CN104947116A - 一种利用超短脉冲激光制备铝合金超疏水自清洁表面的方法 - Google Patents

一种利用超短脉冲激光制备铝合金超疏水自清洁表面的方法 Download PDF

Info

Publication number
CN104947116A
CN104947116A CN201510279045.1A CN201510279045A CN104947116A CN 104947116 A CN104947116 A CN 104947116A CN 201510279045 A CN201510279045 A CN 201510279045A CN 104947116 A CN104947116 A CN 104947116A
Authority
CN
China
Prior art keywords
laser
sample
aluminium alloy
pulse laser
aluminum alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201510279045.1A
Other languages
English (en)
Inventor
彼得.班尼特
伍义刚
赵城
刘顿
陈列
翟中生
娄德元
杨奇彪
吴颖
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hubei University of Technology
Original Assignee
Hubei University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hubei University of Technology filed Critical Hubei University of Technology
Priority to CN201510279045.1A priority Critical patent/CN104947116A/zh
Publication of CN104947116A publication Critical patent/CN104947116A/zh
Pending legal-status Critical Current

Links

Landscapes

  • Cleaning And De-Greasing Of Metallic Materials By Chemical Methods (AREA)

Abstract

本发明涉及一种利用超短脉冲激光制备铝合金超疏水自清洁表面的方法,属于金属基材表面改性技术领域。该方法首先将铝合金样品进行抛光预处理,然后分别利用去离子水和无水乙醇清洗样品表面,清洗干净后冷风吹干或晾干,再利用激光加工技术,采用超短脉冲激光调节好相关的工艺参数后对样品进行表面处理,在样品表面加工出无数的微结构,加工完成后,将经过加工后的样品放入电热干燥箱内烘烤,得到表面具有微米级的乳突状或多孔状结构的铝合金超疏水表面,该表面具备自清洁的功能和优异的耐摩擦和耐腐蚀性能。本发明的制备方法工艺简单,操作方便,效率高,能耗少,成本低,绿色环保,易于实现工业应用。

