CN104961099A - 磷掺杂耦合纳米限域镁基储氢材料的制备方法 - Google Patents

磷掺杂耦合纳米限域镁基储氢材料的制备方法 Download PDF

Info

Publication number
CN104961099A
CN104961099A CN201510352904.5A CN201510352904A CN104961099A CN 104961099 A CN104961099 A CN 104961099A CN 201510352904 A CN201510352904 A CN 201510352904A CN 104961099 A CN104961099 A CN 104961099A
Authority
CN
China
Prior art keywords
framework material
hydrogen storage
phosphorus doping
mesoporous framework
mesoporous
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201510352904.5A
Other languages
English (en)
Inventor
吴成章
何大亮
王宇龙
丁伟中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Shanghai for Science and Technology
Original Assignee
University of Shanghai for Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Shanghai for Science and Technology filed Critical University of Shanghai for Science and Technology
Priority to CN201510352904.5A priority Critical patent/CN104961099A/zh
Publication of CN104961099A publication Critical patent/CN104961099A/zh
Pending legal-status Critical Current

Links

Landscapes

  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Hydrogen, Water And Hydrids (AREA)

Abstract

本发明公开了一种磷掺杂耦合纳米限域镁基储氢材料的制备方法,应用于新能源材料技术领域。本发明方法制备的储氢材料为氢化镁(MgH2)负载在掺杂磷元素的介孔骨架材料纳米孔道中。使用一步法合成磷元素与介孔骨架材料纳米材料,再将二丁基镁(MgBu2)与磷元素掺杂的介孔骨架材料浸渍,在高压反应釜中利用一定温度和压力将MgBu2置换成负载在磷元素掺杂介孔骨架材料纳米孔道孔内的MgH2,再用戊烷将负载在孔道外的MgH2洗去,经干燥制得。本发明方法合成的纳米限域MgH2在室温下就可以放出大量的氢气,具有很好的吸放氢动力学和放氢热力学。本发明方法操作简单,合成快,分散性好,具有理想的应用前景。

