用性の自動的な予測 |
Families Citing this family (21)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106568647B (zh) * | 2016-10-25 | 2019-03-08 | 武汉理工大学 | 一种基于神经网络的混凝土强度预测方法 |
CN106650807B (zh) * | 2016-12-20 | 2019-10-11 | 东南大学 | 一种海洋环境下混凝土强度劣化预测评价方法 |
CN107133446A (zh) * | 2017-03-24 | 2017-09-05 | 广东工业大学 | 一种预测超早强混凝土抗压强度的方法 |
CN109541143B (zh) * | 2018-11-28 | 2021-07-06 | 西安建筑科技大学 | 一种含挥发组元炉渣实际成分及物性随时间变化的预测方法 |
EP3924906B1 (en) * | 2019-02-11 | 2023-08-30 | Construction Research & Technology GmbH | Systems and methods for formulating or evaluating a construction composition |
CN110110774A (zh) * | 2019-04-28 | 2019-08-09 | 浙江工业大学 | 一种基于多模型融合的co2在离子液体中溶解度预测方法 |
CN110118698B (zh) * | 2019-04-30 | 2020-02-14 | 同济大学 | 一种组合混凝土结构的构建方法 |
CN110516405B (zh) * | 2019-09-11 | 2023-04-18 | 新疆农业大学 | 硅酸盐水泥基胶凝材料体系水化热无假定预测模型的构建方法 |
CN111024929A (zh) * | 2019-11-28 | 2020-04-17 | 同济大学 | 一种基于径向基神经网络的自密实混凝土强度预测方法 |
CN111191191B (zh) * | 2019-12-26 | 2022-07-12 | 南昌大学 | 一种精准预测混凝土坝变形效应的组合模型的构建方法 |
CN112016244B (zh) * | 2020-08-07 | 2023-04-07 | 中国交通建设股份有限公司吉林省分公司 | 基于svm与智能算法的耐久性混凝土多目标配合比优化方法 |
CN113299353B (zh) * | 2020-08-20 | 2022-08-26 | 湖南长天自控工程有限公司 | 一种混合机的混匀度预测方法及系统 |
CN112560232B (zh) * | 2020-12-01 | 2022-08-05 | 武汉中天科建信息科技有限公司 | 一种混凝土材质混合载荷和强度预测系统 |
CN112684156A (zh) * | 2021-01-06 | 2021-04-20 | 汉谷云智(武汉)科技有限公司 | 一种基于深度学习的混凝土强度预测方法 |
CN113793653B (zh) * | 2021-08-13 | 2024-07-23 | 河海大学 | 一种基于神经网络的高拱坝模型试验相似材料配合比确定方法 |
CN113935241B (zh) * | 2021-10-18 | 2024-04-30 | 吉林大学 | 基于Levenberg-Mar改进算法的激光选取熔化NiTi相变温度预测方法 |
CN114330084B (zh) * | 2021-12-20 | 2022-12-30 | 重庆交通大学 | 一种基于集成算法的混凝土配合比设计方法 |
CN116479725B (zh) * | 2023-05-04 | 2023-11-10 | 紫云黔冠电力设备有限责任公司 | 混凝土质量智能化加工预测系统 |
CN117388374B (zh) * | 2023-12-13 | 2024-02-20 | 南京建正建设工程质量检测有限责任公司 | 一种建筑用混凝土的强度检测方法及系统 |
CN117763701B (zh) * | 2024-02-22 | 2024-05-07 | 四川省交通勘察设计研究院有限公司 | 一种钢拱桥钢混连接过渡面的强度预测方法及相关产品 |
CN118292502A (zh) * | 2024-04-12 | 2024-07-05 | 广东迪科建设工程检测有限公司 | 基于大数据分析的桩基础监测方法及系统 |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5624491A (en) * | 1994-05-20 | 1997-04-29 | New Jersey Institute Of Technology | Compressive strength of concrete and mortar containing fly ash |
CN103217516B (zh) * | 2013-03-28 | 2016-02-17 | 中铁八局集团有限公司 | 一种混凝土强度实时监测方法 |
CN103323323B (zh) * | 2013-05-21 | 2015-05-20 | 河海大学 | 考虑加载速率影响的混凝土破坏强度预测模型的构建方法 |
CN103983760B (zh) * | 2014-05-30 | 2016-04-13 | 福建南方路面机械有限公司 | 基于最小二乘支持向量机的混凝土搅拌性能预测方法 |
CN104034865A (zh) * | 2014-06-10 | 2014-09-10 | 华侨大学 | 一种混凝土强度的预测方法 |
-
2015
- 2015-06-30 CN CN201510372029.7A patent/CN104991051B/zh active Active
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP7596299B2 (ja) | 2019-04-03 | 2024-12-09 | ぺリ ソシエタス ヨーロピア | 建設現場における少なくとも1つの使用目的に対するコンクリートの有用性の自動的な予測 |
Also Published As
Publication number | Publication date |
---|---|
CN104991051A (zh) | 2015-10-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN104991051B (zh) | 一种基于混合模型的混凝土强度预测方法 | |
Ling et al. | Combination of Support Vector Machine and K-Fold cross validation to predict compressive strength of concrete in marine environment | |
Li et al. | High-performance concrete strength prediction based on ensemble learning | |
