WO2023236314A1 - 一种平顶激光喷丸制备铝合金超疏水表面的方法 - Google Patents
一种平顶激光喷丸制备铝合金超疏水表面的方法 Download PDFInfo
- Publication number
- WO2023236314A1 WO2023236314A1 PCT/CN2022/106171 CN2022106171W WO2023236314A1 WO 2023236314 A1 WO2023236314 A1 WO 2023236314A1 CN 2022106171 W CN2022106171 W CN 2022106171W WO 2023236314 A1 WO2023236314 A1 WO 2023236314A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- aluminum alloy
- laser
- flat
- carbon powder
- preparing
- Prior art date
Links
- 229910000838 Al alloy Inorganic materials 0.000 title claims abstract description 95
- 230000003075 superhydrophobic effect Effects 0.000 title claims abstract description 61
- 241001270131 Agaricus moelleri Species 0.000 title claims abstract description 42
- 238000000034 method Methods 0.000 title claims abstract description 38
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims abstract description 50
- 239000000463 material Substances 0.000 claims abstract description 26
- 238000010521 absorption reaction Methods 0.000 claims abstract description 14
- 238000010438 heat treatment Methods 0.000 claims abstract description 10
- 239000010410 layer Substances 0.000 claims description 39
- 238000005480 shot peening Methods 0.000 claims description 35
- 239000000956 alloy Substances 0.000 claims description 16
- 230000002209 hydrophobic effect Effects 0.000 claims description 10
- 229910021392 nanocarbon Inorganic materials 0.000 claims description 8
- 229910052799 carbon Inorganic materials 0.000 claims description 7
- 239000003822 epoxy resin Substances 0.000 claims description 7
- 239000003292 glue Substances 0.000 claims description 7
- 229920000647 polyepoxide Polymers 0.000 claims description 7
- 230000008569 process Effects 0.000 claims description 6
- 238000012545 processing Methods 0.000 claims description 6
- 239000002086 nanomaterial Substances 0.000 claims description 5
- 230000035939 shock Effects 0.000 claims description 5
- 239000000203 mixture Substances 0.000 claims description 4
- 239000000843 powder Substances 0.000 claims description 4
- 238000003756 stirring Methods 0.000 claims description 4
- 239000002344 surface layer Substances 0.000 claims description 4
- 238000001291 vacuum drying Methods 0.000 claims description 4
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 4
- 239000008367 deionised water Substances 0.000 claims description 3
- 229910021641 deionized water Inorganic materials 0.000 claims description 3
- 238000000227 grinding Methods 0.000 claims description 3
- 238000005498 polishing Methods 0.000 claims description 3
- 230000003746 surface roughness Effects 0.000 claims description 3
- 239000007787 solid Substances 0.000 claims description 2
- 239000011248 coating agent Substances 0.000 abstract 1
- 238000000576 coating method Methods 0.000 abstract 1
- 238000002360 preparation method Methods 0.000 description 13
- 229910045601 alloy Inorganic materials 0.000 description 7
- 229910001095 light aluminium alloy Inorganic materials 0.000 description 7
- 239000011159 matrix material Substances 0.000 description 5
- 238000005096 rolling process Methods 0.000 description 5
- 238000005728 strengthening Methods 0.000 description 5
- 238000005516 engineering process Methods 0.000 description 3
- 125000000524 functional group Chemical group 0.000 description 3
- 238000004506 ultrasonic cleaning Methods 0.000 description 3
- 230000009471 action Effects 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 230000006835 compression Effects 0.000 description 2
- 238000007906 compression Methods 0.000 description 2
- 230000007797 corrosion Effects 0.000 description 2
- 238000005260 corrosion Methods 0.000 description 2
- 230000001808 coupling effect Effects 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 230000005661 hydrophobic surface Effects 0.000 description 2
- 239000002245 particle Substances 0.000 description 2
- 239000000758 substrate Substances 0.000 description 2
- 238000009834 vaporization Methods 0.000 description 2
- 230000008016 vaporization Effects 0.000 description 2
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 238000012512 characterization method Methods 0.000 description 1
- 238000003486 chemical etching Methods 0.000 description 1
- 230000001276 controlling effect Effects 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 238000002848 electrochemical method Methods 0.000 description 1
- 238000009713 electroplating Methods 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 230000008014 freezing Effects 0.000 description 1
- 238000007710 freezing Methods 0.000 description 1
- 229910001385 heavy metal Inorganic materials 0.000 description 1
- 238000009776 industrial production Methods 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 239000007769 metal material Substances 0.000 description 1
- 238000005459 micromachining Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 239000005416 organic matter Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 238000009877 rendering Methods 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 238000003980 solgel method Methods 0.000 description 1
- 238000001179 sorption measurement Methods 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K26/00—Working by laser beam, e.g. welding, cutting or boring
- B23K26/352—Working by laser beam, e.g. welding, cutting or boring for surface treatment
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K26/00—Working by laser beam, e.g. welding, cutting or boring
- B23K26/14—Working by laser beam, e.g. welding, cutting or boring using a fluid stream, e.g. a jet of gas, in conjunction with the laser beam; Nozzles therefor
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K26/00—Working by laser beam, e.g. welding, cutting or boring
- B23K26/70—Auxiliary operations or equipment
- B23K26/702—Auxiliary equipment
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P10/00—Technologies related to metal processing
- Y02P10/20—Recycling
Definitions
- the invention relates to the field of aluminum alloy superhydrophobic surface preparation, and specifically relates to a method for preparing aluminum alloy superhydrophobic surface by flat-top laser shot peening.
- Aviation aluminum alloy is light in weight, high in strength, good in toughness, has excellent mechanical properties and processing properties, and is widely used in the aviation and aerospace fields.
- the surface of aviation aluminum alloy has high wettability, which causes water droplets to adhere and condense in low-temperature and humid working environments.
- the surface of the material is prone to corrosion and freezing, which adversely affects the service life and performance of aluminum alloy components.
- a large number of studies have shown that constructing a superhydrophobic structure on the surface of aviation aluminum alloys can effectively slow down corrosion and icing on the material surface. Therefore, the preparation of aluminum alloy superhydrophobic surfaces is of great significance in the fields of aviation and aerospace.