Description

磷掺杂耦合纳米限域镁基储氢材料的制备方法
技术领域
本发明涉及一种储氢材料制备方法,特别是涉及一种镁基储氢材料制备方法,应用于清洁能源材料制备工艺技术领域。
背景技术
当今世界为了解决能源短缺、环境污染和经济可持续发展,人们在竭力寻找可替代的清洁能源和可再生能源。近年来“雾霾”成为人们最痛恨的污染,由此可见,寻找新的清洁能源无论对整个世界还是对我国的可持续发展都有着特别重要的意义。氢能燃烧产物为水,是一种理想的低污染或零污染的清洁能源,能量密度高(142 MJ kg-1),虽然氢燃料汽车的发展困难重重,但作为长期目标来看终将是解决城市大气污染的最重要途径之一。美国能源部(DOE)新修订的储氢标准为:到2017年,储氢系统的体积储氢密度达到40g/L,质量储氢密度为5.5wt.%。目前所研究的金属氢化物、碳材料、介孔材料、复合氢化物及化学氢化物等多种储氢体系均无法满足车载氢源的要求,因为含氢量较高的储氢体系不仅吸放氢温度高,而且吸放氢动力学差,而放氢温度较低且动力学吸放氢速率较高的材料储氢容量又较低。金属镁的理论储氢容量高(7.6 wt.%)、可逆性好、储放氢反应简单可控而备受关注。然而,由于氢化镁(MgH2)动力学吸放氢速率缓慢,在1个大气压下放氢温度接近573K(ΔH=75kJ mol-1 H2),故其距满足车载氢源的实际应用要求尚有很大距离。
提高Mg吸放氢性能的手段主要由以下两种:一种是通过加入催化剂或添加剂进行机械球磨改性;另一种方法是Mg晶粒的纳米化,用介孔骨架材料纳米限域MgH2来抑制颗粒的烧结和团聚是一种有效的方法。Liao 等人计算了在石墨烯带边上未掺杂和掺杂B、N、O等磷后氢气的吸附解离堡垒,发现未掺杂时为1.54eV,而掺杂B、N、O后分别为0.14eV、0.86eV和0.47eV,各降低了约91%、44%和70%,现有的介孔骨架材料的吸放氢动力学性质和放氢热力学性质不够理想,目前还未见磷杂化原子掺杂碳材料对氢化物吸收氢行为影响的相关报道。
发明内容
为了解决现有技术问题,本发明的目的在于克服已有技术存在的不足,提供一种磷掺杂耦合纳米限域镁基储氢材料的制备方法,针对Mg吸放氢速率慢、放氢温度高,采用磷掺杂对纳米限域镁基储氢材料性能进行改善,该储氢材料为MgH2颗粒负载在掺杂磷元素的介孔骨架材料纳米孔道中,制备工艺简单、原料成本低、反应条件容易控制,“纳米限域”很好的抑制了MgH2团簇的烧结和长大,由于Mg与介孔骨架材料之间的相互作用,以及电负性强的磷元素的影响,使得Mg的吸放氢动力学和放氢热力学得到了很大的改善。
为达到上述发明创造目的,本发明采用下述技术方案:
一种磷掺杂耦合纳米限域镁基储氢材料的制备方法,包括以下步骤:
a.制备介孔骨架材料时,用磷的酸或盐杂化介孔骨架材料,使介孔骨架材料基体中弥散掺杂磷元素,采用一步法合成磷掺杂的介孔骨架材料,制成复合材料框架体系备用;制备介孔骨架材料的基体材料优选采用介孔碳、碳凝胶、纳米碳管、介孔硅SBA-15、金属有机框架结构材料;b.在433~523K下并在真空下对在步骤a中制备的磷掺杂的介孔骨架材料干燥6~12h,去除磷掺杂的介孔骨架材料的纳米孔道中的气态杂质和湿气;
c.将经过步骤b干燥后的磷掺杂的介孔骨架材料置于高压反应釜中,使磷掺杂的介孔骨架材料在二丁基镁中进行浸渍反应,进行浸渍反应时,将高压反应釜内用H2低压洗气6~10次,将高压反应釜中的惰性保护气氛全部置换为H2气氛,并在高压反应釜中调节H2压力至4MPa开始升温并对混合反应物进行搅拌,控制搅拌速度为400~600rmp/min,当高压反应釜中反应温度升到443~473K后,将高压反应釜中气体压力调整至5~6MPa,进行24h以上的浸渍反应,得到反应产物的混合物,进行浸渍反应时,按照镁元素质量与磷掺杂的介孔骨架材料质量比为1:4~9:1的反应配比取一定量的二丁基镁;高压反应釜中的惰性保护气氛优选采用氦气和氩气中的任意一种;磷掺杂的介孔骨架材料在二丁基镁中进行浸渍反应的过程优选在手套箱中进行;
