CN104953117A - 一种锂离子电池负极材料及其制备方法 - Google Patents

一种锂离子电池负极材料及其制备方法 Download PDF

Info

Publication number
CN104953117A
CN104953117A CN201510219400.6A CN201510219400A CN104953117A CN 104953117 A CN104953117 A CN 104953117A CN 201510219400 A CN201510219400 A CN 201510219400A CN 104953117 A CN104953117 A CN 104953117A
Authority
CN
China
Prior art keywords
preparation
lithium ion
ion battery
powder
lithium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201510219400.6A
Other languages
English (en)
Other versions
CN104953117B (zh
Inventor
刘宪云
李磊
钱忠健
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hefei Jingba New Energy Technology Co.,Ltd.
Original Assignee
Changzhou University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Changzhou University filed Critical Changzhou University
Priority to CN201510219400.6A priority Critical patent/CN104953117B/zh
Publication of CN104953117A publication Critical patent/CN104953117A/zh
Application granted granted Critical
Publication of CN104953117B publication Critical patent/CN104953117B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G51/00Compounds of cobalt
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1397Processes of manufacture of electrodes based on inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Nanotechnology (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Composite Materials (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)

Abstract

一种锂离子电池负极材料及其制备方法,涉及一种低压化学气相沉积法制备纳米颗粒薄膜的方法及锂离子电池的组装。本发明使用化学气相沉积法在铜箔上沉积CoSb3纳米薄膜,不添加任何粘合剂将其直接应用作为锂离子电池的电极,在真空手套箱(水分含量和氧气浓度都小于百万分之一)中组装了纽扣电池,研究锂电的充放电性能。本发明制备的锂离子电池负极材料的充放电性能良好,具有高电荷存储容量和稳定性能,有望满足电子产品的小型化、微型化、集成化的需求。

Description

一种锂离子电池负极材料及其制备方法
技术领域
本发明涉及一种锂离子电池负极材料及其制备方法。
背景技术
科技的发展推动着化学电源向着高容量、低能耗、无公害等方向发展。化学电源的发展主要经历了以下几个阶段:铅酸电池、镍镉电池、镍氢电池、锂电池。其中锂锂离子电池具有能量密度高、循环寿命长、自放电率小、绿色环保等优点,已经越来越受到人们的关注,锂离子电池的研究及性能的提高,已成为化学电源领域的研究热点。
锂离子电池用负极材料主要分为碳材料和非碳材料,而非碳材料包括金属氧化物、金属间化合物以及金属氮化物等。虽然非碳负极材料的容量要高于碳材料,但在循环稳定性方面还是不及碳材料。因为循环过程中电极的团聚、粉化、开裂和剥落虽然通过各种方法得到一定程度的缓解,但依然无法在实际中加以应用。因此,如何解决非碳负极材料的循环稳定性问题,仍然是锂离子电池领域的一个至关重要的课题。解决非碳负极材料循环稳定性的其中一个重要方法就是:将材料纳米化和薄膜化,以减少绝对体积膨胀。这是因为纳米材料电极具有以下特点:较小的绝对体积变化;较小体积变化带来的结构不稳;超塑性和流动性;减轻结构不稳定性,可作为固体增塑剂;较大的形变能力;可以承受体积和结构的变化;较多的晶粒边界;较大的比表面积;提高活性材料与电解液的接触,提高了锂离子的扩散速率;较小的尺寸;离子扩散路径较短;表面较多的缺陷和悬键,容易俘获离子(参见文献:1.吴宇平,万春荣,姜长印,锂离子二次电池,北京:化学工业出版社,2002:57-59)。
由于薄膜电极材料作为锂离子电池负极材料可以缓解材料在循环中的膨胀,同时缩短锂离子在脱嵌锂过程中的距离,改善材料的循环性能。因此迫切需要开发一种简单的制备锂离子电池负极材料的制备方法。
发明内容
本发明的目的是解决目前锂离子电池循环周期和使用寿命短的问题,发明一种制备锂离子电池负极材料的制备方法,为高性能锂离子电池薄膜材料的研究开发奠定基础。
本发明的技术方案是用化学气相沉积法在铜箔上沉积CoSb3纳米薄膜,不添加任何粘合剂将其直接应用作为锂离子电池的电极,研究锂电的充放电性能。
本发明所述的锂离子电池负极材料的制备方法如下:
1)确定反应物的比例,分别称取CoCl2·6H2O粉和Sb粉,放入各自坩埚中;
2)将石英管放置在水平真空管式炉内,将装有CoCl2·6H2O粉和Sb粉的坩埚分别置入石英管内,并装Cu泊作为衬底;
3)用机械泵对石英管进行抽真空,然后通入氩气和氢气的混合气,将此过程重复三次,用于去除石英管内的氧气;
4)将管式炉升温,在一定压强内保持一段时间,期间不断通入氩气和氢气的混合气,并控制流量;
5)石英管降至室温后,将镀CoSb3薄膜的Cu箔正极片装在纽扣电池壳体中,组装好的锂离子电池进行表征,研究其充放电性能。
在步骤1)中,所述CoCl2·6H2O粉和Sb粉按1:3的摩尔比例进行称量;
在步骤2)中,所述装有CoCl2·6H2O粉和Sb粉的两只坩埚放置于石英管内进气口处,Cu泊衬底放置于石英管内出气口处;
在步骤3)中,所述氩气和氢气的混合气是指由95%的氩气和5%的氢气混合而成,采用机械泵对石英管抽真空至10-3mbar,然后再充满氩气和氢气的混合器,将这一过程重复三次;
在步骤4)中,所述管式炉升温是指将管式炉升温至800℃,升温速率为30℃/min,升温后保持压强为2.8mbar,反应过程保持60~240min,所述氩气和氢气的混合气是指95%的氩气和5%的氢气,流量为200cm3/min;
在步骤5)中,研究其充放电性能主要充放电试验是使用BTS-10V1A新威高精度测试仪,在电流密度为120毫安/克(放电倍率为0.2C)和窗口电压为0.01~3V下进行测量。
利用上述方法制备的锂离子负极薄膜材料的厚度可以通过CoCl2·6H2O粉和Sb粉的称取量控制;本发明所制备的锂离子电池负极材料的充放电性能良好,有望制作成高性能锂离子电池薄膜材料。
相比其它制备方法,本发明的优点在于:1)制备方法简单,一步完成,无需后续样品处理;2)工艺参数较少,工艺简单、有效;3)锂离子负极薄膜具有较高的电导率和较低的热导率;4)锂离子负极材料充放电性能良好。
附图说明
图1为实施例1所制备负极材料CoSb3纳米颗粒薄膜的EDX能谱图,能量扩散X射线光谱显示出Co和Sb的原子比大约是1:3;
图2为实施例2所制备CoSb3纳米颗粒薄膜高分辨透射电子显微镜TEM照片,晶格分辨图像表明CoSb3纳米颗粒的晶面间距为0.286nm;
图3为实施例3所制备CoSb3纳米薄膜以电流密度为120mA/g(放电倍率为0.2C)的初始五次充放电曲线,表明锂离子电池的初始放电容量为378.8毫安/克。在初始充电过程中观察到容量为205.2毫安/克、库仑效率为54.1%。在第二个充放电周期获得了低了些的放电容量为222.6毫安/克和相应的充电容量205.2毫安/克,所以库仑效率为92.2%。;
图4为实施例4所制备薄膜的电池循环-容量曲线,表明在50个充放电周期后CoSb3纳米薄膜的电容量下降到55.4毫安/克。我们分析,在CoSb3纳米薄膜的充放电周期中如此重大的电容量损失的原因是在锂化过程中产生了大型结构变化。
具体实施方式
下面通过实施例结合附图对本发明作进一步说明。
实施例1:
称取CoCl2·6H2O粉末(纯度为98%)0.0285克,放入坩埚,将装有CoCl2·6H2O粉末的坩埚置入石英管上游,距离石英管中心位置5cm处,称取0.04392克Sb粉末(纯度为99.5%)放入坩埚,将装有Sb粉末的坩埚置入石英管中央上部10cm处;将Cu箔作为基底装载在管炉中央下部16cm处。将石英管内的压强保持在2.8mbar,在加热和冷却阶段持续将95%Ar和5%H2混合气体以200cm3/min的速率通入管炉内,用15min的时间将熔炉迅速加热至800℃,然后保持这个温度60min,最后冷却到室温,此时在Cu箔表面生成灰色薄膜样品。将样品取出用进行EDX能谱图表征。
实施例2:
使用实施例1中的方法制备负极材料薄膜样品,采用高分辨透射电子显微镜TEM,探测透射过样品的信号以实现成像及分析,进行锂离子负极薄膜材料的高分辨透射电子显微镜TEM表征。
实施例3:
将制备的样品在400℃的氩气氛围下进行30分钟的退火,将退火后的镀CoSb3薄膜的Cu箔正极片装在纽扣电池壳体中,并与壳体紧密接触,在正极片中加入LBC3051C电解液,然后在正极片上方装Li-Ion隔膜,隔膜上面是锂负极片,电池盖与锂负极片紧密接触,最后用塑料密封圈将壳体与盖之间隔开(塑料密封圈既起密封作用,又起正负极间的绝缘作用),密封圈和壳体与盖之间的封口部位均涂密封油,用纽扣电池封口机将壳体和盖封进行最终的机械密封。在电流密度为120毫安/克(放电倍率为0.2C)和窗口电压为0.01~3V下,使用BTS-10V1A新威高精度测试仪,对制备的锂离子电池充放电性能进行测量。
实施例4:
CoSb3纳米薄膜的锂存储容量是用双电极电池进行评估的。在室温下,使用两个纯金属锂片作为电极和参考电极进行电化学测量,一个工作电极为覆盖CoSb3纳米颗粒薄膜的铜箔。实验中窗口电压为0.01-3V,电流密度为120毫安/克(放电倍率为0.2C),使用循环伏安法对所制备的锂离子电池进行50个充放电周期测试,研究其锂存储容量。

Claims (5)

1.一种锂离子负极材料及其制备方法如下:
1)确定参与反应的物质CoCl2·6H2O粉末(纯度为98%)和Sb粉末(纯度为99.5%)的摩尔比为1:3,样品称量后分别放入不同的坩埚中;
2)将装有CoCl2·6H2O粉末的坩埚放进石英管进气口处,距离中央位置5cm,将装有Sb粉末的坩埚置入石英管进气口处,距离中央10cm,将尺寸为0.5×1cm2的载玻片置入石英管出气口处,距离中央位置16cm;
3)将制备的薄膜样品在400℃的氩气氛围下进行30分钟的退火;
4)锂电池组装通过将CoSb3薄膜的Cu箔正极片装在纽扣电池壳体中,并与壳体紧密接触,在正极片中加入LBC3051C电解液,然后在正极片上方装Li-Ion隔膜,隔膜上面是锂负极片,电池盖与锂负极片紧密接触,最后用塑料密封圈将壳体与盖之间隔开(塑料密封圈既起密封作用,又起正负极间的绝缘作用),密封圈和壳体与盖之间的封口部位均涂密封油,用纽扣电池封口机将壳体和盖封进行最终的机械密封;
5)用EDX能谱,透射电镜对样品进行结构和形貌表征,采用BTS-10V1A新威高精度测试仪测试样品充放电性能,用双电极电池测试电池的锂存储容量。
2.根据权利要求1所述的制备方法,其特征在于:步骤1)中,所述反应物CoCl2·6H2O粉末(纯度为98%)和Sb粉末(纯度为99.5%)的摩尔比为1:3。
3.根据权利要求1所述的制备方法,其特征在于:制备的薄膜样品要在400℃的氩气氛围下进行30分钟的退火。
4.根据权利要求1所述的方法,其特征在于:锂电池的组装中在正极片中加入LBC3051C电解液。
5.根据权利要求1所述的热电应用,其特征在于:步骤5)中,采用使用BTS-10V1A新威高精度测试仪,在电流密度为120毫安/克(放电倍率为0.2C)和窗口电压为0.01~3V下进行测量,锂离子负极材料电池具有高电荷存储容量和稳定性能,其在第二个充放电周期内的电容量可达到378.8毫安时/克。
CN201510219400.6A 2015-04-30 2015-04-30 一种锂离子电池负极材料及其制备方法 Active CN104953117B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201510219400.6A CN104953117B (zh) 2015-04-30 2015-04-30 一种锂离子电池负极材料及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201510219400.6A CN104953117B (zh) 2015-04-30 2015-04-30 一种锂离子电池负极材料及其制备方法

Publications (2)

Publication Number Publication Date
CN104953117A true CN104953117A (zh) 2015-09-30
CN104953117B CN104953117B (zh) 2018-04-27

Family

ID=54167623

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201510219400.6A Active CN104953117B (zh) 2015-04-30 2015-04-30 一种锂离子电池负极材料及其制备方法

Country Status (1)

Country Link
CN (1) CN104953117B (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106637214A (zh) * 2016-12-29 2017-05-10 天津理工大学 一种用表面负曲率提升物质本征熔点的方法
CN108767247A (zh) * 2018-07-02 2018-11-06 南京工业大学 一种碳基金属有机框架mof化合物衍生材料制备方法与应用

