CN107133446A - 一种预测超早强混凝土抗压强度的方法 - Google Patents

一种预测超早强混凝土抗压强度的方法 Download PDF

Info

Publication number
CN107133446A
CN107133446A CN201710184818.7A CN201710184818A CN107133446A CN 107133446 A CN107133446 A CN 107133446A CN 201710184818 A CN201710184818 A CN 201710184818A CN 107133446 A CN107133446 A CN 107133446A
Authority
CN
China
Prior art keywords
formula
compression strength
super high
early concrete
concrete compression
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201710184818.7A
Other languages
English (en)
Inventor
丘伟兴
杨飞
徐家兴
林逸洲
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Guangdong University of Technology
Original Assignee
Guangdong University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Guangdong University of Technology filed Critical Guangdong University of Technology
Priority to CN201710184818.7A priority Critical patent/CN107133446A/zh
Publication of CN107133446A publication Critical patent/CN107133446A/zh
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16ZINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS, NOT OTHERWISE PROVIDED FOR
    • G16Z99/00Subject matter not provided for in other main groups of this subclass

Landscapes

  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)
  • Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)

Abstract

一种预测超早强混凝土抗压强度的方法,该预测超早强混凝土抗压强度的方法通过非线性映射把样本空间映射到一个高维特征空间中,将寻找最优线性回归超平面的算法归结为求解一个凸约束特性下的凸规划问题,并得到最优解,同时支持向量机通过定义核函数将高维空间中的内积运算转化为原空间中的核函数运算,最终得以对超早强混凝土的抗压强度进行预测。直观快速的对超早强混凝土的抗压强度进行预测,不再需要耗费大量人力和原材料进行实验测试,节约资源和成本。