Description

一种利用超短脉冲激光制备铝合金超疏水自清洁表面的方法
技术领域:
本发明属于金属基材表面改性技术领域,涉及铝合金基体上仿生超疏水自清洁表面的制备方法,更具体地说,本发明涉及一种利用超短脉冲激光制备铝合金超疏水自清洁表面的方法。
背景技术:
在自然界中,人类目前所采用的诸多科学技术都是从大自然中获得灵感和启迪的,超疏水表面是大自然中一种极为常见的现象。例如荷叶的表面就具有很强的疏水性和自洁净功能。荷叶表面的疏水性对人类产生的启示主要是研究超疏水,而自洁净则是超疏水的结果,因此在金属材料上制备出超疏水表面得到越来越多的关注。由于超疏水表面具有特殊的润湿特性,使其在其表面形成特殊的特性,可以达到表面自洁净及抗腐蚀的特性,在许多方面都有广阔的应用前景。人们渴望将超疏水性能应用在工业生产中,尤其是在铝合金基体上制备出超疏水性能的表面。通常规定,超疏水表面是指与水接触角CA大于150°、滚动角TA小于10°的表面。当水滴在超疏水表面与水接触的滚动角小于10度时,该超疏水表面具有自清洁功能,具有自清洁功能的表面可以在液滴滚动的过程中吸附污染物并将其带离表面,从而达到自洁净的目的。
近年来,超疏水性能应用范围也来越广泛,金属材料超疏水的制备,尤其是铝合金超疏水表面的制备越来越受到人们的关注。铝合金因其具有低密度,优良的导热和导电性,较高的强度,而成为重要的结构材料,在航空航天、汽车工业等领域中已得到广泛应用。运用激光的方法直接改变铝合金表面性能,制备具有微纳米尺度双层结构的超疏水表面将是一个有前途的技术研究。金属材料的浸润性是金属表面很重要的一个特征,材料的微观结构以及组成成分共同影响着材料表面的浸润性。在金属上制备超疏水表面的制备方法很多,典型的方法和途径主要有:化学药水腐蚀法、电化学刻蚀+化学腐蚀法、激光刻蚀+化学腐蚀法等,但是这些技术普遍存在化学药水的浸泡,会产生化学污染,步骤繁琐,费时以及制备效率低等缺点,这些缺点都限制了其实际应用。例如,申请号为201310079939.7的专利公开了一种铝合金仿生超疏水表面的制备方法,首先以无水乙醇清洗铝合金,然后在铝合金表面进行激光加工,在试样表面加工出无数微尺度的弹坑状结构,再将试样浸入化学刻蚀溶液中,使试样表面的形貌特征发生改变,但该方法未完全突破传统化学蚀刻的表面处理工艺,采用激光加工工艺后还进一步利用了化学刻蚀,且将经过化学刻蚀后的铝合金试样放入含有DTS的甲苯溶液中进行修饰,在其表面逐渐形成低表面能的薄膜,该处理工艺复杂,且使用了高毒致癌物质甲苯,容易造成环境污染。为了有效地获得超疏水表面,还需要用低表面能物质对表面进行必要的修饰,加工的效率并不高。例如,申请号为201410657627.4的专利公开了一种超疏水高粘附金属表面及其制备方法,通过高功率皮秒或飞秒激光在金属表面制备类玫瑰花表面微观结构的周期性微纳米结构,再通过低自由能物质的表面修饰,实现了超疏水高粘附金属表面的制备,该方法采用低表面能物质对表面进行必要的修饰,加工效率低。最近也有国内外学者利用飞秒激光器一步法制备超疏水自清洁的铂、钛、铜等表面。例如,申请号为201410788477.0的专利申请公开了一种钛合金表面超疏水微纳结构的制备方法,先对钛合金样品分别用丙酮和无水酒精进行超声波清洗,得到表面干净的钛合金样品;然后对表面干净的钛合金样品表面进行飞秒激光光刻加工,一步得到具有光栅型或井型或圆形盲孔型超疏水微纳结构表面的钛合金样品。申请号为200910021923.4的专利公开了一种飞秒激光制备金属表面超疏水微结构的方法,虽然这些利用飞秒激光器能加工出非常精确的微观结构表面,但是这种简单的方法也不能掩盖飞秒激光器固有缺点,如价格及其昂贵、加工效率低、加工环境苛刻的缺陷。
综上所述,通过简单易操作高效的方法在铝合金材料上制备出大面积超疏水表面,而且不产生任何化学污染的新工艺,对于提高效率、节能、保护环境等具有重要的意义。
发明内容
为了克服现有技术存在的不足,本发明的目的在于提供一种工艺简单,制备效率高、绿色环保的铝合金超疏水自清洁表面的制备方法。本发明的方法可在各种尺寸和不同形状的铝合金材料表面获得长期稳定的、接触角大于150°、滚动角小于10°的超疏水自清洁表面,同时制得的表面还具有出色的耐摩擦耐腐蚀性能。
本发明的目的是通过下述技术方案实现的:一种利用超短脉冲激光制备铝合金超疏水自清洁表面的方法,所述方法包括如下步骤:
步骤一,将待处理的铝合金表面进行抛光预处理,得到表面抛光后的铝合金样品;
步骤二,将步骤一所述表面抛光后的铝合金样品放在盛有去离子水的超声波清洗仪中清洗,然后用无水乙醇清洗,清洗干净后,将所述铝合金样品表面用冷风吹干或室温自然晾干,得到洁净的铝合金样品;
步骤三,利用激光加工技术,采用超短脉冲激光器调节好相关的工艺参数后对步骤二所述得到的洁净铝合金样品表面进行激光扫描处理,在样品表面加工出无数的微结构;
所述激光扫描采用振镜系统进行光束扫描,振镜扫描的速度为0.1mm/s-30m/s,激光的通断及振镜系统的扫描范围、扫描轨迹和加工速度均由计算机程序控制和设定;
或所述激光扫描使用运动平台系统实现,将光束固定,样品相对光束运动,平台运动的速度为0.1mm/s-3m/s,激光的通断、平台运动轨迹和速度均由计算机程序控制和设定;
步骤四,将步骤三所述得到的表面经过激光加工处理后的铝合金样品放入恒温恒湿电热干燥箱内烘烤,即得到所述铝合金超疏水自清洁表面;
其中,步骤三所述的超短脉冲激光器波长小于1550nm,所述激光加工参数为:脉宽大于10ps,单脉冲能量小于0.08mJ。
进一步地,上述技术方案中所述的铝合金优选为2a12铝合金。
进一步地,上述技术方案中步骤三所述超短脉冲激光器的重复频率为200kHz-1MHz,所述脉宽为10ps-10ns。
进一步优选地,所述超短脉冲激光器的波长为1064nm,所述超短脉冲激光器的脉宽为80ps-10ns。
进一步优选地,所述脉宽为80ps,所述单脉冲能量为7.5μJ-8.5μJ,所述激光扫描速度为100mm/s-200mm/s。
进一步优选地,所述脉宽为10ns,所述单脉冲能量为0.06mJ-0.07mJ,所述激光扫描速度为300mm/s-400mm/s。
更进一步优选地,所述单脉冲能量为7.5μJ,所述超短脉冲激光器的重复频率为200kHz。
进一步地,上述技术方案步骤四中所述电热干燥箱内的压力为普通大气压,湿度为40%-60%RH,温度为100℃-250℃,所述样品烘烤的时间为2-8小时,所述电热干燥箱内的温度误差为±1℃。
进一步地,上述技术方案中步骤一所述的抛光预处理采用功率为370W、研磨盘转速为450转/分、研磨盘直径为230mm的金相试样预磨机,抛光预处理过程需要辅助直径为200mm、1000目的SiC水砂纸在所述铝合金表面进行抛光处理,抛光范围是100cm2,抛光时间10分钟。
进一步地,上述技术方案中步骤二所述超声清洗仪的超声频率为40kHz,所述去离子水电阻率为18.25兆欧,所述去离子水应将铝合金样品表面淹没,在室温下连续清洗30分钟。
更进一步优选地,所述恒温恒湿电热干燥箱内的湿度为55%RH,温度为200℃,烘烤的时间为4小时。
本发明还提供了由上述方法制备得到的铝合金超疏水自清洁表面,所述表面具有微米级的乳突状结构或多孔状结构。
与现有技术相比,本发明方法具有以下优点:
(1)利用本发明方法制备得到的铝合金表面最大接触角可达163°,最小滚动角为7.9°,因此具有非常好的超疏水性能。
(2)本发明的制备方法工艺简单,操作方便,效率高,能耗少,成本低,完全克服了传统使用化学试剂刻蚀铝合金表面或者在激光加工完成后仍需再采用低表面能物质进一步修饰表面的缺陷,绿色环保,不采用任何化学试剂涂层,且本发明方法的工艺参数容易控制,易于实现工业应用。
(3)采用本发明方法制备得到的超疏水铝合金金属表面性能稳定,具备自清洁的功能和优异的耐摩擦和耐腐蚀能性能,大大增加了铝合金的使用寿命。
附图说明
图1(a)、(b)分别为本发明实施例1利用超短脉冲激光制备得到的铝合金超疏水自清洁表面的接触角示意图、滚动角示意图;
图2(c)、(d)分别为本发明实施例2利用超短脉冲激光制备得到的铝合金超疏水自清洁表面的接触角示意图、滚动角示意图;
图3(e)、(f)分别为本发明实施例3利用超短脉冲激光制备得到的铝合金超疏水自清洁表面的接触角示意图、滚动角示意图;
图4(g)、(h)分别为本发明实施例4利用超短脉冲激光制备得到的铝合金超疏水自清洁表面的接触角示意图、滚动角示意图;
图5为本发明实施例1利用超短脉冲激光制备得到的铝合金超疏水自清洁表面的扫描电镜图;
图6为本发明实施例2利用超短脉冲激光制备得到的铝合金超疏水自清洁表面的扫描电镜图;
图7为本发明实施例3利用超短脉冲激光制备得到的铝合金超疏水自清洁表面的扫描电镜图;
图8为本发明实施例4利用超短脉冲激光制备得到的铝合金超疏水自清洁表面的扫描电镜图。
具体实施方式
为了更好的理解本发明,以下结合具体实施例对本发明的技术方案做进一步详细介绍。
下述实施例中所使用的实验方法如无特殊说明,均为常规方法。
本发明所述的一种铝合金超疏水自清洁表面的制备方法,参考自然界生物材料作为设计基础,在2a12铝合金表面上模仿自然界生物复合材料细微结构分布的结构特征,设计表面结构。
实施例1
本实施例的一种利用超短脉冲激光制备铝合金超疏水自清洁表面的方法,包括以下具体步骤:
步骤一,将待处理的2a12铝合金抛光,选用功率为370W,研磨盘转速为450转/分,研磨盘直径为230mm的金相试样预磨机,抛光过程需要辅助直径为200mm、1000目的SiC水砂纸在所述铝合金表面进行抛光处理,抛光范围为100cm2,抛光时间10分钟,得到表面抛光后的铝合金样品;
步骤二,将步骤一所述表面抛光后的铝合金样品用超声波清洗仪清洗,超声波清洗仪超声波频率为40kHz,用电阻率为18.25兆欧的去离子水淹没样品表面,在室温下,连续清洗30分钟,然后用无水乙醇清洗,清洗干净后,室温自然晾干,得到洁净的铝合金样品;
步骤三,采用超短脉冲激光器,激光器波长为1064nm,对步骤二所述得到的洁净铝合金样品表面进行激光扫描加工,在样品表面加工出无数的微结构;所述激光器脉宽为80ps,单脉冲能量为8.5μJ,重复频率为200kHz,所述激光扫描配合运动工作平台,将步骤二所述得到的洁净铝合金样品固定于运动工作平台上,利用透镜将激光光束聚焦在所述样品上,使样品的表面相对于所述超快激光器光束的聚焦刻蚀光斑沿x、y、z三维方向移动,速度为200mm/s,通过逐行逐列烧蚀所述铝合金样品表面,实现微纳结构的刻蚀;所述运动平台单元为三维伺服精密移动平台,所述平台移动的范围、速度、方向均由计算机控制,可沿X、Y、Z三维方向移动,样品加工范围为150mm x 150mm;
步骤四,样品经过步骤三激光加工后,将经过加工后的样品放入电热干燥箱里烘烤,在气压为普通大气压下,湿度为42%RH,温度为100℃条件下恒温烘烤8小时,得到所述的铝合金超疏水性自清洁表面。
采用电阻率为18.25兆欧的去离子水,利用光学接触角表面界面张力测量仪测试所述得到的铝合金超疏水性自清洁表面的接触角、滚动角:采用接取法测量,在加液针头下形成所需体积的悬挂液滴,调节样品平台的Z轴使样品表面上升,当样品表面与加液针头下悬挂的液滴底部接触时,液滴就从加液针头转移到样品表面,然后再通过调节样品台Z轴使样品表面下降到原来的位置进行测量,由于制备得到的铝合金表面超疏水性能优异,3-8微升的水滴无法附着,所以水滴体积为9微升,测试温度为25.5℃,湿度为19.5%RH。
本实施例制备得到的铝合金超疏水自清洁表面,其扫描电镜照片如图5所示,其表面呈现微米级的乳突状结构。
本实施例制备得到的铝合金超疏水自清洁表面与水的接触角示意图如图1(a)所示,滚动角示意图如图1(b)所示。
本实施例制备得到的铝合金超疏水自清洁表面与水的接触角为157.9°,滚动角为8.4°,测试结果见表1。
实施例2
本实施例的一种利用超短脉冲激光制备铝合金超疏水自清洁表面的方法,包括以下具体步骤:
步骤一,将待处理的2a12铝合金抛光,选用功率为370W,研磨盘转速为450转/分,研磨盘直径为230mm的金相试样预磨机,抛光过程需要辅助直径为200mm、1000目的SiC水砂纸在所述铝合金表面进行抛光处理,抛光范围为100cm2,抛光时间10分钟,得到表面抛光后的铝合金样品;
步骤二,将步骤一所述表面抛光后的铝合金样品用超声波清洗仪清洗,超声波清洗仪超声波频率为40kHz,用电阻率为18.25兆欧的去离子水淹没样品表面,在室温下,连续清洗30分钟,然后用无水乙醇清洗,清洗干净后,用冷风吹干,得到洁净的铝合金样品;
步骤三,采用超短脉冲激光器,激光器波长为1064nm,对步骤二所述得到的洁净铝合金样品表面进行激光扫描加工,在样品表面加工出无数的微结构,所述激光器脉宽为80ps,单脉冲能量为7.5μJ,重复频率为200kHz,所述激光扫描配合运动工作平台,将步骤二所述得到的洁净铝合金样品固定于运动工作平台上,利用透镜将激光光束聚焦在所述样品上,使样品的表面相对于所述超快激光器光束的聚焦刻蚀光斑沿x、y、z三维方向移动,速度为140mm/s,通过逐行逐列烧蚀所述铝合金样品表面,实现微纳结构的刻蚀;所述运动平台单元为三维伺服精密移动平台,所述平台移动的范围、速度、方向均由计算机控制,可沿X、Y、Z三维方向移动,样品加工范围为150mm x 150mm;
步骤四,样品经过步骤三激光加工后,将经过加工后的样品放入电热干燥箱里烘烤,在气压为普通大气压下,湿度为55%RH,温度为200℃条件下恒温烘烤4小时,得到所述的铝合金超疏水性自清洁表面。
采用上述实施例1相同的测试方法和测试条件测试所述得到的铝合金超疏水自清洁表面的接触角、滚动角。
本实施例制备得到的铝合金超疏水自清洁表面,其扫描电镜照片如图6所示,其表面呈现微米级的乳突状结构。
本实施例制备得到的铝合金超疏水自清洁表面与水的接触角示意图如图2(c)所示,滚动角示意图如图2(d)所示。
本实施例制备得到的铝合金超疏水自清洁表面与水的接触角为163°,滚动角为8.5°,测试结果见表1。
实施例3
本实施例的一种利用超短脉冲激光制备铝合金超疏水自清洁表面的方法,包括以下具体步骤:
步骤一,将待处理的2a12铝合金抛光,选用功率为370W,研磨盘转速为450转/分,研磨盘直径为230mm的金相试样预磨机,抛光过程需要辅助直径为200mm、1000目的SiC水砂纸在所述铝合金表面进行抛光处理,抛光范围为100cm2,抛光时间10分钟,得到表面抛光后的铝合金样品;