d.对高压反应釜进行减压,将在步骤c中制备的反应产物的混合物冷却,然后将反应产物的混合物移入手套箱中,在手套箱中将反应产物的混合物的悬浮液体移去,得到嵌入磷元素掺杂的介孔骨架材料中的MgH2凝胶,然后取戊烷与MgH2凝胶溶解并电磁搅拌3~6h,洗去负载在磷掺杂的介孔骨架材料的纳米孔道外部的MgH2,待MgH2凝胶沉淀后,移去戊烷,并重复用戊烷溶解并洗去磷掺杂的介孔骨架材料的纳米孔道外部的MgH2溶解过程和洗涤过程至少一次,每次洗去磷掺杂的介孔骨架材料的纳米孔道外部的MgH2后皆移去戊烷,最后一次洗涤完成后,得到剩余的MgH2凝胶结合形成镁基储氢材料前驱体;
e.将在步骤d中最后一次洗涤完成后制备的镁基储氢材料前驱体在353~373K下并在真空下干燥接近6h,即可得到MgH2负载在磷掺杂的介孔骨架材料的纳米孔道中的磷掺杂耦合纳米限域镁基储氢材料;将在上述步骤d中最后一次洗涤完成后制备的镁基储氢材料前驱体进行干燥的过程优选在手套箱中进行。
作为本发明优选的技术方案,在上述步骤a中,制备介孔骨架材料时,控制介孔骨架材料基体的纳米孔道的尺寸,使在上述步骤e中制备的磷掺杂耦合纳米限域镁基储氢材料中的介孔骨架材料的纳米孔道中被限域的MgH2的尺寸分布在1~4nm之间。在上述步骤a中,制备介孔骨架材料时,进一步优选控制介孔骨架材料基体的纳米孔道的孔径为2~6nm。
本发明与现有技术相比较,具有如下显而易见的突出实质性特点和显著优点:
1. 本发明制备方法用磷掺杂的介孔骨架材料限域MgH2,使其颗粒尺寸降低到纳米级别,所制备的储氢材料为MgH2颗粒负载在磷元素掺杂的介孔骨架材料纳米孔道中形成的复合材料,制备工艺简单,原料成本低,反应条件容易控制,“纳米限域”很好的抑制了MgH2团簇的烧结和长大,Mg与介孔骨架材料之间的相互作用,以及电负性强的磷的影响,使得Mg的吸放氢动力学和放氢热力学得到了很大的改善;;
2. 本发明制备方法制备的Mg基储氢材料可作为氢源提供氢,由于其储氢量高,吸放氢动力学好,放氢温度低,实现了Mg在室温下就可以放出大量的氢,可商业化应用于移动能源、燃料电池和电子产品等。
附图说明
图1是本发明实施例一的磷掺杂介孔碳CMK-3“纳米限域”MgH2的Mg基储氢材料微结构原理示意图。
图2是本发明实施例一的磷掺杂介孔碳CMK-3“纳米限域”MgH2的Mg基储氢材料的X射线衍射(XRD)图。
图3是本发明实施例一的磷掺杂介孔碳CMK-3“纳米限域”MgH2的Mg基储氢材料与未掺杂磷元素介孔碳CMK-3“纳米限域”MgH2的Mg基储氢材料的TPD-MS对比图。
图4是本发明实施例一的磷掺杂介孔碳CMK-3“纳米限域”MgH2的Mg基储氢材料在不同温度阶段的放氢量对比曲线图。
具体实施方式
本发明的优选实施例详述如下:
在本实施例中,参见图1~图4,一种磷掺杂耦合纳米限域镁基储氢材料的制备方法,用磷掺杂的介孔骨架材料限域MgH2,使介孔骨架材料的纳米孔道中负载的MgH2颗粒尺寸降低到纳米级别,它包括以下步骤:
a.将1.25g的蔗糖溶解在5ml含有0.14g H2SO4和0.5g H3PO4的去离子水中,再加入1g SBA-15,将混合物进行溶解搅拌6h,先后在373K和433K下初步碳化12h,再重复本步骤的前述溶解过程,将碳化后的黑褐色粉末溶解在5ml含有0.09g H3PO4和0.8g蔗糖溶液中,再在433K下碳化12h,然后再在473K下碳化6h,最后在1123K下完全碳化5h,再用7.5%的HF酸在室温下洗8h,即可得到P掺杂的有序介孔碳基体材料作为骨架材料,表示为P/CMK-3,参见图1,采用一步法合成弥散掺杂磷元素的CMK-3框架;
b.称取400mg在步骤a中制备的P/CMK-3,将炉温升至493K,在493K下并在真空条件下对P/CMK-3进行干燥6h,去除P/CMK-3的纳米孔道中的气态杂质和湿气;
c.将经过步骤b干燥好的P/CMK-3移至手套箱中的高压反应釜,再取出15ml的二丁基镁对P/CMK-3进行浸渍,同时将高压反应釜移至磁力加热搅拌器,用H2重复10次将高压反应釜中的Ar保护气体全部置换为H2,将高压反应釜H2压力调至2MPa,在室温下使二丁基镁对P/CMK-3浸渍72h,随后将高压反应釜中H2压力调节至4MPa,开始加热并搅拌,搅拌速度为400rpm/min,待温度升到443K后调压至5.5MPa,再加热搅拌24h,得到反应产物的混合物;
d.对高压反应釜进行减压,将在步骤c中制备的反应产物的混合物冷却,然后将反应产物的混合物连同高压反应釜一并移入手套箱中,在手套箱中将反应产物的混合物的悬浮液体移去,得到嵌入P/CMK-3中的MgH2凝胶,然后取戊烷与MgH2凝胶溶解并电磁搅拌3h,洗去负载在P/CMK-3的纳米孔道外部的MgH2,待MgH2凝胶沉淀后,移去戊烷,并重复一次用戊烷溶解并洗去P/CMK-3的纳米孔道外部的MgH2溶解过程和洗涤过程,再次洗去P/CMK-3的纳米孔道外部残余的MgH2后,移去戊烷,得到剩余的MgH2凝胶结合形成镁基储氢材料前驱体;
e.将在步骤d中最后一次洗涤完成后制备的镁基储氢材料前驱体在353K下并在真空下干燥6h,即可得到MgH2负载在P/CMK-3的纳米孔道中的磷掺杂耦合纳米限域镁基储氢材料。
在本实施例中,图1为磷掺杂的介孔碳CMK-3“纳米限域”MgH2的示意图,图1中表示出MgH2分布在P/CMK-3的孔内外形式。
实验测试分析:
对在实施例一的步骤e中制备的磷掺杂介孔碳CMK-3“纳米限域”MgH2的Mg基储氢材料进行物理和化学实验分析,图2为磷掺杂的介孔碳CMK-3“纳米限域”MgH2的X射线衍射(XRD)图,可以看出氢化二丁基镁后得到的单一的MgH2晶体。检测“纳米限域”Mg的TPD-MS放氢,方法如下:
在手套箱中称取20mg的样品,置于自制的石英管反应器中,通氩气至里面的杂质气体吹扫稳定,从室温以5K/min的升温速率加热至773K。
图3为磷掺杂的介孔碳CMK-3“纳米限域”MgH2与未掺杂的介孔碳CMK-3“纳米限域”MgH2的TPD-MS对比图,可以从图3看出,掺杂P的CMK-3限域MgH2有着明显的放氢优势,尤其在低温下,掺杂的样品能快速放出大量氢气。
图4为磷掺杂的介孔碳CMK-3“纳米限域”MgH2在不同温度阶段的放氢量对比,可以从图4看出,在低温下掺杂P的CMK-3就能放出大量的氢气,在423K下放氢量能大于0.8%。
在实施例一中,参见图1,磷掺杂耦合纳米限域镁基储氢材料的制备方法制备的储氢材料为将氢化镁(MgH2)负载在掺杂磷的介孔骨架材料纳米孔道中的复合材料。本实施例使用一步法合成磷与介孔骨架材料纳米材料,再将二丁基镁(MgBu2)与磷掺杂的介孔骨架材料浸渍,在高压反应釜中利用一定的温度和压力将MgBu2置换成负载在磷掺杂的介孔骨架材料纳米孔道孔内的MgH2,再用戊烷将负载在孔道外的MgH2洗去,经干燥制得。本实施例制备方法合成的纳米限域MgH2在室温下就可以放出大量的氢气,具有很好的吸放氢动力学和放氢热力学。本发明方法操作简单,合成快,分散性好,具有理想的应用前景。

Claims (6)

1.一种磷掺杂耦合纳米限域镁基储氢材料的制备方法,其特征在于,它包括以下步骤:
a.制备介孔骨架材料时,用磷的酸或盐杂化介孔骨架材料,使介孔骨架材料基体中弥散掺杂磷元素,采用一步法合成磷掺杂的介孔骨架材料,制成复合材料框架体系备用;
b.在433~523K下并在真空下对在所述步骤a中制备的磷掺杂的介孔骨架材料干燥6~12h,去除磷掺杂的介孔骨架材料的纳米孔道中的气态杂质和湿气;
c.将经过所述步骤b干燥后的磷掺杂的介孔骨架材料置于高压反应釜中,使磷掺杂的介孔骨架材料在二丁基镁中进行浸渍反应,进行浸渍反应时,将高压反应釜内用H2低压洗气6~10次,将高压反应釜中的惰性保护气氛全部置换为H2气氛,并在高压反应釜中调节H2压力至4MPa开始升温并对混合反应物进行搅拌,控制搅拌速度为400~600rmp/min,当高压反应釜中反应温度升到443~473K后,将高压反应釜中气体压力调整至5~6MPa,进行24h以上的浸渍反应,得到反应产物的混合物,进行浸渍反应时,按照镁元素质量与磷掺杂的介孔骨架材料质量比为1:4~9:1的反应配比取一定量的二丁基镁;
d.对高压反应釜进行减压,将在所述步骤c中制备的反应产物的混合物冷却,然后将反应产物的混合物移入手套箱中,在手套箱中将反应产物的混合物的悬浮液体移去,得到嵌入磷元素掺杂的介孔骨架材料中的MgH2凝胶,然后取戊烷与MgH2凝胶溶解并电磁搅拌3~6h,洗去负载在磷掺杂的介孔骨架材料的纳米孔道外部的MgH2,待MgH2凝胶沉淀后,移去戊烷,并重复用戊烷溶解并洗去磷掺杂的介孔骨架材料的纳米孔道外部的MgH2溶解过程和洗涤过程至少一次,每次洗去磷掺杂的介孔骨架材料的纳米孔道外部的MgH2后皆移去戊烷,最后一次洗涤完成后,得到剩余的MgH2凝胶结合形成镁基储氢材料前驱体;
e.将在所述步骤d中最后一次洗涤完成后制备的镁基储氢材料前驱体在353~373K下并在真空下干燥接近6h,即可得到MgH2负载在磷掺杂的介孔骨架材料的纳米孔道中的磷掺杂耦合纳米限域镁基储氢材料。
2.根据权利要求1所述磷掺杂耦合纳米限域镁基储氢材料的制备方法,其特征在于:在所述步骤a中,制备介孔骨架材料时,控制介孔骨架材料基体的纳米孔道的尺寸,使在所述步骤e中制备的磷掺杂耦合纳米限域镁基储氢材料中的介孔骨架材料的纳米孔道中被限域的MgH2的尺寸分布在1~4nm之间。
3.根据权利要求2所述磷掺杂耦合纳米限域镁基储氢材料的制备方法,其特征在于:在所述步骤a中,制备介孔骨架材料时,控制介孔骨架材料基体的纳米孔道的孔径为2~6nm。
4.根据权利要求1~3中任意一项所述磷掺杂耦合纳米限域镁基储氢材料的制备方法,其特征在于:在所述步骤a中,制备介孔骨架材料的基体材料为介孔碳、碳凝胶、纳米碳管、介孔硅SBA-15、金属有机框架结构材料。
5.根据权利要求1~3中任意一项所述磷掺杂耦合纳米限域镁基储氢材料的制备方法,其特征在于:在所述步骤c中,磷掺杂的介孔骨架材料在二丁基镁中进行浸渍反应的过程在手套箱中进行;在所述步骤e中,将在所述步骤d中最后一次洗涤完成后制备的镁基储氢材料前驱体进行干燥的过程也在手套箱中进行。
6.根据权利要求1~3中任意一项所述磷掺杂耦合纳米限域镁基储氢材料的制备方法,其特征在于:在所述步骤c中,高压反应釜中的惰性保护气氛采用氦气和氩气中的任意一种。
CN201510352904.5A 2015-06-24 2015-06-24 磷掺杂耦合纳米限域镁基储氢材料的制备方法 Pending CN104961099A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201510352904.5A CN104961099A (zh) 2015-06-24 2015-06-24 磷掺杂耦合纳米限域镁基储氢材料的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201510352904.5A CN104961099A (zh) 2015-06-24 2015-06-24 磷掺杂耦合纳米限域镁基储氢材料的制备方法

Publications (1)

Publication Number Publication Date
CN104961099A true CN104961099A (zh) 2015-10-07

Family

ID=54215232

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201510352904.5A Pending CN104961099A (zh) 2015-06-24 2015-06-24 磷掺杂耦合纳米限域镁基储氢材料的制备方法

Country Status (1)