- laser shot peening technology uses the plasma shock wave generated by laser irradiation on the surface of the material to cause beneficial changes in the microstructure of the near-surface layer of the material, and at the same time induces high-amplitude residual compressive stress inside the matrix. , the mechanical properties of the material can be effectively improved, and it has the advantages of high strengthening efficiency and strong controllability.
- Using the thermal coupling effect produced by laser shot peening can produce porous micro-nano multi-level structures on the surface of aviation aluminum alloys, reducing the surface energy and imparting superhydrophobicity to the aluminum alloy surface. It is an important way to prepare superhydrophobic surfaces.
- the current laser shot peening process for preparing aluminum alloy superhydrophobic surfaces uses a circular Gaussian spot without an absorption layer for shot peening.
- the shot peening is affected by the Gaussian circular spot and the overlap rate, making the prepared superhydrophobic macro surface have
- the rolling resistance of the droplets increases, which is not conducive to the slippage of the droplets away from the material surface, and has limited ability to improve the strength of the hydrophobic texture.
- the present invention provides a method for preparing a super-hydrophobic surface of aluminum alloy by flat-top laser peening. Based on the existing process of preparing super-hydrophobic surfaces by laser peening, a square-spot flat-top laser is used. , using the carbon powder layer as the absorbing layer for unconstrained layer shot peening. On the one hand, laser irradiation increases the absorption rate of laser energy on the carbon powder layer. Part of the carbon powder absorbs the laser energy and is converted into plasma.
- the plasma sharply The shock wave generated by the expansion will stir and modulate the melted carbon powder and the remelted material on the surface of the aluminum alloy, which increases the content of carbon elements near the surface of the aluminum alloy material, which can effectively improve the hardness and wear resistance of the prepared hydrophobic surface; another
- the thermal coupling effect produced by laser shot peening produces a porous micro-nano multi-level structure with a hydrophobic effect on the surface of the aluminum alloy, while effectively strengthening the microstructure of the base material and improving the mechanical properties.
- the square spot flat-top pulse laser is used as the light source for laser peening, which effectively changes the undulating morphology produced by the circular spot Gaussian laser peening.
- the present invention uses the carbon powder layer as the absorption layer to carry out unconstrained square spot flat-top pulse laser peening, and efficiently completes the preparation of the super-hydrophobic surface on the aluminum alloy material substrate while achieving the strengthening of the substrate material, the super-hydrophobic effect and the surface strength. It has also been effectively improved, and the mechanical wear resistance of the superhydrophobic surface has been enhanced.
- the present invention achieves the above technical objectives through the following technical means.
- a method for preparing an aluminum alloy superhydrophobic surface by flat-top laser peening including the following steps:
- a square spot flat-top nanosecond pulse laser is used, and the carbon powder layer is used as an absorption layer to perform unconstrained layer shot peening on the aluminum alloy surface, and the beam is always kept perpendicular to the aluminum alloy surface;
- the residual carbon powder is removed, and the surface energy of the material is reduced through low-temperature heat treatment to obtain a superhydrophobic aluminum alloy surface with a micro-nano multi-level structure.
- the pretreatment includes: grinding and polishing the surface of the aluminum alloy step by step to make the surface roughness value ⁇ 50 ⁇ m, using deionized water to ultrasonically clean and dry the treated surface.
- the nanoscale carbon powder layer is 97% nanocarbon powder and 3% epoxy resin glue evenly mixed, dried and solidified on the aluminum alloy pre-treated surface, the diameter range of the nanocarbon powder is 50nm ⁇ 300nm, so The thickness of the nanoscale carbon powder layer is 100 ⁇ m to 500 ⁇ m.
- the square spot flat-top nanosecond pulse laser is obtained from the circular flat-top nanosecond pulse laser through a beam shaper, which is used to homogenize the hydrophobic micro-nano structure and hardness of the aluminum alloy surface respectively.
- the laser that generates square spot flat-top nanosecond pulse laser is Nd:YAG solid laser.
- the laser processing parameters are: wavelength 1064nm, laser energy 1J ⁇ 15J, repetition frequency 1Hz ⁇ 5Hz, pulse width 10ns ⁇ 20ns, square spot side length Size ⁇ 5mm.
- the low-temperature heat treatment method for reducing the surface energy of the material is: placing the shot peened aluminum alloy material in a vacuum drying oven at 80°C to 150°C for processing, and the processing time is 1h to 10h.
- the method of preparing an aluminum alloy superhydrophobic surface by flat-top laser shot peening uses a square spot flat-top pulse laser.
- the plane compression wave is mainly the plane compression wave, and the energy proportion of the surface transverse wave is low. Based on this feature, there will be no complex interference between the residual stress fields induced by the adjacent shot peening points of the square flat-top spot laser peening. , the stress-strain field inhomogeneity caused by the sequence of shot peening will be greatly weakened, avoiding the stress cavity phenomenon caused by the circular spot Gaussian pulse laser shot peening.
- the macro surface morphology after shot peening will be relatively flat, which is conducive to improving the preparation process.
- the surface is hydrophobic, and the residual compressive stress field of the matrix material is more evenly distributed, and the service life of the material is extended.
- the method of preparing an aluminum alloy superhydrophobic surface by flat-top laser peening uses a carbon powder layer to act as an absorption layer during laser peening.
- a high-power-density intense pulse laser is irradiated on the surface of the aluminum alloy sheet
- the carbon powder absorbs part of the energy, causing rapid ionization and vaporization. It continues to absorb the laser energy to generate high-voltage shock waves, causing the melted carbon powder and the remelted material on the surface of the aluminum alloy to stir and modulate.
- the carbon content in the near-surface layer of the aluminum alloy increases, effectively improving the hydrophobic microstructure.
- the hardness of the nanotexture makes the prepared superhydrophobic surface have better wear resistance; at the same time, under the action of laser peening force effect, a higher dislocation density is formed on the surface of the metal material, and the grains are also effectively Refinement, friction and wear properties and mechanical stability of the textured surface are improved.
- the method of preparing an aluminum alloy superhydrophobic surface by flat-top laser peening uses a low-temperature heat treatment process to reduce the surface energy of a surface with a micro-nano multi-level structure, and is clean and pollution-free.
- Low-temperature heat treatment enables the sample surface to fully interact with oxygen in the air, regulates the composition of the micro-nano multi-level structure surface, and significantly improves the adsorption capacity of the aluminum alloy surface to organic matter in the air.
- the micro-nano multi-level structure surface is A large amount of carbon elements are introduced into the nanoscale texture, and the non-polar functional groups on the surface of the material are greatly increased, and the surface energy is effectively reduced, achieving the preparation of a fluorine-free aluminum alloy superhydrophobic surface.
- the method of preparing an aluminum alloy superhydrophobic surface by flat-top laser peening according to the present invention has the advantages of simple operation and low cost, is easy to realize large-scale industrial production, and significantly improves the micro-nano multi-level texture of the superhydrophobic surface.
- the wear resistance, mechanical stability, and strength of the aluminum alloy matrix material have also been improved to a certain extent, making it better suitable for the complex and harsh environment in the aerospace field, and has broad industrial application prospects.
- Figure 1 is a schematic diagram of the method for preparing an aluminum alloy superhydrophobic surface by flat-top laser peening according to the present invention.
- Figure 2 is an actual rendering of the superhydrophobic surface morphology prepared in Example 1 of the present invention.
- Figure 3 is a comparison chart of the contact angles of droplets on superhydrophobic surfaces prepared in various embodiments of the present invention.
- Figure 4 is a comparison chart of microhardness of superhydrophobic surfaces prepared in various embodiments of the present invention.
- Figure 5 is a graph showing the change of droplet contact angle after ultrasonic vibration treatment for different lengths of time on the superhydrophobic surface prepared in Example 3 of the present invention.
- first and second are used for descriptive purposes only and cannot be understood as indicating or implying relative importance or implicitly indicating the quantity of indicated technical features. Therefore, features defined as “first” and “second” may explicitly or implicitly include one or more of these features.
- “plurality” means two or more than two, unless otherwise explicitly and specifically limited.
- connection In the present invention, unless otherwise clearly stated and limited, the terms “installation”, “connection”, “connection”, “fixing” and other terms should be understood in a broad sense. For example, it can be a fixed connection or a detachable connection. , or integrally connected; it can be a mechanical connection or an electrical connection; it can be a direct connection or an indirect connection through an intermediate medium; it can be an internal connection between two components.
- connection connection
- fixing and other terms should be understood in a broad sense. For example, it can be a fixed connection or a detachable connection. , or integrally connected; it can be a mechanical connection or an electrical connection; it can be a direct connection or an indirect connection through an intermediate medium; it can be an internal connection between two components.
- the specific meanings of the above terms in the present invention can be understood according to specific circumstances.
- the method for preparing an aluminum alloy superhydrophobic surface by flat-top laser peening includes the following steps:
- the aluminum alloy surface is ground and polished step by step to ensure that the surface roughness value is ⁇ 50 ⁇ m, and deionized water is used to ultrasonically clean and dry the treated surface;
- the nanoscale carbon powder layer is 97% nanocarbon powder and 3% epoxy resin glue evenly mixed, dried and solidified on the pre-treated surface of the aluminum alloy; the nanoscale carbon powder layer with a diameter range of 50nm to 300nm is coated on On the surface of the aluminum alloy plate, a nano-scale carbon powder layer with a thickness of 100 ⁇ m to 500 ⁇ m is formed on the surface of the aluminum alloy; due to the low vaporization temperature of the epoxy resin glue, the epoxy resin glue will all volatilize under laser irradiation and will not change the formation of heavy metal. The composition of the melted layer only serves to adhere nanoscale carbon powder.
- a square spot flat-top nanosecond pulse laser is used, and reasonable parameters and paths are selected to use the carbon powder layer as the absorption layer during laser peening to perform unconstrained layer shot peening on the surface of the aluminum alloy sample, and the beam always remains consistent with the laser shot peening process.
- the surface of the plate is vertical, which is used to homogenize the hydrophobic micro-nano structure and hardness of the aluminum alloy surface respectively;
- the method for preparing an aluminum alloy superhydrophobic surface by flat-top laser shot peening uses a beam shaper to convert a circular spot flat-top nanosecond pulse laser into a square spot flat-top nanosecond pulse laser, and uses a nanoscale carbon powder layer to As an absorption layer, unconstrained layer laser shot peening is performed on the surface of the aluminum alloy, combined with a low-temperature heat treatment process to reduce the surface energy of the material and impart superhydrophobicity to the surface of the aluminum alloy.
- the use of square spot flat-top pulse laser for shot peening is conducive to regulating the residual compressive stress generated by laser shot peening, making the stress distribution more uniform, which can effectively improve the service life of the material; using nano-scale carbon powder as a component during laser shot peening
- the absorption layer increases the absorption rate of laser energy and generates high-intensity plasma shock waves, which not only impact-strengthens the material, but also stirs the melted carbon powder and the remelted material on the surface of the aluminum alloy, greatly increasing the content of carbon elements on the surface of the aluminum alloy.
- the optimized setting of parameters such as this can control the macroscopic morphology of the superhydrophobic surface prepared by laser shot peening, making the prepared surface flatter, which can effectively reduce the resistance of droplets sliding and reduce the rolling angle; in the present invention, low-temperature heat treatment is used
- the treatment method introduces a large number of non-polar functional groups on the surface of the aluminum alloy material, thereby reducing the surface energy of the prepared micro-nano multi-level structure, and using a fluorine-free addition method to achieve the preparation of the aluminum alloy super-hydrophobic surface.
- 2024-T351 aviation aluminum alloy is selected as the research object below, and the present invention is described in detail with reference to specific embodiments.
- the method for preparing an aluminum alloy superhydrophobic surface by flat-top laser shot peening described in Example 1 includes the following steps:
- the morphology of the superhydrophobic surface of the aerospace aluminum alloy prepared in Example 1 is shown in Figure 2. Compared with the superhydrophobic surface of the aluminum alloy prepared by the circular spot Gaussian pulse nanosecond laser, the macroscopic surface of the sample is relatively flat and has excellent microstructure.
- the nanoscale structure morphology improves the hydrophobic effect of the prepared surface; as shown in Figure 3, the surface of the sample prepared in Example 1 has excellent superhydrophobicity, the droplet sliding resistance is small, and the droplet contact angle is 162° , the rolling angle is 4°; as shown in Figure 4, under the action of heat generated by laser shot peening, the carbon element in the surface layer of the aircraft aluminum alloy increases significantly, which greatly improves the microhardness of the prepared superhydrophobic surface of the aircraft aluminum alloy. It reached 191HV, which is 46.9% higher than the average hardness value of 130HV on the surface of the untreated sample. This is of great significance for improving the wear resistance of the prepared superhydrophobic surface.
- the diameter of the carbon powder in the second embodiment reaches 300 nm
- the thickness of the carbon powder absorption layer is 500 ⁇ m
- the laser shot peening energy is set to 13J.
- the droplet contact angle of the superhydrophobic surface obtained in Example 2 is 159°, and the rolling angle is 5°. It also achieves excellent superhydrophobicity on the surface of the aerospace aluminum alloy.
- Embodiment 2 uses larger carbon powder particles and a thicker carbon powder absorption layer, and the laser shot peening energy is also increased. A deeper influence layer is produced on the surface of the aviation aluminum alloy, and the strengthening effect is also effectively improved, as shown in the figure.
- the microhardness value of the superhydrophobic surface of the aviation aluminum alloy prepared in this example is 211HV, which is 62.3% higher than the average hardness of the base material surface of the untreated sample of 130HV.
- Example 2 Compared with the post-treatment test in Example 1 The average hardness of the sample surface HV191 increased by 10.5%. More carbon powder and greater laser energy allowed the carbon element to mix more fully with the remelted material on the aluminum alloy surface, further improving the hardness and mechanical stability of the superhydrophobic surface.
- the diameter of the carbon powder in Example 3 is 150 nm
- the thickness of the carbon powder absorption layer is 300 ⁇ m
- the laser peening energy is set to 8J.
- the droplet contact angle on the surface of the sample treated in Example 3 is 164°, and the rolling angle is 4°.
- the surface of the aerospace aluminum alloy sample prepared also has excellent superhydrophobic properties.
- the superhydrophobic surface of the aerospace aluminum alloy prepared in this example The microhardness value is 201HV, which is 54.6% higher than the average hardness of 130HV on the surface of the base material of the untreated sample.
- the sample prepared in Example 3 was placed on an ultrasonic vibration table to conduct a hydrophobic surface stability characterization experiment. As shown in Figure 5, as the vibration time increased, the contact angle of the droplets on the prepared superhydrophobic surface decreased, but 5 It still remains above 155° after several hours. It can be seen that the prepared aerospace aluminum alloy superhydrophobic surface has high mechanical stability.
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Plasma & Fusion (AREA)
- Mechanical Engineering (AREA)
- Other Surface Treatments For Metallic Materials (AREA)
- Laser Beam Processing (AREA)
Abstract
一种平顶激光喷丸制备铝合金超疏水表面的方法,包括以下步骤:对铝合金表面进行预处理;在预处理后的铝合金表面均匀涂敷纳米级碳粉层;采用方形光斑平顶纳秒脉冲激光,碳粉层作为吸收层,对铝合金表面进行无约束层喷丸处理,且光束始终保持与铝合金表面垂直;喷丸后去除残余的碳粉,通过低温热处理降低材料表面能,得到具有微纳多级结构的超疏水铝合金表面。
Description
本发明涉及铝合金超疏水表面制备领域,具体涉及一种平顶激光喷丸制备铝合金超疏水表面的方法。
航空铝合金质量轻、强度高,韧性好,具有优良的力学性能和加工性能,在航空、航天领域应用广泛。航空铝合金表面具有较高的湿润性,使其在低温潮湿的工作环境下产生水滴粘附凝结,材料表面容易发生腐蚀与结冰,对铝合金构件的服役寿命与使用性能产生不利的影响。大量研究表明,在航空铝合金表面构建超疏水结构可以有效的减缓材料表面的腐蚀与结冰,因此,铝合金超疏水表面的制备在航空、航天领域具有重要的意义。
目前,铝合金材料制备超疏水表面的方法多种多样,如电化学法、电花微加工法、化学刻蚀法、电镀法、溶胶-凝胶法等,但这些制备方法存在许多自身缺陷,如工艺复杂、效率低下,其中有些方法需要特殊的设备及严苛的制备环境,使得超疏水表面制备成本高昂,所制备的疏水织构存在强度低,机械稳定性差,制备后基体材料强度降低等问题,这极大地限制了超疏水表面制备工艺在服役环境复杂恶劣的航空铝合金构件上的应用。
激光喷丸技术作为一种新型的表面改性强化工艺,其利用激光辐照材料表面产生的等离子体冲击波使材料近表层的微观组织发生有益变化,同时在基体内部诱导产生高幅值残余压应力,使材料的力学性能得到有效提高,具有强化效率高,可控性强的优点。利用激光喷丸产生的热力耦合效应可以在航空铝合金表面产生多孔微纳多级结构,降低表面能后赋予铝合金表面超疏水性,是一种重要的超疏水表面制备方式。然而当前激光喷丸制备铝合金超疏水表面的工艺采用的是无吸收层圆形高斯光斑进行喷丸,喷丸时受高斯圆形光斑及搭接率的影响,使制备的超疏水宏观表面具有一定的起伏,液滴的滚动阻力增加,不利于液滴滑移离开材料表面,且在提高制备疏水织构强度方面能力有限。
发明内容
针对现有技术中存在的不足,本发明提供了一种平顶激光喷丸制备铝合金超疏水表面的方法,在现有激光喷丸制备超疏水表面工艺的基础上,选用方形光斑平顶激光器,以碳粉层作为吸收层进行无约束层喷丸,一方面,激光辐照在碳粉层上增加了对激光能量的吸收率,一部分碳粉吸收激光能量后转化为等离子体,等离子体急剧膨胀产生的冲击波会使受热融化的碳粉与铝合金表面重熔材料进行搅拌调制,提高了铝合金材料近表层碳元素的含量,可以 有效的提高制备疏水表面的硬度及耐磨性;另一方面,激光喷丸产生的热力耦合效应使铝合金表面产生具有疏水效果的多孔微纳多级结构的同时使基体材料的微观组织得到有效的强化,力学性能提高。其中方形光斑平顶脉冲激光作为激光喷丸的光源,有效改变圆形光斑高斯激光喷丸产生的起伏性形貌,表面平整度提高,可以有效减小液滴的滑动阻力,进一步提高了制备表面的超疏水效果。因此本发明以碳粉层作为吸收层进行无约束层方形光斑平顶脉冲激光喷丸,在铝合金材料基体上高效完成超疏水表面制备的同时实现了基体材料的强化,超疏水效果及表面强度也得到有效提高,超疏水表面机械耐磨性增强。
本发明是通过以下技术手段实现上述技术目的的。
一种平顶激光喷丸制备铝合金超疏水表面的方法,包括以下步骤:
对铝合金表面进行预处理;
在预处理后的铝合金表面均匀涂敷纳米级碳粉层;
采用方形光斑平顶纳秒脉冲激光,所述碳粉层作为吸收层,对铝合金表面进行无约束层喷丸处理,且光束始终保持与铝合金表面垂直;
喷丸后去除残余的碳粉,通过低温热处理降低材料表面能,得到具有微纳多级结构的超疏水铝合金表面。
进一步,所述预处理包括:对铝合金表面进行逐级打磨抛光,使表面粗糙度值≤50μm,采用去离子水对处理后表面进行超声清洗并烘干。
进一步,所述纳米级碳粉层为97%的纳米碳粉与3%的环氧树脂胶均匀混合,干燥凝固在铝合金预处理表面,所述纳米碳粉的直径范围为50nm~300nm,所述纳米级碳粉层厚度为100μm~500μm。
进一步,所述方形光斑平顶纳秒脉冲激光由圆形平顶纳秒脉冲激光通过光束整形器得到,用于使铝合金表面疏水微纳结构和硬度分别均匀化。
进一步,产生方形光斑平顶纳秒脉冲激光的激光器为Nd:YAG固体激光器,激光器加工参数为:波长1064nm,激光能量1J~15J,重复频率1Hz~5Hz,脉冲宽度10ns~20ns,方形光斑边长尺寸≤5mm。
进一步,所述低温热处理降低材料表面能的方法为:将喷丸处理后的铝合金材料置于80℃~150℃的真空干燥箱中进行处理,处理时间为1h~10h。
本发明的有益效果在于:
1.本发明所述的平顶激光喷丸制备铝合金超疏水表面的方法,选用方形光斑平顶脉冲激光,相对于传统的圆形光斑高斯脉冲激光在喷丸过程中,应力波以纵向传播的平面压缩波为主,表面横向波所占能量比重较低,基于这种特征,方形平顶光斑激光喷丸的各邻近喷丸点 所诱导的残余应力场之间不会产生复杂的干涉作用,喷丸先后顺序导致的应力应变场不均匀性将被大大削弱,避免了圆形光斑高斯脉冲激光喷丸时产生的应力空洞现象,喷丸处理后宏观表面形貌较平坦,有利于提高制备表面的疏水效果,且基体材料残余压应力场分布更加均匀,材料的服役寿命得到延长。
2.本发明所述的平顶激光喷丸制备铝合金超疏水表面的方法,使用碳粉层充当激光喷丸时的吸收层,当高功率密度的强脉冲激光辐照在铝合金板料表面时,碳粉吸收部分能量致使迅速电离气化,继续吸收激光能量生成高压冲击波使融化的碳粉与铝合金表层重熔材料发生搅拌调制,铝合金近表层的碳含量上升,有效提高了疏水微纳织构的硬度,使得制备的超疏水表面具有较好的耐磨性;同时,在激光喷丸力效应的作用下,金属材料表层形成了较高的位错密度,晶粒也得到了有效细化,织构表面的摩擦磨损性能和机械稳定性提高。
3.本发明所述的平顶激光喷丸制备铝合金超疏水表面的方法,利用低温热处理工艺降低具有微纳多级结构表面的表面能,清洁无污染。低温热处理使试样表面与空气中的氧气发生较充分的作用,对微纳多级结构表面的成分进行调控,显著提高铝合金表面对空气中有机物的吸附能力,结合激光喷丸过程中在微纳多级织构中引入的大量碳元素,材料表面非极性官能团大量增加,表面能得到有效降低,实现了无氟铝合金超疏水表面的制备。
4.本发明所述的平顶激光喷丸制备铝合金超疏水表面的方法,具有操作简便,成本低廉等优点,易于实现大规模工业化生产,显著提高了超疏水表面微纳多级织构的耐磨性与机械稳定性,铝合金基体材料强度也得到一定提高,更好的适用于航天航空领域复杂严苛的环境,具有较为广泛的工业应用前景。