步骤二,将步骤一所述表面抛光后的铝合金样品用超声波清洗仪清洗,超声波清洗仪超声波频率为40kHz,用电阻率为18.25兆欧的去离子水淹没样品表面,在室温下,连续清洗30分钟,然后用无水乙醇清洗,清洗干净后,室温自然晾干,得到洁净的铝合金样品;
步骤三,采用超短脉冲激光器,激光器波长为1064nm,对步骤二所述得到的洁净铝合金样品表面进行激光扫描加工,在样品表面加工出无数的微结构,所述激光器的脉宽为10ns,单脉冲能量为0.06mJ,重复频率为700kHz,所述激光扫描利用X-Y扫描振镜系统,使激光束以350mm/s的速度逐行逐列烧蚀所述铝合金样品表面;所述振镜系统由X-Y光学扫描头、电子驱动放大器、光学反射镜片和场镜组成,所述振镜系统的扫描范围和速度、线扫描和面扫描路径均由电脑进行控制和设定,所述电脑提供的信号通过驱动放大电路驱动光学扫描头,从而在X-Y平面控制激光束的偏转,样品相对于激光光束沿x方向移动,通过控制移动速度和激光脉冲重复频率,使其脉冲重合度达到1%-99%,完成移动后,再沿y方向单步步进,通过控制步进距离,使其光束重合度在y方向达到1%-99%,工作台反转,所述样品加工范围为126mm x 126mm;
步骤四,样品经过步骤三激光加工后,将经过加工后的样品放入电热干燥箱里烘烤,在气压为普通大气压下,湿度为46%RH,温度为200℃条件下恒温烘烤6小时,得到所述的铝合金超疏水性自清洁表面。
采用上述实施例1相同的测试方法和测试条件测试所述得到的铝合金超疏水自清洁表面的接触角、滚动角。
本实施例制备得到的铝合金超疏水自清洁表面,其扫描电镜照片如图7所示,其表面呈现微米级的多孔状结构。
本实施例制备得到的铝合金超疏水自清洁表面与水的接触角示意图如图3(e)所示,滚动角示意图如图3(f)所示。
本实施例制备得到的铝合金超疏水自清洁表面与水的接触角为159.5°,滚动角为8.8°,测试结果见表1。
实施例4
本实施例的一种利用超短脉冲激光制备铝合金超疏水自清洁表面的方法,包括以下具体步骤:
步骤一,将待处理的2a12铝合金抛光,抛光选用功率为370W,研磨盘转速为450转/分,研磨盘直径为230mm的金相试样预磨机,抛光过程需要辅助直径为200mm、1000目的SiC水砂纸在所述铝合金表面进行抛光处理,抛光范围为100cm2,抛光时间10分钟,得到表面抛光后的铝合金样品;
步骤二,将步骤一所述表面抛光后的铝合金样品用超声波清洗仪清洗,超声波清洗仪超声波频率为40kHz,用电阻率为18.25兆欧的去离子水淹没样品表面,在室温下,连续清洗30分钟,然后用无水乙醇清洗,清洗干净后,室温自然晾干,得到洁净的铝合金样品;
步骤三,采用超短脉冲激光器,激光器波长为1064nm,对步骤二所述得到的洁净铝合金样品表面进行激光加工,在样品表面加工出无数的微结构,所述激光器的脉宽为10ns,单脉冲能量为0.07mJ,重复频率为300kHz,所述激光扫描利用X-Y扫描振镜系统,使激光束以300mm/s的速度逐行逐列烧蚀所述铝合金样品表面;所述振镜系统由X-Y光学扫描头、电子驱动放大器、光学反射镜片和场镜组成,所述振镜系统的扫描范围和速度、线扫描和面扫描路径均由电脑进行控制和设定,所述电脑提供的信号通过驱动放大电路驱动光学扫描头,从而在X-Y平面控制激光束的偏转,样品相对于激光光束沿x方向移动,通过控制移动速度和激光脉冲重复频率,使其脉冲重合度达到1%-99%,完成移动后,再沿y方向单步步进,通过控制步进距离,使其光束重合度在y方向达到1%-99%,工作台反转,所述样品加工范围为126mm x 126mm;
步骤四,样品经过步骤三激光加工后,将经过加工后的样品放入电热干燥箱里烘烤,在气压为普通大气压下,湿度为60%RH,温度为250℃条件下恒温烘烤2小时,得到所述的铝合金超疏水性自清洁表面。
采用上述实施例1相同的测试方法和测试条件测试所述得到的铝合金超疏水自清洁表面的接触角、滚动角。
本实施例制备得到的铝合金超疏水自清洁表面,其扫描电镜照片如图8所示。其表面呈现微米级的多孔状结构。
本实施例制备得到的铝合金超疏水自清洁表面与水的接触角示意图如图4(g)所示,滚动角示意图如图4(h)所示。
本实施例制备得到的铝合金超疏水自清洁表面与水的接触角为157.6°,滚动角为7.9°,测试结果见表1。
表1为本发明各实施例制备得到的铝合金超疏水自清洁表面接触角、滚动角的测试结果。
表1
实施例 接触角/° 滚动角/°
实施例1 157.9 8.4
实施例2 163 8.5
实施例3 159.5 8.8
实施例4 157.6 7.9
本发明的上述实施例仅仅是为了清楚说明本发明所做的举例,而并非是对本发明的实施方式的限定。凡是在本发明精神和原则内所作的任何修改,等同替换和改进等,均应包含在本发明权利要求的保护范围之内。

Claims (10)

1.一种利用超短脉冲激光制备铝合金超疏水自清洁表面的方法,所述方法包括如下步骤:
步骤一,将待处理的铝合金表面进行抛光预处理,得到表面抛光后的铝合金样品;
步骤二,将步骤一所述表面抛光后的铝合金样品放在盛有去离子水的超声波清洗仪中清洗,然后用无水乙醇清洗,清洗干净后,将所述铝合金样品表面用冷风吹干或室温自然晾干,得到洁净的铝合金样品;
步骤三,利用激光加工技术,采用超短脉冲激光器调节好相关的工艺参数后对步骤二所述得到的洁净铝合金样品表面进行激光扫描处理,在样品表面加工出无数的微结构;
所述激光扫描采用振镜系统进行光束扫描,振镜扫描的速度为0.1mm/s-30m/s,激光的通断及振镜系统的扫描范围、扫描轨迹和加工速度均由计算机程序控制和设定;
或所述激光扫描使用运动平台系统实现,将光束固定,样品相对光束运动,平台运动的速度为0.1mm/s-3m/s,激光的通断、平台运动轨迹和速度均由计算机程序控制和设定;
步骤四,将步骤三所述得到的表面经过激光加工处理后的铝合金样品放入恒温恒湿电热干燥箱内烘烤,即得到所述铝合金超疏水自清洁表面;
其中,步骤三所述的超短脉冲激光器波长小于1550nm,所述激光加工参数为:脉宽大于10ps,单脉冲能量小于0.08mJ。
2.如权利要求1所述的一种利用超短脉冲激光制备铝合金超疏水自清洁表面的方法,其特征在于:所述的铝合金为2a12铝合金。
3.如权利要求1或2所述的一种利用超短脉冲激光制备铝合金超疏水自清洁表面的方法,其特征在于:步骤三所述超短脉冲激光器的重复频率为200kHz-1MHz,所述脉宽为10ps-10ns。
4.如权利要求3所述的一种利用超短脉冲激光制备铝合金超疏水自清洁表面的方法,其特征在于:所述超短脉冲激光器的波长为1064nm,所述超短脉冲激光器的脉宽为80ps-10ns。
5.如权利要求4所述的一种利用超短脉冲激光制备铝合金超疏水自清洁表面的方法,其特征在于:所述脉宽为80ps,所述单脉冲能量为7.5μJ-8.5μJ,所述激光扫描速度为100mm/s-200mm/s。
6. 如权利要求4所述的一种利用超短脉冲激光制备铝合金超疏水自清洁表面的方法,其特征在于:所述脉宽为10ns,所述单脉冲能量为0.06mJ-0.07mJ,所述激光扫描速度为300mm/s-400mm/s。
7.如权利要求5所述的一种利用超短脉冲激光制备铝合金超疏水自清洁表面的方法,其特征在于:所述单脉冲能量为7.5μJ,所述超短脉冲激光器的重复频率为200kHz。
8.如权利要求1所述的一种利用超短脉冲激光制备铝合金超疏水自清洁表面的方法,其特征在于:步骤四中所述电热干燥箱内的压力为普通大气压,湿度为40%-60%RH,温度为100℃-250℃,所述样品烘烤的时间为2-8小时,所述电热干燥箱内的温度误差为±1℃。
9.如权利要求8所述的一种利用超短脉冲激光制备铝合金超疏水表面的方法,其特征在于:所述恒温恒湿电热干燥箱内的湿度为55%RH,温度为200℃,烘烤的时间为4小时。
10.一种采用权利要求1-9任一项所述的方法制备得到的铝合金超疏水自清洁表面,所述表面具有微米级乳突状或多孔状结构。
CN201510279045.1A 2015-05-28 2015-05-28 一种利用超短脉冲激光制备铝合金超疏水自清洁表面的方法 Pending CN104947116A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201510279045.1A CN104947116A (zh) 2015-05-28 2015-05-28 一种利用超短脉冲激光制备铝合金超疏水自清洁表面的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201510279045.1A CN104947116A (zh) 2015-05-28 2015-05-28 一种利用超短脉冲激光制备铝合金超疏水自清洁表面的方法