Tran et al. | Evaluating compressive strength of concrete made with recycled concrete aggregates using machine learning approach | |
Li et al. | Optimization design for alkali-activated slag-fly ash geopolymer concrete based on artificial intelligence considering compressive strength, cost, and carbon emission | |
Atici | Prediction of the strength of mineral admixture concrete using multivariable regression analysis and an artificial neural network | |
Wang et al. | Prediction of expansion behavior of self-stressing concrete by artificial neural networks and fuzzy inference systems | |
Esmaeili‐Falak et al. | Application of optimization‐based regression analysis for evaluation of frost durability of recycled aggregate concrete | |
CN104034865A (zh) | 一种混凝土强度的预测方法 | |
Tu et al. | Prediction and analysis of compressive strength of recycled aggregate thermal insulation concrete based on GA-BP optimization network | |
CN110163430A (zh) | 基于AdaBoost算法的混凝土材料抗压强度预测方法 | |
Kumar et al. | Soft computing-based prediction models for compressive strength of concrete | |
CN107133446A (zh) | 一种预测超早强混凝土抗压强度的方法 | |
Al-Jamimi et al. | Prediction of compressive strength in plain and blended cement concretes using a hybrid artificial intelligence model | |
Cao et al. | Enhancing mix proportion design of low carbon concrete for shield segment using a combination of Bayesian optimization-NGBoost and NSGA-III algorithm | |
Jibril et al. | High strength concrete compressive strength prediction using an evolutionary computational intelligence algorithm | |
Alghamdi | Determining the mix design method for normal strength concrete using machine learning | |
Cao et al. | Application of hybrid intelligent algorithm for multi-objective optimization of high performance concrete in complex alpine environment highway | |
Luo et al. | Research on predicting compressive strength of magnesium silicate hydrate cement based on machine learning | |
Sun et al. | Predicting compressive strength of fiber-reinforced coral aggregate concrete: Interpretable optimized XGBoost model and experimental validation | |
Zhang et al. | Intelligent prediction of the frost resistance of high-performance concrete: a machine learning method | |
Feng et al. | Strength prediction of coal-based solid waste filler based on BP neural network | |
CN117935988A (zh) | 基于支持向量回归的再生粗骨料混凝土抗压强度预测方法 | |
Jiang et al. | Deep learning approaches for prediction of adiabatic temperature rise of concrete with complex mixture constituents | |
Weng et al. | Compressive strength prediction of admixed HPC concrete by hybrid deep learning approaches |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
CB03 | Change of inventor or designer information |
Inventor after: Lai Xiongming Inventor after: Huang He Inventor after: Lai Qinfang Inventor after: Wang Cheng Inventor after: Zhang Yong Inventor after: Gou Jin Inventor after: Yan Lan Inventor before: Lai Xiongming Inventor before: Su Jianhang Inventor before: Wang Cheng Inventor before: Huang He Inventor before: Zhang Yong Inventor before: Gou Jin Inventor before: Yan Lan |
|
COR | Change of bibliographic data | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant |