CN104986768A - 一种氮化合成硅纳米粉的方法及其应用 - Google Patents

一种氮化合成硅纳米粉的方法及其应用 Download PDF

Info

Publication number
CN104986768A
CN104986768A CN201510254325.7A CN201510254325A CN104986768A CN 104986768 A CN104986768 A CN 104986768A CN 201510254325 A CN201510254325 A CN 201510254325A CN 104986768 A CN104986768 A CN 104986768A
Authority
CN
China
Prior art keywords
silicon
metal
magnesium
metal alloy
silicon nano
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201510254325.7A
Other languages
English (en)
Inventor
钱逸泰
朱永春
韩莹
林宁
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Science and Technology of China USTC
Original Assignee
University of Science and Technology of China USTC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Science and Technology of China USTC filed Critical University of Science and Technology of China USTC
Priority to CN201510254325.7A priority Critical patent/CN104986768A/zh
Publication of CN104986768A publication Critical patent/CN104986768A/zh
Pending legal-status Critical Current

Links

Landscapes

  • Silicon Compounds (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

本发明提供一种氮化合成硅纳米粉的方法及其应用。具体是在温和条件下,以微米级硅粉为硅源,经过与金属或其合金反应制备硅/金属合金,然后经过氮气氮化硅/金属合金合成硅纳米粉。本发明不会产生硅氧化合物,避免使用剧毒的氢氟酸试剂。控制适当的反应温度、反应时间,该反应能够彻底进行,可实现宏量制备纳米硅材料。

Description

一种氮化合成硅纳米粉的方法及其应用
技术领域
本发明涉及硅纳米粉的制备及应用领域,具体地涉及一种氮气与硅/金属合金氧化还原反应制备高性能硅纳米粉的工艺,所制备硅纳米粉在碳复合后可用作锂离子电池负极材料。
背景技术
基于在功能电子设备上重要的应用,硅纳米材料的制备引起了广泛的关注。同时,硅纳米材料在锂离子电池应用上由于具有高的理论容量(~4200mAh g-1)和低的放电电位(<0.5V,Li/Li+)被认为是代替传统负极最好的材料。
传统上,硅材料主要采用固相还原二氧化硅制备。例如高于2000℃的碳热还原二氧化硅(文献1,Nagamori,M.,Malinsky,I.&Claveau,A.Metall.Trans.B17,503–514(1986));650℃时的镁热还原(文献2,Bao Z,Weatherspoon M R,Shian S,et al.,Nature,446:172-175,(2007))和大于850℃条件下的电化学还原(文献3,Cho S K,Fan F R F,Bard A J.,AngewandteChemie,124:12912-12916(2012))。近期,为了合成能应用于锂电池负极材料的纳米硅材料,大量的合成方法得到了发展。例如,通过化学气相沉积法,在压力为3Torr的反应器内400℃热解SiH4/H2(50%)和PH3/H2(100ppm)的混合气,并在多孔氧化铝为模板的辅助下制备硅纳米线,该纳米线展示了长的循环寿命(1100圈充放循环后容量为1029mAh/g)和高的倍率性能(10个倍率下容量为~956mAh g-1)(文献4,Cho J H,Picraux S T.Nano letters,13:5740-5747(2013))。这种技术制备的硅纳米材料性能较好,但方法昂贵。对于硅纳米材料在有机溶剂中的制备,Heath等人在1992年首次报道了有机相中钠还原四氯化硅制备硅纳米团簇的方法,该方法需要在钢制反应釜内385℃反应3到7天(文献5,Heath J R.,Science,258:1131-1133(1992))。随后,Jaephil Cho等人使用类似的制备方法合成了硅纳米颗粒,该颗粒通过进一步的碳包覆后展现了高的充电容量(3535mAh g-1)并且循环40圈后容量保持96%(文献6,Kim H,SeoM,Park M H,et al.Angew.Chem.Inter.Ed.,49:2146-2149(2010))。近期,Yitai Qian等人建立的熔盐体系在低温条件下还原四氯化硅以制备硅纳米颗粒,在3A g-1的电流密度下循环500圈容量保持1183mAh g-1.(文献7,N.Lin,Y.Han,L.B.Wang,J.B.Zhou,J.Zhou,Y.C.Zhu and Y.T.Qian,Angew.Chem.Int.Ed.,54:3822-3825(2015))Brian A.Korgel等人在490℃下,通过有机相中热解苯硅烷制备了硅纳米线,当进一步进行碳包覆后,该硅纳米线循环30圈后可逆容量仍达到1500mAh g-1(文献8,Chan C K,Patel R N,O’Connell M J,et al.,ACS nano,4:1443-1450(2010))。TakeshiWada等在熔融的金属铋中去除硅化镁合金中的镁以制备多孔硅材料,在1A g-1的电流密度下,恒容量1000mAh g-1充放电循环1500圈,容量保持100%.(文献9,T.Wada,T.Ichitsubo,K.Yubuta,H.Segawa,H.Yoshida,H.Kato,NanoLett.,14:4505-4510(2014))与以上方法相比,本发明的反应需原料便宜,不使用危害性试剂如氢氟酸,操作简单而且产率高。目前所报道的制备纳米硅负极材料的方法中,所面临的问题主要有设备成本高,总产率较低,反应原料昂贵,需要有毒试剂如硅烷,氢氟酸等。因此,发展硅纳米粉的环境友好的合成方法,对硅纳米材料的规模制备及硅作为高性能锂离子负极材料的实际应用具有重要意义。
发明内容
本申请提供一种合成硅纳米粉的方法,作为锂离子负极材料,具有优良的电化学性能。对比文献报道,所需的原料便宜,制备流程环保,产率较高,生产成本低,利于放大生产。因此,本发明的目的在于提供一种简单高效制备高性能硅纳米材料的方法。使用价格便宜的商品化微米级硅粉与商品金属制备硅/金属合金,然后通过氮气氮化硅/金属合金的反应制备纳米硅材料。该硅纳米粉体应用于锂电负极能有效解决硅作为高性能锂离子负极材料的实际应用问题。
本发明的第一个方面提供一种制备硅纳米粉的方法,所述方法包括如下步骤:
1)将微米级硅粉与金属混合,在氩气保护下煅烧,获得硅/金属合金;
2)将步骤1)获得的硅/金属合金在氮气氛下加热;
其中所述金属选自锂、钠、镁、铝或其相应合金或其组合。
在一个优选的实施方案中,在步骤2)之后还包括水洗、稀释盐酸洗、除杂、过滤和/或干燥的步骤。
在一个优选的实施方案中,所述金属为镁。
在一个优选的实施方案中,步骤1)中的煅烧温度为500到1000摄氏度,优选为700摄氏度。
在一个优选的实施方案中,步骤1)中的煅烧时间为10到30小时。
在一个优选的实施方案中,步骤1)中镁与微米级硅粉的摩尔比为2:1。
在一个优选的实施方案中,步骤2)中的加热温度为700到900摄氏度。
在一个优选的实施方案中,步骤2)中的加热时间为1小时到3天。
本发明的第二个方面提供本发明第一个方面所述的方法制备的硅纳米粉。
本发明的第三个方面提供本发明第二个方面所述的硅纳米粉用作锂离子电池负极材料的用途。
具体地,本发明的技术方案是:
一种氮气氮化硅/金属合金制备硅纳米粉的方法,在温和条件下,以廉价的商品化微米级硅粉为硅源,经过与金属或其合金反应制备硅/金属合金,然后经过氮气氮化硅/金属合金合成硅纳米粉;其特征在于,采用氮气氮化硅/金属合金的反应,选用廉价的商品微米级硅粉为最初硅源制备硅/金属合金,然后通过氮气氮化硅/金属合金制备纳米硅,该系列反应不会接触到任何的氧气,故而不会产生硅氧化合物,避免使用剧毒的氢氟酸试剂。控制适当的反应温度,反应时间该反应能够彻底进行,副产物如氮化镁容易洗去,可实现宏量制备纳米硅材料。
原料如下
硅源,选自商品化的微米级硅粉;
金属,选用锂、钠、镁、铝中的一种或多种,或其相应的金属合金。
具体步骤如下:
a、将上述硅粉与金属按当量比混合,在氩气保护中在500到1000摄氏度煅烧5-25小时,制备相应的硅/金属合金;
b、将上述制备的硅/金属合金在氮气氛围中加热到700到900摄氏度,保持1小时到3天。待反应结束初产物经水洗,稀释盐酸洗,除去杂质后,过滤干燥即获得纯相的硅纳米粉体;
本发明方法所述部分方案所制备硅纳米粉可以达到95%甚至更高的产率。
优选的,所述金属选用镁粉;
优选的,金属镁与硅粉的摩尔比为Mg:Si=2:1;
优选的,反应时间为10到30小时;
所述反应可以进一步应用于不锈钢反应釜及管式炉中进行;
所述的硅纳米粉体具有较好的多孔结构,多为均匀介孔状的微纳结构。
所述硅纳米粉体可以与碳复合后作为负极,组装成锂离子电池,当该粉体用于锂离子电池负极材料时,表现出较高的储锂容量、高库伦效率以及长的循环稳定性。
锂离子电池高储锂容量以及长的循环稳定性是由该材料的结构决定的,其中硅纳米颗粒贡献高的储锂容量,均匀介孔状的微纳结构为硅颗粒提供体积膨胀和收缩的空间以及锂离子输运通道。
本发明具有以下优点和积极效果:
与现有的碳热、镁热还原氧化硅等技术相比,本发明无需使用剧毒的氢氟酸试剂,而且产率较高;与现有的还原四氯化硅等技术相比,本发明对设备要求较低,原料安全,操作简单;与现有的有机液相还原等技术相比,本发明原料低廉无毒。
本发明最初硅源来自多种廉价的商品化微米级硅粉以及金属,如镁粉,制备流程环保,利于放大生产。
本发明方法获得的硅粉为纳米结构颗粒,具有较好的形貌,颗粒为均匀介孔状的微纳结构尺寸范围在20~3000nm,孔径主要分布为10-100nm。
本发明制备的纳米硅颗粒材料,用于锂离子电池负极时,显示出远高于石墨负极的储锂容量。
本发明合成的硅纳米粉与碳复合作为负极,组装成锂离子电池,其储锂容量可高于1000mAh/g,较石墨类负极的372mAh/g提高了3倍,并具有长循环寿命。
附图说明
图1是实施例1得到的产物的x射线衍射图;
图2是实施例1得到的产物的扫描电镜图;
图3是实施例2得到的产物的x射线衍射图;
图4是实施例2得到的产物的透射电镜图;
图5实施例2得到的产物的扫描电镜图;
图6是实施例2得到的硅纳米粉体在电流密度为0.1C时的充放电循环图;
图7是实施例2得到的硅纳米粉体在电流密度为0.5C时的充放电循环图。
图8是实施例2得到的硅纳米粉体的电化学倍率性能图。
具体实施方式
下面结合实施例对本发明的技术方案进行清楚,详细的描述。但是应当理解,所描述的实施例仅仅是本发明的一部分,而不是全部的实施例。基于本发明中的实施例,本领域的技术工作人员在没有作出创造性劳动前提下所获得的所有其他实施例。都属于本发明的保护范围。
本发明实施例中采用的化学试剂均购自国药集团化学试剂有限公司。
实施例1:以金属镁粉和硅粉为原料制备硅化镁
取28g的硅粉与50g金属镁粉混合均匀后,在氩气的保护氛围下装入1.5L的不锈钢反应釜中。将不锈钢反应釜放入电炉中加热到700摄氏度,并保持10小时。
采用X光粉末衍射仪(Philips X’Pert Super diffract meter)进行X光衍射分析,图1为该实施例所得粉体的x射线衍射谱。由图可见,X光衍射谱图中2θ在10-80°范围内有清晰可见的衍射峰,所有衍射峰均可指标为立方的Mg2Si(JCPDS NO.34-0458)。该方案产率为100%。
产物的扫描电镜图(图2)显示该产物为亚微米级的结构,表面为熔融态。
实施例2:从硅化镁制备硅纳米粉
取实施例1所制备的硅化镁50g放于可通气的不锈钢反应釜中,连接氮气并循坏。将该不锈钢釜放于电炉中加热到700摄氏度保持10h。待自然冷却后取出样品,经酸洗,水洗后放于真空烘箱中50摄氏度烘干。
图3为该实施例所得粉体的x射线衍射谱。谱图显示该粉体为纯硅相(JPCDS 77-2111)。
图4为该实施例所得粉体的扫描电镜图,显示该粉体为微米级的纳米颗粒团聚体。
图5为该实施例所得粉体的透射电镜图,显示所制备的粉体具有孔道结构,孔径大小为10纳米到100纳米。粉体的颗粒大小分布为20纳米到1000纳米。
实施例3:所获得硅纳米粉在电池中的应用
将上述实施例2中的产物分别装成CR2016扣式电池(深圳市鹏翔运达机械科技有限公司),以锂片为对电极,聚烯烃多孔膜(Celgard 2500)为隔膜,以LiPF6的碳酸乙烯酯(EC)和碳酸二甲酯(DMC)(体积比1:1)的混合溶液作为电解液,CR2016电池在氩气气氛的手套箱中完成。硅电极采用70wt%的实施例中的硅纳米粉体、10wt%的羧甲基纤维素钠胶黏剂、20%的导电炭黑、水混合而成,电极膜的衬底为金属铜箔。在测试温度为25℃下进行电性能测试。图6-8为上述实施例2所得的硅纳米粉体的电化学储锂性能图。如图所示,在0.1C的电流密度下循环,20圈后可逆比容量为2800mAh/g,在0.5C的电流密度下循环90圈,可逆比容量保持1800mAh/g。
结果表明,本发明可以经使用价格低廉的商品硅粉为原料,经过合金化以及随后的去合金化实现硅纳米粉体的制备。通过控制反应温度,反应时间等因素,提高产率。当这种材料用于锂离子电池负极材料时,显示出远高于石墨负极的储锂容量以较好的循环稳定性,可作为潜在的下一代高性能锂离子电池负极材料。