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101378115A (zh) * 2007-08-30 2009-03-04 比亚迪股份有限公司 一种锂离子二次电池负极的制备方法
CN102796994A (zh) * 2012-07-11 2012-11-28 常州大学 一种CoSb3纳米颗粒薄膜的制备方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101378115A (zh) * 2007-08-30 2009-03-04 比亚迪股份有限公司 一种锂离子二次电池负极的制备方法
CN102796994A (zh) * 2012-07-11 2012-11-28 常州大学 一种CoSb3纳米颗粒薄膜的制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
邓龙征 等: "热解碳包覆CoSb3作为锂离子电池负极材料的研究", 《材料导报》 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106637214A (zh) * 2016-12-29 2017-05-10 天津理工大学 一种用表面负曲率提升物质本征熔点的方法
CN106637214B (zh) * 2016-12-29 2019-04-16 天津理工大学 一种用表面负曲率提升物质本征熔点的方法
CN108767247A (zh) * 2018-07-02 2018-11-06 南京工业大学 一种碳基金属有机框架mof化合物衍生材料制备方法与应用
CN108767247B (zh) * 2018-07-02 2021-10-26 南京工业大学 一种碳基金属有机框架mof化合物衍生材料制备方法与应用

Also Published As

Publication number Publication date
CN104953117B (zh) 2018-04-27

Similar Documents

Publication Publication Date Title
Zhang et al. Engineering of multi-shelled SnO 2 hollow microspheres for highly stable lithium-ion batteries
JP2021022580A (ja) 安定したシリコンイオン液体界面のリチウムイオン電池
CN107112586B (zh) 锂离子电池用硫化物系固体电解质和固体电解质化合物
Xu et al. Self‐supported CoP nanorod arrays grafted on stainless steel as an advanced integrated anode for stable and long‐life lithium‐ion batteries
CN105140560B (zh) 一种对金属锂稳定的锂离子固体导体及其制备方法以及一种全固态锂二次电池
Yang et al. Calendering effect on the electrochemical performances of the thick Li-ion battery electrodes using a three dimensional Ni alloy foam current collector
Kawahito et al. Electrochemical performance of titanium hydride for bulk-type all-solid-state lithium-ion batteries
Kisu et al. Microstructural analyses of all-solid-state Li–S batteries using LiBH4-based solid electrolyte for prolonged cycle performance
Li et al. Enhanced processability and electrochemical cyclability of metallic sodium at elevated temperature using sodium alloy composite
CN108390094A (zh) 一种空气稳定硫化物钠离子固体电解质及其制备方法
Huang et al. Cobalt nanosheet arrays supported silicon film as anode materials for lithium ion batteries
Jiang et al. Solid-state Li metal battery enabled by cold sintering at 120° C
Yan et al. Li3N film modified separator with homogenization effect of lithium ions for stable lithium metal battery
CN104953117B (zh) 一种锂离子电池负极材料及其制备方法
CN104085923B (zh) 过渡金属硫属化物纳米线及其制备方法和储能应用
CN109888376A (zh) 一种硫化物钠离子固体电解质及其制备方法
Song et al. Temperature dependence of charging characteristic of C-free Li 2 O 2 cathode in Li-O 2 battery
CN112259786B (zh) 一种LiBH4-LiI-P2S5三元复合固态电解质及其制备方法
CN115842157A (zh) 一种含氧氯化物固态电解质及其制备方法与应用
CN114477305A (zh) 一种镁锂双离子电池二硫化亚铁正极材料制备方法及应用
Diolaiti et al. Nanostructured germanium anode for lithium-ion batteries for aerospace technologies
WO2020135111A1 (en) High energy density molten lithium-sulfur and lithium-selenium batteries with solid electrolyte
Carmo et al. A thin-film rechargeable battery for integration in stand-alone microsystems
CN108682859B (zh) 一种石墨烯改性锂离子电池负极材料的制备方法
Fei et al. Predicted stable Li 5 P 2 and Li 4 P at ambient pressure: Novel high-performance anodes for lithium-ion batteries

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
TR01 Transfer of patent right

Effective date of registration: 20210803

Address after: 213000 a417, building 2, science and Technology Park, Xinbei District, Changzhou City, Jiangsu Province

Patentee after: Changzhou midui Information Technology Co.,Ltd.

Address before: Gehu Lake Road Wujin District 213164 Jiangsu city of Changzhou province No. 1

Patentee before: CHANGZHOU University

TR01 Transfer of patent right
TR01 Transfer of patent right

Effective date of registration: 20221228

Address after: 230601 Room 101, Building 3, Qinxiangyuan, Feicui Garden, Feicui Road, Hefei Economic and Technological Development Zone, Anhui Province

Patentee after: Hefei Jingba New Energy Technology Co.,Ltd.

Address before: 213000 a417, building 2, science and Technology Park, Xinbei District, Changzhou City, Jiangsu Province

Patentee before: Changzhou midui Information Technology Co.,Ltd.

TR01 Transfer of patent right