Description

一种预测超早强混凝土抗压强度的方法
技术领域
本发明涉及预测混凝土抗压强度的方法技术领域,特别是涉及一种预测超早强混凝土抗压强度的方法。
背景技术
超早强混凝土在公路、桥梁、海港等工程的维护中具有广泛的应用前景,如桥梁合龙段施工因体系转换需要混凝土具有超早强、高强度和良好的耐久性;海港、码头等混凝土建筑物的修复受到潮差的影响,需要短时间内达到足够高的强度以防止海水冲刷;高速公路、桥梁、机场跑道等需要快速抢修以尽快开放交通。这些快速修复需要在极短的时间内使混凝土达到足够的强度,这是目前常规的混凝土难以达到的,因此需要开发一种超早强混凝土,既可用于战时抢修工程又可用于和平时期的工程修复和施工,因此超早强混凝土的研究具有重要的意义。
然而目前确定超早强混凝土在固定时间内抗压强度的方法,只能通过实验的测定来定义早期强度,这种方法不但耗费大量的原材料,而且也浪费大量的人力和时间。并且,随着混凝土系统的复杂性和动态性不断加强,影响因素逐渐增多,以及影响因素间的交互作用,线性函数已不再适用。
因此,针对现有技术不足,提供一种预测超早强混凝土抗压强度的方法以克服现有技术不足甚为必要。
发明内容
本发明的目的在于避免现有技术的不足之处而提供一种预测超早强混凝土抗压强度的方法,该预测超早强混凝土抗压强度的方法通过非线性映射把样本空间映射到一个高维特征空间中,将寻找最优线性回归超平面的算法归结为求解一个凸约束特性下的凸规划问题,并得到最优解,同时支持向量机通过定义核函数将高维空间中的内积运算转化为原空间中的核函数运算,最终得以对超早强混凝土的抗压强度进行预测。
本发明的上述目的通过如下技术手段实现。
提供一种预测超早强混凝土抗压强度的方法,预测方法步骤如下:
S1、建造函数模型;
S2、数据的采集和整理;
S3、对整理后的数据进行归一化处理;
S4、选取最优模型参数;
S5、根据最优模型参数进行预测,并得到预测结果。
优选的,步骤S1建造函数模型的方法如下:
A、训练样本集为其中xi为输入向量,yi为输出向量,n为样本个数,i为输入、输出向量的序号,i=1、2、3、……、n;支持向量机根据式(1)采用线性回归函数拟合训练样本集;
y(x)=(ω·φ(x))+b......式(1);
式(1)中:ω为权向量;b为偏置项;φ(x)为输入空间到输出空间的非线性映射;
B、对式(1)进行非负松弛变量的引入,其约束条件如下:
式(2)中:ε为误差变量;ξi为非负松弛变量;
C、根据式(3)对式(1)和式(2)进行最小化处理;
式(3)中:c为惩罚因子,c为大于0的常数;ωΤ为ω的转置;
D、将式(3)结合式(4)和式(5)转化为优化问题;
式(4)中:K(xi,xj)=φ(xi)φ(xj)为核函数;αiαj为拉格朗算子;Xi为一个训练集,Xj为另一训练集;
式(5)中:a为大于0的常数;
E、对式(4)和式(5)进行求解,并根据式(6)建立支持向量机的函数模型;
F、建立核函数,根据式(7)得到核参数;
式(7)中:γ为核参数;
G、将式(7)带入式(6)中建立支持向量机的RBF核函数预测模型如下:
具体而言的,步骤S2对不同配比参数的混凝土在常温下静置5.5小时脱模,并通过压力机对混凝土6小时时的抗压强度进行数据采集。
进一步的,步骤S2中采集的数据信息分为训练样本和预测样本。
优选的,步骤S3分别对训练样本和预测样本进行处理,且归一化的区间为[-1,1],映射如下:
式(9)中x,y∈R,xmin=min(x),xmax=max(x),R为常数。
优选的,归一化处理得出的数据通过函数模型进行处理,得到模型参数(c,g),g为核参数,γ即为g;
最优模型参数通过对模型参数的交叉验证进行选取,方法步骤如下:
S11、选取c与g的初始值,令bestc=0,bestg=0,bestCVmse=inf;
S12、将训练集平均分为N部分train1,train2,…,trainN,将一部分作为测试集进行预测,剩下的作为训练集分别进行训练,并得到准确率的平均数cv;
S13、若cv<bestCVmse,则令bestCVmse=cv、bestc=c、bestg=g,并返回S2进行处理;若cv>bestCVmse,则停止,以bestc为c,bestg为g;
bestc、bestg和bestCVmse为最优的超参数,inf为无穷大;
train1,train2,…,trainN为训练的数据。
进一步的,所述最优模型参数通过式(8)的处理得到预测结果。
具体而言的,所述采集的数据信息分别为树脂、砂、碎石、水泥、引发剂、促进剂的质量和对应配比后测得的实测值。
进一步的,数据信息采集16组,前10组为训练样本,后6组为预测样本。
本发明的预测超早强混凝土抗压强度的方法,通过将采集到的超早强混凝土配比参数进行处理,并将配比参数进行RBF核函数的处理运算,可以直接得到该配比参数的抗压强度,从而直观快速的对超早强混凝土的抗压强度进行预测,不再需要耗费大量人力和原材料进行实验测试。
附图说明
利用附图对本发明作进一步的说明,但附图中的内容不构成对本发明的任何限制。
图1是本发明一种预测超早强混凝土抗压强度的方法的系统框图。
图2是图1中的模型参数的3D效果图。
图3是图1中核函数的预测结果折线图。
具体实施方式
结合以下实施例对本发明作进一步描述。
实施例1。
如图1所示,一种预测超早强混凝土抗压强度的方法,预测方法步骤如下:
S1、建造函数模型。
S2、数据的采集和整理。
S3、对整理后的数据进行归一化处理。
S4、选取最优模型参数。
S5、根据最优模型参数进行预测,并得到预测结果。
优选的,步骤S1建造函数模型的方法如下:
A、训练样本集为其中xi为输入向量,yi为输出向量,n为样本个数,i为输入、输出向量的序号,i=1、2、3、……、n;支持向量机根据式(1)采用线性回归函数拟合训练样本集;
y(x)=(ω·φ(x))+b......式(1)。
式(1)中:ω为权向量;b为偏置项;φ(x)为输入空间到输出空间的非线性映射。
B、对式(1)进行非负松弛变量的引入,其约束条件如下:
式(2)中:ε为误差变量;ξi为非负松弛变量。
C、根据式(3)对式(1)和式(2)进行最小化处理;
式(3)中:c为惩罚因子,c为大于0的常数;ωΤ为ω的转置。
D、将式(3)结合式(4)和式(5)转化为优化问题;
式(4)中:K(xi,xj)=φ(xi)φ(xj)为核函数;αiαj为拉格朗算子;Xi为一个训练集,Xj为另一训练集。
式(5)中:a为大于0的常数。
E、对式(4)和式(5)进行求解,并根据式(6)建立支持向量机的函数模型;
F、建立核函数,根据式(7)得到核参数;
式(7)中:γ为核参数。
G、将式(7)带入式(6)中建立支持向量机的RBF核函数预测模型;
所述采集的数据信息分别为树脂、砂、碎石、水泥、引发剂、促进剂的质量和对应配比后测得的实测值。
步骤S2对不同配比参数的混凝土在常温下静置5.5小时脱模,并通过压力机对混凝土6小时时的抗压强度进行数据采集。
步骤S2中采集的数据信息分为训练样本和预测样本。
数据信息采集16组,前10组为训练样本,后6组为预测样本。
步骤S3分别对训练样本和预测样本进行处理,且归一化的区间为[-1,1],映射如下:
式(9)中x,y∈R,xmin=min(x),xmax=max(x),R为常数。
归一化处理得出的数据通过函数模型进行处理,得到模型参数(c,g),g为核参数,γ即为g。
模型参数通过对模型参数的交叉验证进行选取,方法步骤如下:
S11、选取c与g的初始值,令bestc=0,bestg=0,bestCVmse=0。
S12、将训练集平均分为N部分train1,train2,…,trainN,将一部分作为测试集进行预测,剩下的作为训练集分别进行训练,并得到准确率的平均数cv。
S13、若cv<bestCVmse,则令bestCVmse=cv、bestc=c、bestg=g,并返回S2进行处理;若cv>bestCVmse,则停止,以bestc为c,bestg为g;
bestc、bestg和bestCVmse为最优的超参数,inf为无穷大;
train1,train2,…,trainN为训练的数据。
所述最优模型参数通过式(8)的处理得到预测结果。
本发明的预测超早强混凝土抗压强度的方法,通过将采集到的超早强混凝土配比参数放入函数模型中进行处理,并将配比参数进行RBF核函数的处理运算,可以直接得到该配比参数的抗压强度,从而直观快速的对超早强混凝土的抗压强度进行预测,不再需要耗费大量人力和原材料进行实验测试,节省了资源和成本。
实施例2。
一种预测超早强混凝土抗压强度的方法,其它结构与实施例1相同,不同之处在于,还具有如下技术特征:如图2和3所示,选取16组不同配比的混凝土的组份,并按照GB/T50081-2002《普通混凝土力学性能试验方法》的方法制作100mm*100mm*100mm的试件,在常温下静置5.5小时脱模,然后用压力机测得6小时抗压强度。将数据整理后得表1。
表1混凝土配比
为了避免输入向量中各变量数量级相差过大而影响训练效果,需要对训练数据和测试数据进行归一化处理。归一化处理后的结果如表2所示。
表2对数据作归一化处理
以前十组数据作为训练样本,另外6组作为预测样本,使其通过函数模型进行训练,训练过程确定两个重要参数:惩罚函数c和核函数g,g为核参数,γ即为g。
进行模型参数(c,g)的选取。
选取的思想是通过网格法,将不同数值的c和g进行组合后,代进程序进行训练得出均方根误差,不断重复选取最小的均方根误差,从而得到最优的参数c和g。用交叉验证的方法得到最优的c和g。
得到最终拟合结果为:均方误差MSE=0.428759,相关系数R=34.3882%,bestc=48.5029,bestg=0.0039063,bestCVmse=0.017356。
将求解的惩罚函数c和核函数g的结果进行整理,整理成3D视图,如图2所示。
最后将最优的模型参数带入最终的RBF核函数预测模型中,得出预测结果,如表3所示。
表3混凝土抗压强度预测结果
再将预测值与实测值以折线图的形式表示出更加直观,如图3所示。
该方案从表3可以算出预测值与实际值的平均相对误差为8.87%,误差较低,而且本发明不需要大量人工和时间,对原材料进行实验性检测,相比较起来操作起来更加方便,显示的结果也相对直观,并且本方案可以将影响抗压强度的因素考虑进去,来建立解析模型,故此方法对于超早强混凝土的研究具有重大的意义。
最后应当说明的是,以上实施例仅用以说明本发明的技术方案而非对本发明保护范围的限制,尽管参照较佳实施例对本发明作了详细说明,本领域的普通技术人员应当理解,可以对本发明的技术方案进行修改或者等同替换,而不脱离本发明技术方案的实质和范围。