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,下面描述中的附图是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,显而易见地还可以根据这些附图获得其他的附图。
图1为本发明所述的平顶激光喷丸制备铝合金超疏水表面的方法原理图。
图2为本发明实施例一制备的超疏水表面形貌实际效果图。
图3为本发明各实施例制备的超疏水表面液滴接触角对比图。
图4为本发明各实施例制备的超疏水表面显微硬度对比图。
图5为本发明实施例三制备的超疏水表面经过不同时长超声振动处理液滴接触角变化曲线图。
下面结合附图以及具体实施例对本发明作进一步的说明,但本发明的保护范围并不限于此。
下面详细描述本发明的实施例,所述实施例的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描述的实施例是示例性的,旨在用于解释本发明,而不能理解为对本发明的限制。
在本发明的描述中,需要理解的是,术语“中心”、“纵向”、“横向”、“长度”、“宽度”、“厚度”、“上”、“下”、“轴向”、“径向”、“竖直”、“水平”、“内”、“外”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个该特征。在本发明的描述中,“多个”的含义是两个或两个以上,除非另有明确具体的限定。
在本发明中,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”、“固定”等术语应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本发明中的具体含义。
如图1所示,本发明所述的平顶激光喷丸制备铝合金超疏水表面的方法,包括如下步骤:
对铝合金表面进行逐级打磨抛光,使表面粗糙度值≤50μm,并采用去离子水对处理后表面进行超声清洗并烘干;
所述纳米级碳粉层为97%的纳米碳粉与3%的环氧树脂胶均匀混合,干燥凝固在铝合金预处理表面;将直径范围为50nm~300nm的纳米级碳粉层涂敷在铝合金板材表面,在铝合金表面形成厚度为100μm~500μm的纳米级碳粉层;由于环氧树脂胶气化温度低,在激光辐照下环氧树脂胶会全部挥发,不会改变形成重熔层的成分,只起到粘附纳米级碳粉的作用。
采用方形光斑平顶纳秒脉冲激光器,选用合理的参数及路径以所述碳粉层充当激光喷丸时的吸收层,对铝合金试样表面进行无约束层喷丸处理,且光束始终保持与板材表面垂直,用于使铝合金表面疏水微纳结构和硬度分别均匀化;
喷丸结束后使用超声清洗去除铝合金表面的残余碳粉,随后将喷丸处理后的板材置于恒温80℃~150℃的真空干燥箱中进行低温处理,时间为1h~10h,以降低材料的表面能,完成 具有微纳多级结构的超疏水铝合金表面的制备。
本发明所述的平顶激光喷丸制备铝合金超疏水表面的方法,通过光束整形器将圆形光斑平顶纳秒脉冲激光转变为方形光斑平顶纳秒脉冲激光,以纳米级碳粉层为吸收层,在铝合金表面进行无约束层激光喷丸,结合低温热处理工艺降低材料表面能,赋予铝合金表面超疏水性。运用方形光斑平顶脉冲激光进行喷丸,有利于对激光喷丸产生的残余压应力进行调控,使应力分布更加均匀,可以有效提高材料的服役寿命;以纳米级碳粉作为激光喷丸时的吸收层,激光能量的吸收率增加,产生高强度的等离子冲击波,对材料起到冲击强化的同时将融化的碳粉与铝合金表面重熔物质进行搅拌,大幅提高铝合金表层碳元素的含量,进而提高了制备多级微纳结构的强度和硬度,使得制备的超疏水表面具有较高的基体耐磨性与机械稳定性;通过对激光光斑尺寸形状、激光能量、搭接率及喷丸路径等参数的优化设置可以实现对激光喷丸制备的超疏水表面宏观形貌进行调控,使得制备表面较平坦,可以有效的减小液滴滑动的阻力,滚动角减小;本发明中采用低温热处理处理的方式在铝合金材料表面引入大量的非极性官能团,实现了对制备的微纳多级结构表面能的降低,采用无氟添加的方式实现了铝合金超疏水表面的制备。
为使本发明的目的、技术方案和优点更加清楚,下面选取2024-T351航空铝合金作为研究对象,结合具体实施例对本发明进行详细的描述。
实施例一:
实施例一所述的平顶激光喷丸制备铝合金超疏水表面的方法,包括如下步骤:
(1)将2024-T351航空铝合金表面使用400#、800#、1000#、1500#、2000#粒径的砂纸进行打磨,并在磨抛机上进行抛光,使铝合金材料表面达到镜面(Ra≤50μm),然后在无水乙醇溶液中对试样表面进行超声清洗5min,在真空干燥箱中烘干备用;
(2)将直径为50nm的碳粉与环氧树脂胶混合涂敷在铝合金板材表面,在铝合金表面形成厚度为100μm的纳米碳粉层;
(3)选用Nd:YAG高重频大能量纳秒脉冲激光器,调整光束整形器,使圆形光斑平顶脉冲纳秒激光转变为方形光斑平顶脉冲纳秒激光,激光喷丸具体参数为:波长1064nm,激光频率1Hz,脉冲宽度20ns,光斑搭接率0%,光斑直径3mm,激光能量5J;
(4)激光喷丸结束后使用超声清洗去除铝合金表面的残余碳粉,将航空铝合金试样放置在温度为100℃的烘干箱中进行低温热处理5h,在铝合金材料表面引入大量的非极性官能团,降低铝合金材料的表面能,完成铝合金超疏水表面的制备。
实施例一制备的航空铝合金超疏水表面的形貌如图2所示,相对于圆形光斑高斯脉冲纳秒激光制备的铝合金超疏水表面,试样宏观表面较平坦,同时具有优异的微纳多级结构形貌, 提高了制备表面的疏水效果;如图3所示,实施例一制备的试样表面具有优异的超疏水性,液滴滑动阻力较小,液滴接触角为162°,滚动角为4°;如图4所示,在激光喷丸产生的热力作用下,航空铝合金表层的碳元素大量增加,极大地提升了制备的航空铝合金超疏水表面的显微硬度,达到了191HV,相较于未处理试样表面的平均硬度值130HV提升了46.9%,这对提高制备超疏水表面的耐磨损性具有重要的意义。
实施例二
在实施例一的基础上,实施例二中的碳粉直径达到300nm,碳粉吸收层厚度为500μm,激光喷丸能量设置为13J。
如图3所示,实施例二得到的超疏水表面的液滴接触角为159°,滚动角为5°,同样实现了航空铝合金表面的优异超疏水性。实施例二采用了更大的碳粉颗粒与更厚的碳粉吸收层,激光喷丸能量也提高了,在航空铝合金表面产生的更深的影响层,强化效果也得到了有效提高,如图4所示,本实施例制备的航空铝合金超疏水表面显微硬度值为211HV,相较于未处理试样基体材料表面的平均硬度130HV提升了62.3%,相较于实施例一处理后试样表面的平均硬度HV191提升了10.5%,更多的碳粉、更大的激光能量使得碳元素与铝合金表面的重熔物质搅拌更充分,超疏水表面的硬度和机械稳定性进一步提高。
实施例三
在实施例一的基础上,实施例三中的碳粉直径150nm,碳粉吸收层厚度300μm,激光喷丸能量设置为8J。
实施例三处理的试样表面液滴接触角为164°,滚动角为4°,所制备的航空铝合金试样表面同样具有优异的超疏水性能,本实施例制备的航空铝合金超疏水表面显微硬度值为201HV,相较于未处理试样基体材料表面的平均硬度130HV提升了54.6%。将实施例三制备的试样置于超声振动台上进行疏水表面稳定性表征实验,如图5所示,随着振动时间的增加,制备的超疏水表面液滴接触角有所下降,但5个小时后依然保持在155°以上,可以看出所制备的航空铝合金超疏水表面具有较高的机械稳定性。