Claims (10)

1.一种制备硅纳米粉的方法,所述方法包括如下步骤:
1)将微米级硅粉与金属混合,在氩气保护下煅烧,获得硅/金属合金;
2)将步骤1)获得的硅/金属合金在氮气氛下加热;
其中所述金属选自锂、钠、镁、铝或其相应合金或其组合。
2.根据权利要求1所述的方法,其中在步骤2)之后还包括水洗、稀释盐酸洗、除杂、过滤和/或干燥的步骤。
3.根据权利要求1所述的方法,其中所述金属为镁。
4.根据权利要求1所述的方法,其中步骤1)中的煅烧温度为500到1000摄氏度,优选为700摄氏度。
5.根据权利要求1所述的方法,其中步骤1)中的煅烧时间为5到100小时,优选为10到30小时。
6.根据权利要求1所述的方法,其中步骤1)中镁与微米级硅粉的摩尔比为2:1。
7.根据权利要求1所述的方法,其中步骤2)中的加热温度为700到900摄氏度。
8.根据权利要求1所述的方法,其中步骤2)中的加热时间为1小时到3天。
9.根据权利要求1-8任一项所述的方法制备的硅纳米粉。
10.根据权利要求9所述的硅纳米粉用作锂离子电池负极材料的用途。
CN201510254325.7A 2015-05-18 2015-05-18 一种氮化合成硅纳米粉的方法及其应用 Pending CN104986768A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201510254325.7A CN104986768A (zh) 2015-05-18 2015-05-18 一种氮化合成硅纳米粉的方法及其应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201510254325.7A CN104986768A (zh) 2015-05-18 2015-05-18 一种氮化合成硅纳米粉的方法及其应用

Publications (1)

Publication Number Publication Date
CN104986768A true CN104986768A (zh) 2015-10-21

Family

ID=54298698

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201510254325.7A Pending CN104986768A (zh) 2015-05-18 2015-05-18 一种氮化合成硅纳米粉的方法及其应用

Country Status (1)

Country Link
CN (1) CN104986768A (zh)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106241812A (zh) * 2016-07-29 2016-12-21 中国科学技术大学 制备硅纳米材料的方法
CN107074560A (zh) * 2015-10-29 2017-08-18 瓦克化学股份公司 通过镁热还原用于生产硅的方法
CN108190892A (zh) * 2018-02-09 2018-06-22 武汉科技大学 一种无酸化大规模制备纳米硅的方法
CN108269989A (zh) * 2018-02-09 2018-07-10 武汉科技大学 一种碳包覆微米硅、其制备方法和应用
JP2019513111A (ja) * 2016-07-27 2019-05-23 エプロ ディベロップメント リミテッド シリコンナノ粒子の製造及びその使用における改良
CN109941998A (zh) * 2019-04-04 2019-06-28 武汉科技大学 一种相分离去合金化提纯硅的方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102897768A (zh) * 2012-09-06 2013-01-30 中国科学院青海盐湖研究所 一种Mg2Si热电材料的制备方法
WO2013141230A1 (ja) * 2012-03-21 2013-09-26 古河電気工業株式会社 多孔質シリコン粒子及び多孔質シリコン複合体粒子
CN104241620A (zh) * 2013-06-21 2014-12-24 国立大学法人蔚山科学技术大学校产学协力团 多孔硅基负极活性材料、它的制备方法以及包括它的可再充电锂电池