Claims (9)

1.一种预测超早强混凝土抗压强度的方法,其特征在于:预测方法步骤如下:
S1、建造函数模型;
S2、数据的采集和整理;
S3、对整理后的数据进行归一化处理;
S4、选取最优模型参数;
S5、根据最优模型参数进行预测,并得到预测结果。
2.根据权利要求1所述的一种预测超早强混凝土抗压强度的方法,其特征在于:步骤S1建造函数模型的方法如下:
A、训练样本集为其中xi为输入向量,yi为输出向量,n为样本个数,i为输入、输出向量的序号,i=1、2、3、……、n;支持向量机根据式(1)采用线性回归函数拟合训练样本集;
y(x)=(ω·φ(x))+b......式(1);
式(1)中:ω为权向量;b为偏置项;φ(x)为输入空间到输出空间的非线性映射;
B、对式(1)进行非负松弛变量的引入,其约束条件如下:
式(2)中:ε为误差变量;ξi为非负松弛变量;
C、根据式(3)对式(1)和式(2)进行最小化处理;
式(3)中:c为惩罚因子,c为大于0的常数;ωΤ为ω的转置;
D、将式(3)结合式(4)和式(5)转化为优化问题;
式(4)中:K(xi,xj)=φ(xi)φ(xj)为核函数;αiαj为拉格朗算子;Xi为一个训练集,Xj为另一训练集;
式(5)中:a为大于0的常数;
E、对式(4)和式(5)进行求解,并根据式(6)建立支持向量机的函数模型;
F、建立核函数,根据式(7)得到核参数;
式(7)中:γ为核参数;
G、将式(7)带入式(6)中建立支持向量机的RBF核函数预测模型;
3.根据权利要求2所述的一种预测超早强混凝土抗压强度的方法,其特征在于:步骤S2对不同配比参数的混凝土在常温下静置5.5小时脱模,并通过压力机对混凝土6小时时的抗压强度进行数据采集。
4.根据权利要求3所述的一种预测超早强混凝土抗压强度的方法,其特征在于:步骤S2中采集的数据信息分为训练样本和预测样本。
5.根据权利要求4所述的一种预测超早强混凝土抗压强度的方法,其特征在于:步骤S3分别对训练样本和预测样本进行处理,且归一化的区间为[-1,1],映射如下:
式(9)中x,y∈R,xmin=min(x),xmax=max(x),R为常数。
6.根据权利要求5所述的一种预测超早强混凝土抗压强度的方法,其特征在于:归一化处理得出的数据通过函数模型进行处理,得到模型参数(c,g),g为核参数,γ即为g;
最优模型参数通过对模型参数的交叉验证进行选取,方法步骤如下:
S11、选取c与g的初始值,令bestc=0,bestg=0,bestCVmse=inf;
S12、将训练集平均分为N部分train1,train2,…,trainN,将一部分作为测试集进行预测,剩下的作为训练集分别进行训练,并得到准确率的平均数cv;
S13、若cv<bestCVmse,则令bestCVmse=cv,bestc=c,bestg=g,并返回S12进行处理;若cv>bestCVmse,则停止,以bestc为c,bestg为g;
bestc、bestg和bestCVmse为超参数,inf为无穷大;
train1,train2,…,trainN为训练的数据。
7.根据权利要求6所述的一种预测超早强混凝土抗压强度的方法,其特征在于:所述最优模型参数通过式(8)的处理得到预测结果。
8.根据权利要求7所述的一种预测超早强混凝土抗压强度的方法,其特征在于:所述采集的数据信息分别为树脂、砂、碎石、水泥、引发剂、促进剂的质量和对应配比后测得的实测值。
9.根据权利要求1-8任意一项所述的一种预测超早强混凝土抗压强度的方法,其特征在于:数据信息采集16组,前10组为训练样本,后6组为预测样本。
CN201710184818.7A 2017-03-24 2017-03-24 一种预测超早强混凝土抗压强度的方法 Pending CN107133446A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710184818.7A CN107133446A (zh) 2017-03-24 2017-03-24 一种预测超早强混凝土抗压强度的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710184818.7A CN107133446A (zh) 2017-03-24 2017-03-24 一种预测超早强混凝土抗压强度的方法