应当理解,虽然本说明书是按照各个实施例描述的,但并非每个实施例仅包含一个独立的技术方案,说明书的这种叙述方式仅仅是为清楚起见,本领域技术人员应当将说明书作为一个整体,各实施例中的技术方案也可以经适当组合,形成本领域技术人员可以理解的其他实施方式。
上文所列出的一系列的详细说明仅仅是针对本发明的可行性实施例的具体说明,它们并非用以限制本发明的保护范围,凡未脱离本发明技艺精神所作的等效实施例或变更均应包含在本发明的保护范围之内。
Claims (8)
- 一种平顶激光喷丸制备铝合金超疏水表面的方法,其特征在于,包括以下步骤:对铝合金表面进行预处理;在预处理后的铝合金表面均匀涂敷纳米级碳粉层;采用方形光斑平顶纳秒脉冲激光,所述纳米级碳粉层作为吸收层,对铝合金表面进行无约束层喷丸处理,且光束始终保持与铝合金表面垂直;喷丸后去除残余的纳米碳粉,通过低温热处理降低材料表面能,得到具有微纳多级结构的超疏水铝合金表面。
- 根据权利要求1所述的平顶激光喷丸制备铝合金超疏水表面的方法,其特征在于,所述预处理包括:对铝合金表面进行逐级打磨抛光,使表面粗糙度值≤50μm,采用去离子水对处理后表面进行超声清洗并烘干。
- 根据权利要求1所述的平顶激光喷丸制备铝合金超疏水表面的方法,其特征在于,所述纳米级碳粉层为纳米碳粉与环氧树脂胶的混合物。
- 根据权利要求3所述的平顶激光喷丸制备铝合金超疏水表面的方法,其特征在于,所述纳米碳粉的直径范围为50nm~300nm,所述纳米级碳粉层厚度为100μm~500μm。
- 根据权利要求3所述的平顶激光喷丸制备铝合金超疏水表面的方法,其特征在于,在方形光斑平顶纳秒脉冲激光辐照在铝合金板料表面时,所述纳米级碳粉层吸收部分能量使环氧树脂胶电离气化,气化后的纳米级碳粉层中的纳米碳粉继续吸收激光能量生成高压冲击波使融化的碳粉与铝合金表层重熔材料发生搅拌调制,使铝合金近表层的碳含量上升,用于提高了疏水微纳织构的硬度和耐磨性。
- 根据权利要求1所述的平顶激光喷丸制备铝合金超疏水表面的方法,其特征在于,所述方形光斑平顶纳秒脉冲激光由圆形平顶纳秒脉冲激光通过光束整形器得到,用于使铝合金表面疏水微纳结构和硬度分别均匀化。
- 根据权利要求1所述的平顶激光喷丸制备铝合金超疏水表面的方法,其特征在于,产生方形光斑平顶纳秒脉冲激光的激光器为Nd:YAG固体激光器,激光器加工参数为:波长1064nm,激光能量1J~15J,重复频率1Hz~5Hz,脉冲宽度10ns~20ns,方形光斑边长尺寸≤5mm。
- 根据权利要求1所述的平顶激光喷丸制备铝合金超疏水表面的方法,其特征在于,所述低温热处理降低材料表面能的方法为:将喷丸处理后的铝合金材料置于80℃~150℃的真空干燥箱中进行处理,处理时间为1h~10h。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
GB2313401.8A GB2623639A (en) | 2022-06-08 | 2022-07-18 | Method for preparing aluminum alloy super-hydrophobic surface by flat-top laser peening |
US18/010,839 US11839934B1 (en) | 2022-06-08 | 2022-07-18 | Method for preparing super-hydrophobic aluminum alloy surface through flat-topped laser peening |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210641002.3A CN114985938B (zh) | 2022-06-08 | 2022-06-08 | 一种平顶激光喷丸制备铝合金超疏水表面的方法 |
CN202210641002.3 | 2022-06-08 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2023236314A1 true WO2023236314A1 (zh) | 2023-12-14 |
Family
ID=83033004
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2022/106171 WO2023236314A1 (zh) | 2022-06-08 | 2022-07-18 | 一种平顶激光喷丸制备铝合金超疏水表面的方法 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN114985938B (zh) |
WO (1) | WO2023236314A1 (zh) |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007169753A (ja) * | 2005-12-26 | 2007-07-05 | Muneharu Kutsuna | レーザピーニング処理方法及びレーザ吸収粉体層シート |
CN104947116A (zh) * | 2015-05-28 | 2015-09-30 | 湖北工业大学 | 一种利用超短脉冲激光制备铝合金超疏水自清洁表面的方法 |
CN105039652A (zh) * | 2015-04-29 | 2015-11-11 | 江苏大学 | 一种用于曲面的方形光斑激光冲击均匀强化方法 |
CN106119467A (zh) * | 2016-07-26 | 2016-11-16 | 广东工业大学 | 一种控制激光喷丸参数监控叶片表面粗糙度的方法和装置 |
CN109880998A (zh) * | 2019-03-01 | 2019-06-14 | 广东工业大学 | 一种叶片表面型面监控的方法及装置 |
CN111468831A (zh) * | 2019-01-23 | 2020-07-31 | 中国科学院长春光学精密机械与物理研究所 | 自清洁金属表面、及其制备方法和加工装置 |
CN112375899A (zh) * | 2020-10-29 | 2021-02-19 | 上海交通大学 | 矩形均匀激光脉冲冲击强化与成型系统及其运用方法 |
CN113967796A (zh) * | 2021-10-26 | 2022-01-25 | 江苏大学 | 一种铝合金表面激光冲击压印微纳米颗粒制备超疏水性表面的方法 |
CN114406475A (zh) * | 2021-12-01 | 2022-04-29 | 江苏大学 | 一种激光喷丸制备铝合金超疏水表面的方法 |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006320907A (ja) * | 2005-05-17 | 2006-11-30 | Muneharu Kutsuna | 粉体および被膜を用いたマイクロレーザピーニング処理およびマイクロレーザピーニング処理部品 |
CN104164538B (zh) * | 2014-07-16 | 2017-02-22 | 江苏大学 | 一种获得大面积均匀表面形貌的激光冲击强化方法 |
US10596661B2 (en) * | 2015-09-28 | 2020-03-24 | Ecole Polytechnique Federale De Lausanne (Epfl) | Method and device for implementing laser shock peening or warm laser shock peening during selective laser melting |