Country Link
CN (1) CN104961099A (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105645356A (zh) * 2016-02-25 2016-06-08 上海大学 两步法镍掺杂及碳介孔骨架纳米限域的氢化镁储氢材料的制备方法
WO2018090071A1 (en) * 2016-11-16 2018-05-24 Monash University Medium and system for hydrogen storage
CN110526208A (zh) * 2019-09-04 2019-12-03 上海交通大学 基于MOFs材料纳米限域的镁基复合储氢材料的制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7871537B2 (en) * 2006-11-14 2011-01-18 Korea Institute Of Science And Technology Method for fabricating magnesium-based hydrogen storage material
CN103787271A (zh) * 2013-11-08 2014-05-14 燕山大学 一种镁金属氢化物磷酸复盐储氢复合材料及制备方法
CN103787304A (zh) * 2014-02-19 2014-05-14 中国科学院上海硅酸盐研究所 一种一步法合成异相原子掺杂碳材料的方法
CN104649229A (zh) * 2015-01-23 2015-05-27 上海大学 一种制备纳米限域镁基储氢材料的方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7871537B2 (en) * 2006-11-14 2011-01-18 Korea Institute Of Science And Technology Method for fabricating magnesium-based hydrogen storage material
CN103787271A (zh) * 2013-11-08 2014-05-14 燕山大学 一种镁金属氢化物磷酸复盐储氢复合材料及制备方法
CN103787304A (zh) * 2014-02-19 2014-05-14 中国科学院上海硅酸盐研究所 一种一步法合成异相原子掺杂碳材料的方法
CN104649229A (zh) * 2015-01-23 2015-05-27 上海大学 一种制备纳米限域镁基储氢材料的方法

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105645356A (zh) * 2016-02-25 2016-06-08 上海大学 两步法镍掺杂及碳介孔骨架纳米限域的氢化镁储氢材料的制备方法
WO2018090071A1 (en) * 2016-11-16 2018-05-24 Monash University Medium and system for hydrogen storage
CN110526208A (zh) * 2019-09-04 2019-12-03 上海交通大学 基于MOFs材料纳米限域的镁基复合储氢材料的制备方法
CN110526208B (zh) * 2019-09-04 2022-12-02 上海交通大学 基于MOFs材料纳米限域的镁基复合储氢材料的制备方法

Similar Documents

Publication Publication Date Title
Ouyang et al. Hydrogen production via hydrolysis and alcoholysis of light metal-based materials: a review
Zhang et al. Development and application of hydrogen storage
Song et al. Recent advances of magnesium hydride as an energy storage material
Tian et al. Boosting the hydrogen storage performance of MgH2 by Vanadium based complex oxides
CN104649229A (zh) 一种制备纳米限域镁基储氢材料的方法
CN102030313B (zh) 一种有机物复合氨硼烷储氢材料及其制备方法
Duan et al. Novel core–shell structured MgH 2/AlH 3@ CNT nanocomposites with extremely high dehydriding–rehydriding properties derived from nanoconfinement
Yang et al. Hydrogen absorption and desorption behavior of Ni catalyzed Mg–Y–C–Ni nanocomposites
Zhang et al. The application of MOFs for hydrogen storage
Xie et al. Catalytic effects of decorating AlV3 nanocatalyst on hydrogen storage performance of Mg@ Mg17Al12 nanocomposite: experimental and theoretical study
CN111463022A (zh) 一种钴钼氧化物/镍钴磷化物复合材料的制备方法
CN101920936A (zh) 金属锂基复合储氢材料及其制备方法与用途
CN104961099A (zh) 磷掺杂耦合纳米限域镁基储氢材料的制备方法
CN106517090A (zh) 一种高性能储氢材料及其制备方法
CN116726970A (zh) 硫氮掺杂MXene储氢材料催化剂、含该催化剂的储氢材料及制备方法
Yin et al. Microstructure and improved hydrogen storage properties of Mg85Zn5Ni10 alloy catalyzed by Cr2O3 nanoparticles
CN102259837B (zh) 一种制氢用颗粒及其制备方法
CN101798077A (zh) 以间苯二酚和甲醛为原料的碳空心球的制备方法
Yan et al. Enhanced hydrogen storage properties of magnesium hydride by multifunctional carbon-based materials: a review
Hsu et al. Catalytic effect of MWCNTs on the dehydrogenation behavior of LiAlH4
CN112850640A (zh) 一种金属有机框架掺杂镁基氢化物的制备方法
CN109012664A (zh) 一种无定形碳负载纳米金属颗粒催化剂及其制备方法和应用
CN105645356A (zh) 两步法镍掺杂及碳介孔骨架纳米限域的氢化镁储氢材料的制备方法
CN111302326A (zh) 一种铅碳电池用氮掺杂分级多孔碳材料及其制备方法
US9580316B2 (en) Method for preparing metal complex hydride nanorods

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20151007

WD01 Invention patent application deemed withdrawn after publication