Publications (1)

Publication Number Publication Date
CN107133446A true CN107133446A (zh) 2017-09-05

Family

ID=59721690

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710184818.7A Pending CN107133446A (zh) 2017-03-24 2017-03-24 一种预测超早强混凝土抗压强度的方法

Country Status (1)

Country Link
CN (1) CN107133446A (zh)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107133399A (zh) * 2017-05-02 2017-09-05 浙江省交通规划设计研究院 抗压强度评估方法及装置
CN110163430A (zh) * 2019-05-10 2019-08-23 东南大学 基于AdaBoost算法的混凝土材料抗压强度预测方法
CN110442933A (zh) * 2019-07-19 2019-11-12 东南大学 基于自适应增强回归的钢筋混凝土柱塑性铰长度计算方法
CN111832101A (zh) * 2020-06-18 2020-10-27 湖北博华自动化系统工程有限公司 一种水泥强度预测模型的构建方法及水泥强度预测方法
CN112016244A (zh) * 2020-08-07 2020-12-01 中国交通建设股份有限公司吉林省分公司 基于svm与智能算法的耐久性混凝土多目标配合比优化方法
CN113012773A (zh) * 2021-03-11 2021-06-22 华南理工大学 一种内部影响因素下基于宽度学习的水泥强度估测方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101639793A (zh) * 2009-08-19 2010-02-03 南京邮电大学 一种基于支持向量回归机的网格负载预测方法
CN102082433A (zh) * 2010-11-29 2011-06-01 沈阳工业大学 一种风电并网系统电压稳定预测装置及方法
CN102298706A (zh) * 2011-08-12 2011-12-28 河海大学 限制条件下内河航道船舶大型化预测方法
CN102693451A (zh) * 2012-06-14 2012-09-26 东北电力大学 基于多参数的氨法烟气脱硫效率预测方法
CN104034865A (zh) * 2014-06-10 2014-09-10 华侨大学 一种混凝土强度的预测方法
CN104991051A (zh) * 2015-06-30 2015-10-21 华侨大学 一种基于混合模型的混凝土强度预测方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101639793A (zh) * 2009-08-19 2010-02-03 南京邮电大学 一种基于支持向量回归机的网格负载预测方法
CN102082433A (zh) * 2010-11-29 2011-06-01 沈阳工业大学 一种风电并网系统电压稳定预测装置及方法
CN102298706A (zh) * 2011-08-12 2011-12-28 河海大学 限制条件下内河航道船舶大型化预测方法
CN102693451A (zh) * 2012-06-14 2012-09-26 东北电力大学 基于多参数的氨法烟气脱硫效率预测方法
CN104034865A (zh) * 2014-06-10 2014-09-10 华侨大学 一种混凝土强度的预测方法
CN104991051A (zh) * 2015-06-30 2015-10-21 华侨大学 一种基于混合模型的混凝土强度预测方法