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013141230A1 (ja) * 2012-03-21 2013-09-26 古河電気工業株式会社 多孔質シリコン粒子及び多孔質シリコン複合体粒子
CN102897768A (zh) * 2012-09-06 2013-01-30 中国科学院青海盐湖研究所 一种Mg2Si热电材料的制备方法
CN104241620A (zh) * 2013-06-21 2014-12-24 国立大学法人蔚山科学技术大学校产学协力团 多孔硅基负极活性材料、它的制备方法以及包括它的可再充电锂电池

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
HIROSHI UCHIDA ET AL.: ""Synthesis of Magnesium Silicon Nitride by Nitridation of Powders in the Magnesium-silicon System"", 《JOURNAL OF THE CERAMIC SOCIETY OF JAPAN》 *
JIANGWEN LIANG ET AL.: ""Nanoporous silicon prepared through air-oxidation demagnesiation of Mg2Si and properties of its lithium ion batteries"", 《CHEM. COMMUN.》 *

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107074560A (zh) * 2015-10-29 2017-08-18 瓦克化学股份公司 通过镁热还原用于生产硅的方法
CN107074560B (zh) * 2015-10-29 2019-04-12 瓦克化学股份公司 通过镁热还原用于生产硅的方法
JP2019513111A (ja) * 2016-07-27 2019-05-23 エプロ ディベロップメント リミテッド シリコンナノ粒子の製造及びその使用における改良
JP2021035903A (ja) * 2016-07-27 2021-03-04 エプロ ディベロップメント リミテッド シリコンナノ粒子の製造及びその使用における改良
JP7149996B2 (ja) 2016-07-27 2022-10-07 エプロ ディベロップメント リミテッド シリコンナノ粒子の製造及びその使用における改良
CN106241812A (zh) * 2016-07-29 2016-12-21 中国科学技术大学 制备硅纳米材料的方法
CN108190892A (zh) * 2018-02-09 2018-06-22 武汉科技大学 一种无酸化大规模制备纳米硅的方法
CN108269989A (zh) * 2018-02-09 2018-07-10 武汉科技大学 一种碳包覆微米硅、其制备方法和应用
CN109941998A (zh) * 2019-04-04 2019-06-28 武汉科技大学 一种相分离去合金化提纯硅的方法

Similar Documents

Publication Publication Date Title
CN105084365B (zh) 一种硅纳米材料的制备方法及应用
CN105895886B (zh) 一种钠离子电池过渡金属磷化物/多孔碳负极复合材料及其制备方法
CN106495161B (zh) 一种基于金属介入金属热还原制备纳米硅的方法
CN104986768A (zh) 一种氮化合成硅纳米粉的方法及其应用
CN104528728A (zh) 一种以四氯化硅为原料合成硅纳米粉的方法及其应用
CN112349899B (zh) 一种硅基复合负极材料及其制备方法和锂离子电池
CN110492090B (zh) 一种生物质碳包覆硫化钴-八硫化九钴复合材料的制备及应用
CN102569807A (zh) 一种包覆改性的锰酸锂正极材料及其制备方法
CN111793824B (zh) 一种表面修饰高镍正极材料及其制备方法和应用
CN108899480A (zh) 一种长循环寿命高比容量镍钴铝正极材料及其制备方法
JPWO2014162693A1 (ja) 複合材料
CN106486658A (zh) 一种固相反应制备硅纳米材料的方法及其应用
CN106115785B (zh) 一种纯相MoO2钠离子电池负极材料及其制备方法
CN110336003A (zh) 一种多孔硅基复合材料及其制备方法和应用
CN105244503A (zh) 一种分级石墨烯修饰的球形钠离子电池电极材料的制备方法
CN109494399A (zh) 一种硅/固态电解质纳米复合材料及其制备方法和应用
CN104803423A (zh) 一种多孔四氧化三钴材料的制备方法及其应用
CN105070902A (zh) 一种基于混合过渡金属的钠二次电池正极材料制备方法
Bai et al. Dual-modified Li4Ti5O12 anode by copper decoration and carbon coating to boost lithium storage
Li et al. Construction of porous Si/Ag@ C anode for lithium-ion battery by recycling volatile deposition waste derived from refining silicon
CN104332620A (zh) 一种水热反应合成硅纳米粉的方法及其应用
CN111313025A (zh) 氮掺杂碳包覆鳞片状氧化钛材料及其制备方法、应用
CN104157855B (zh) 锂离子电池多级结构硅碳复合负极材料的制备方法
TW200911692A (en) Process for preparing lithium-rich metal oxides
CN111162252A (zh) 一种rgo修饰的氟代磷酸钒氧钠复合材料的制备方法及产品与应用

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20151021

WD01 Invention patent application deemed withdrawn after publication