Publications (1)

Publication Number Publication Date
CN104947116A true CN104947116A (zh) 2015-09-30

Family

ID=54162165

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201510279045.1A Pending CN104947116A (zh) 2015-05-28 2015-05-28 一种利用超短脉冲激光制备铝合金超疏水自清洁表面的方法

Country Status (1)

Country Link
CN (1) CN104947116A (zh)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106313926A (zh) * 2016-09-27 2017-01-11 清华大学 一种改变浸渍石墨表面浸润性能的表面改性方法
CN107283062A (zh) * 2017-05-03 2017-10-24 南京航空航天大学 一种在液相中激光制备疏液表面的方法
CN107723773A (zh) * 2017-08-22 2018-02-23 吉林大学 一种铝合金仿生防冰表面的制备方法
CN109626317A (zh) * 2018-12-18 2019-04-16 哈尔滨工业大学 一种基于双梯度锥形孔阵列的复合结构膜及其制备方法
WO2019144409A1 (zh) * 2018-01-29 2019-08-01 中国科学院光电研究院 一种仿生复合减阻表面及其制备方法
CN110480282A (zh) * 2019-05-20 2019-11-22 长春理工大学 一种铜基材料表面延迟结冰结构及其制备方法
CN113146051A (zh) * 2021-04-23 2021-07-23 吉林大学 一种高灵活性的非晶合金表面大面积微结构制备方法
CN114101915A (zh) * 2021-12-07 2022-03-01 武汉锐科光纤激光技术股份有限公司 一种防止激光器结露的激光器制备方法及装置
CN114985938A (zh) * 2022-06-08 2022-09-02 江苏大学 一种平顶激光喷丸制备铝合金超疏水表面的方法
CN115786652A (zh) * 2023-01-09 2023-03-14 中国科学院长春光学精密机械与物理研究所 一种本征超疏水材料、其制备方法及应用
US11839934B1 (en) 2022-06-08 2023-12-12 Jiangsu University Method for preparing super-hydrophobic aluminum alloy surface through flat-topped laser peening
US20240042552A1 (en) * 2022-03-08 2024-02-08 Jiangsu University Stress and texture morphology controlling method for preparing super-hydrophobic surface of aluminum alloy by laser etching

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101219506A (zh) * 2008-01-07 2008-07-16 江苏大学 金属基超疏水性微结构表面的激光制备方法
CN104439708A (zh) * 2014-11-18 2015-03-25 清华大学 一种超疏水高粘附金属表面及其制备方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101219506A (zh) * 2008-01-07 2008-07-16 江苏大学 金属基超疏水性微结构表面的激光制备方法
CN104439708A (zh) * 2014-11-18 2015-03-25 清华大学 一种超疏水高粘附金属表面及其制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
P. BIZI-BANDOKI ET AL.: "Time dependency of the hydrophilicity and hydrophobicity of metallic alloys subjected to femtosecond laser irradiations", 《APPLIED SURFACE SCIENCE》 *

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106313926A (zh) * 2016-09-27 2017-01-11 清华大学 一种改变浸渍石墨表面浸润性能的表面改性方法
CN107283062A (zh) * 2017-05-03 2017-10-24 南京航空航天大学 一种在液相中激光制备疏液表面的方法
CN107723773A (zh) * 2017-08-22 2018-02-23 吉林大学 一种铝合金仿生防冰表面的制备方法
WO2019144409A1 (zh) * 2018-01-29 2019-08-01 中国科学院光电研究院 一种仿生复合减阻表面及其制备方法
CN109626317A (zh) * 2018-12-18 2019-04-16 哈尔滨工业大学 一种基于双梯度锥形孔阵列的复合结构膜及其制备方法
CN110480282A (zh) * 2019-05-20 2019-11-22 长春理工大学 一种铜基材料表面延迟结冰结构及其制备方法
CN113146051A (zh) * 2021-04-23 2021-07-23 吉林大学 一种高灵活性的非晶合金表面大面积微结构制备方法
CN114101915A (zh) * 2021-12-07 2022-03-01 武汉锐科光纤激光技术股份有限公司 一种防止激光器结露的激光器制备方法及装置
US20240042552A1 (en) * 2022-03-08 2024-02-08 Jiangsu University Stress and texture morphology controlling method for preparing super-hydrophobic surface of aluminum alloy by laser etching
CN114985938A (zh) * 2022-06-08 2022-09-02 江苏大学 一种平顶激光喷丸制备铝合金超疏水表面的方法
CN114985938B (zh) * 2022-06-08 2023-01-17 江苏大学 一种平顶激光喷丸制备铝合金超疏水表面的方法
US11839934B1 (en) 2022-06-08 2023-12-12 Jiangsu University Method for preparing super-hydrophobic aluminum alloy surface through flat-topped laser peening
WO2023236314A1 (zh) * 2022-06-08 2023-12-14 江苏大学 一种平顶激光喷丸制备铝合金超疏水表面的方法
GB2623639A (en) * 2022-06-08 2024-04-24 Univ Jiangsu Method for preparing aluminum alloy super-hydrophobic surface by flat-top laser peening
CN115786652A (zh) * 2023-01-09 2023-03-14 中国科学院长春光学精密机械与物理研究所 一种本征超疏水材料、其制备方法及应用

Similar Documents

Publication Publication Date Title
CN104947116A (zh) 一种利用超短脉冲激光制备铝合金超疏水自清洁表面的方法
CN104911599A (zh) 一种利用超快激光制备铝合金超疏水自清洁表面的方法
CN104907701A (zh) 一种利用超快激光制备不锈钢超疏水自清洁表面的方法
CN104985328B (zh) 一种利用纳秒激光制备钛合金超疏水抗霜冻表面的方法
CN104911329A (zh) 一种利用超短脉冲激光制备不锈钢超疏水耐腐蚀表面的方法
CN104907702A (zh) 一种利用短脉冲激光制备不锈钢超疏水自清洁表面的方法
CN104907697A (zh) 一种利用超快激光制备钛合金超疏水抗霜冻表面的方法
CN104439708B (zh) 一种超疏水高粘附金属表面及其制备方法
CN108393588B (zh) 一种利用超快激光技术制备金属超疏水仿生表面方法
CN106583930A (zh) 基于飞秒激光直写钛片实现湿润性可逆转化的方法
CN104625415B (zh) 飞秒激光制备仿生超疏水微纳表面的方法及装置
CN107132210B (zh) 一种基于电子动态调控的表面增强拉曼的基底制造方法
CN107695528B (zh) 一种利用飞秒激光调控制备大面积不同微纳米结构的方法
CN106735911B (zh) 一种超快激光处理氧化铝陶瓷刀片表面的方法
CN104907698A (zh) 一种利用短脉冲激光制备锌合金超疏水自清洁表面的方法
CN104988507A (zh) 一种利用超快激光制备铸铁超疏水耐腐蚀表面的方法
CN102336393A (zh) 飞秒激光在有机玻璃表面制备疏水性微结构的方法
CN104911600B (zh) 一种利用短脉冲激光制备黄铜超疏水自清洁表面的方法
CN102351406A (zh) 利用飞秒激光在玻璃内部直写微机械零件的方法
CN104911519A (zh) 一种利用超短脉冲激光制备钛合金超疏水抗霜冻表面的方法
CN104907699B (zh) 一种利用短脉冲激光制备铸铁超疏水耐腐蚀表面的方法
CN107500554A (zh) 一种超疏水透明玻璃及其制备方法
CN104947016B (zh) 一种利用超短脉冲激光制备锌合金超疏水自清洁表面的方法
CN104911598A (zh) 一种利用超快激光制备锌合金超疏水自清洁表面的方法
Yang et al. Femtosecond laser processing of AlN ceramics for gradient wettability control

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20150930

WD01 Invention patent application deemed withdrawn after publication