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
唐江明: "基于正交试验的超早强环氧砂浆配合比优化", 《国防交通工程与技术》 *
崔海霞: "高强混凝土强度预测的支持向量机模型及应用", 《混凝土》 *
张国志等: "超早强混凝土配制及耐久性研究", 《混凝土》 *
束诗雨: "基于集成学习的支持向量机预测优化算法及其应用", 《中国优秀硕士学位论文全文数据库 信息科技辑》 *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107133399A (zh) * 2017-05-02 2017-09-05 浙江省交通规划设计研究院 抗压强度评估方法及装置
CN107133399B (zh) * 2017-05-02 2020-08-14 浙江省交通规划设计研究院 抗压强度评估方法及装置
CN110163430A (zh) * 2019-05-10 2019-08-23 东南大学 基于AdaBoost算法的混凝土材料抗压强度预测方法
CN110442933A (zh) * 2019-07-19 2019-11-12 东南大学 基于自适应增强回归的钢筋混凝土柱塑性铰长度计算方法
CN111832101A (zh) * 2020-06-18 2020-10-27 湖北博华自动化系统工程有限公司 一种水泥强度预测模型的构建方法及水泥强度预测方法
CN112016244A (zh) * 2020-08-07 2020-12-01 中国交通建设股份有限公司吉林省分公司 基于svm与智能算法的耐久性混凝土多目标配合比优化方法
CN113012773A (zh) * 2021-03-11 2021-06-22 华南理工大学 一种内部影响因素下基于宽度学习的水泥强度估测方法

Similar Documents

Publication Publication Date Title
CN107133446A (zh) 一种预测超早强混凝土抗压强度的方法
Behnood et al. Prediction of the compressive strength of normal and high-performance concretes using M5P model tree algorithm
Ni et al. Prediction of compressive strength of concrete by neural networks
CN104914069B (zh) 可迁移计算的肉类品质近红外检测方法及装置
CN104034865A (zh) 一种混凝土强度的预测方法
Sadrossadat et al. Towards application of linear genetic programming for indirect estimation of the resilient modulus of pavements subgrade soils
CN105040543B (zh) 一种沥青混合料矿料间隙率大小排序预估方法
CN105243193B (zh) 一种确定徐变试验棱柱体试件抗压强度折算系数的方法
Xiao et al. Viscosity prediction of CRM binders using artificial neural network approach
Zhao et al. Prediction of air voids of asphalt layers by intelligent algorithm
Niu et al. Rheological properties of cemented paste backfill and the construction of a prediction model
Shi et al. Meso-structural evaluation of asphalt mixture based on pore cellular structure model
Alyaseen et al. Application of soft computing techniques for the prediction of splitting tensile strength in bacterial concrete
CN117195163B (zh) 基于混凝土配方的坍落度预测方法、装置及可读介质
Dalla Zanna et al. Solid construction waste management in large civil construction companies through use of specific software-case study
Zhao et al. Influence of initial defects on the fatigue behaviour of cement-stabilized macadam base through DEM
Ahmed et al. Characterisation of heavy traffic axle load spectra for mechanistic-empirical pavement design applications
CN116432461A (zh) 混凝土徐变特性预测方法、装置、电子设备及存储介质
Du et al. Cold in-place recycling pavement rutting prediction model using grey modeling method
SHIRMOHAMMADI et al. APPLICATION OF FUZZY LOGIC FOR EVALUATION OF RESILIENT MODULUS PERFORMANCE OF STONE MASTIC ASPHALT.
Al-Martini et al. Genetic algorithm rheological equations for cement paste
Lu et al. Dynamic data monitoring of building information of nano-modified building steel structure materials using BIM Model
Ghorbani et al. Machine learning-based prediction of resilient modulus for blends of tire-derived aggregates and demolition wastes
Liu et al. Intelligent identification of concrete uniformity based on dynamic mixing
Li et al. Contribution modeling on condition evaluation of asphalt pavement using uncertainty measurement and entropy theory

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20170905