CN106191384B (zh) * | 2016-07-13 | 2018-02-13 | 广东工业大学 | 基于导轨运动的金属板料激光喷丸成形动态自适应装备及方法 |
CN106112268B (zh) * | 2016-07-22 | 2017-09-19 | 广东工业大学 | 一种带筋壁板激光喷丸成形系统及方法 |
CN107099656B (zh) * | 2017-06-29 | 2018-08-24 | 西北有色金属研究院 | 一种钛合金用激光冲击吸收层的制备方法 |
-
2022
- 2022-06-08 CN CN202210641002.3A patent/CN114985938B/zh active Active
- 2022-07-18 WO PCT/CN2022/106171 patent/WO2023236314A1/zh unknown
Patent Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007169753A (ja) * | 2005-12-26 | 2007-07-05 | Muneharu Kutsuna | レーザピーニング処理方法及びレーザ吸収粉体層シート |
CN105039652A (zh) * | 2015-04-29 | 2015-11-11 | 江苏大学 | 一种用于曲面的方形光斑激光冲击均匀强化方法 |
CN104947116A (zh) * | 2015-05-28 | 2015-09-30 | 湖北工业大学 | 一种利用超短脉冲激光制备铝合金超疏水自清洁表面的方法 |
CN106119467A (zh) * | 2016-07-26 | 2016-11-16 | 广东工业大学 | 一种控制激光喷丸参数监控叶片表面粗糙度的方法和装置 |
CN111468831A (zh) * | 2019-01-23 | 2020-07-31 | 中国科学院长春光学精密机械与物理研究所 | 自清洁金属表面、及其制备方法和加工装置 |
CN109880998A (zh) * | 2019-03-01 | 2019-06-14 | 广东工业大学 | 一种叶片表面型面监控的方法及装置 |
CN112375899A (zh) * | 2020-10-29 | 2021-02-19 | 上海交通大学 | 矩形均匀激光脉冲冲击强化与成型系统及其运用方法 |
CN113967796A (zh) * | 2021-10-26 | 2022-01-25 | 江苏大学 | 一种铝合金表面激光冲击压印微纳米颗粒制备超疏水性表面的方法 |
CN114406475A (zh) * | 2021-12-01 | 2022-04-29 | 江苏大学 | 一种激光喷丸制备铝合金超疏水表面的方法 |
Also Published As
Publication number | Publication date |
---|---|
CN114985938B (zh) | 2023-01-17 |
CN114985938A (zh) | 2022-09-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US11839934B1 (en) | Method for preparing super-hydrophobic aluminum alloy surface through flat-topped laser peening | |
WO2023098084A1 (zh) | 一种激光喷丸制备铝合金超疏水表面的方法 | |
CN108047884A (zh) | 一种超疏水表面涂层及其制备方法 | |
CN112647105B (zh) | 一种铝合金表面处理方法 | |
CN107099656B (zh) | 一种钛合金用激光冲击吸收层的制备方法 | |
WO2023168794A1 (zh) | 一种激光刻蚀制备铝合金超疏水表面应力与织构形貌调控方法 | |
CN109852955A (zh) | 一种钛合金表面化学镀镍硼铅高硬耐磨涂层的方法 | |
WO2023184798A1 (zh) | 一种电脉冲和激光冲击波实时耦合强化的方法 | |
CN110016629A (zh) | 一种适用于钛合金的湿喷丸表面改性方法 | |
CN104294343A (zh) | 一种钢铁表面类金刚石复合渗碳层的制备方法 | |
WO2023236314A1 (zh) | 一种平顶激光喷丸制备铝合金超疏水表面的方法 | |
CN110952122A (zh) | 金属及复合材料隔热耐蚀抗疲劳复合防护层的制备方法 | |
CN106929793B (zh) | 一种复合材料、在金属基体上喷涂涂层的方法和防腐涂层 | |
CN116397296A (zh) | 一种提高铝材表面抗磨蚀性能的方法 | |
CN114799532B (zh) | 激光辐照结合蜡封抛光制备高质量非晶合金微凹坑的方法 | |
CN203782197U (zh) | 一种基于激光诱导空化的金属表面强化装置 | |
CN111518474A (zh) | 一种光热除冰表面涂层及其制备方法 | |
Lv et al. | Investigating the Effects of the current density on the properties of Ni-P-La2O3 composite coatings | |
CN112708915B (zh) | 一种微弧氧化铝合金材料 | |
CN114293129A (zh) | 镍基涂层的制备方法、工件的制备方法及装置 | |
CN112725860B (zh) | 一种简易微弧氧化铝材的处理方法 | |
CN113930824B (zh) | 一种含绢云母的微弧氧化防腐耐磨陶瓷涂层及其制备方法 | |
CN112812589B (zh) | 一种钛合金涂层及其制备方法 | |
Li et al. | Research progress of high-precision polishing technology on optical diamond material surface | |
CN112695357B (zh) | 一种铝合金微弧氧化膜封孔方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
ENP | Entry into the national phase |
Ref document number: 202313401 Country of ref document: GB Kind code of ref document: A Free format text: PCT FILING DATE = 20220718 |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 22945448 Country of ref document: EP Kind code of ref document: A1 |