CN104937827B - 变流系统以及风力或水力发电设备 - Google Patents

变流系统以及风力或水力发电设备 Download PDF

Info

Publication number
CN104937827B
CN104937827B CN201380063975.2A CN201380063975A CN104937827B CN 104937827 B CN104937827 B CN 104937827B CN 201380063975 A CN201380063975 A CN 201380063975A CN 104937827 B CN104937827 B CN 104937827B
Authority
CN
China
Prior art keywords
inverter
power plant
wind power
rectifier
storage means
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201380063975.2A
Other languages
English (en)
Other versions
CN104937827A (zh
Inventor
托拜厄斯·特奥波特
马赛厄斯·泡利
雷·奥佩
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Scientific control industrial automation Germany Co.,Ltd.
Original Assignee
Moog Unna GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Moog Unna GmbH filed Critical Moog Unna GmbH
Publication of CN104937827A publication Critical patent/CN104937827A/zh
Application granted granted Critical
Publication of CN104937827B publication Critical patent/CN104937827B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D7/00Controlling wind motors 
    • F03D7/02Controlling wind motors  the wind motors having rotation axis substantially parallel to the air flow entering the rotor
    • F03D7/04Automatic control; Regulation
    • F03D7/042Automatic control; Regulation by means of an electrical or electronic controller
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M5/00Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases
    • H02M5/40Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc
    • H02M5/42Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters
    • H02M5/44Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters using discharge tubes or semiconductor devices to convert the intermediate dc into ac
    • H02M5/453Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters using discharge tubes or semiconductor devices to convert the intermediate dc into ac using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M5/458Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters using discharge tubes or semiconductor devices to convert the intermediate dc into ac using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03BMACHINES OR ENGINES FOR LIQUIDS
    • F03B15/00Controlling
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H7/00Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions
    • H02H7/10Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions for converters; for rectifiers
    • H02H7/12Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions for converters; for rectifiers for static converters or rectifiers
    • H02H7/122Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions for converters; for rectifiers for static converters or rectifiers for inverters, i.e. dc/ac converters
    • H02H7/1222Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions for converters; for rectifiers for static converters or rectifiers for inverters, i.e. dc/ac converters responsive to abnormalities in the input circuit, e.g. transients in the DC input
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0067Converter structures employing plural converter units, other than for parallel operation of the units on a single load
    • H02M1/008Plural converter units for generating at two or more independent and non-parallel outputs, e.g. systems with plural point of load switching regulators
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/20Hydro energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/72Wind turbines with rotation axis in wind direction
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/76Power conversion electric or electronic aspects

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Combustion & Propulsion (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Control Of Eletrric Generators (AREA)
  • Inverter Devices (AREA)
  • Wind Motors (AREA)
  • Control Of Water Turbines (AREA)
  • Rectifiers (AREA)
  • Supply And Distribution Of Alternating Current (AREA)

Abstract

本发明描述和示出了一种具有整流器(1)和至少两个逆变器(2)的变流系统,其中所述整流器(1)能够由交流电源(3)供电,所述整流器(1)通过共用的直流电路(4)与所述每个逆变器(2)相连以便给所述逆变器(2)供电,并且所述每个逆变器(2)能够分别与用电器(5)相连,以便给所述各用电器(5)供电。尤其可靠的变流系统根据本发明通过以下方式实现:在所述直流电路(4)和所述一个逆变器(2)之间的至少一个连接中设置有脱耦装置(6),所述脱耦装置(6)阻止电能从所述逆变器(2)开始沿所述直流电路(4)的方向传递。还描述和示出了一种具有转子的风力或水力发电设备,其中所述转子具有旋翼毂和至少两个转子叶片,所述转子叶片可以通过所述用电器(5)围绕着其各自的纵轴线旋转。尤其可靠的风力或水力发电设备根据本发明通过以下方式实现:风力或水力发电设备具有根据权利要求1至11中任一项所述的变流系统,其中所述变流系统给所述用电器(5)供电。

Description

变流系统以及风力或水力发电设备
技术领域
本发明涉及一种具有整流器和至少两个逆变器的变流系统,其中整流器能够由交流电源供电,整流器通过共用的直流电路与每个逆变器相连以便给逆变器供电,并且每个逆变器能够分别与用电器相连,以便给各用电器供电。
此外,本发明还涉及一种具有转子的风力或水力发电设备,其中转子具有旋翼毂和至少两个转子叶片,这些转子叶片可以通过用电器围绕着各自的纵轴线旋转。
背景技术
US 7,126,236 B2公开了一种用来给风力发电设备的至少一个直流电动机供电的方法和系统,该系统具有与电源相连的桥接整流器,以便产生直流电压并且将该直流电压供应给上述的至少一个直流电动机,该系统还具有中间电路电容器,它使直流电压变得平缓并且作为蓄电器和电源用于上述的至少一个直流电动机。此外还公开的是,应用多个直流电动机,它们由单独的驱动系统供电,这些驱动系统的中间电路彼此连接,因此能够在这些中间电路之间交换电量。
US 7,740448 B2公开了一种用来控制风力发电设备的转子叶片的间隙角的装置,该装置具有:间隙角控制系统,其具有基于MOSFET的功率转换器;直流电压电路,其具有直流电压电路电容器并且被配置成通过基于MOSFET的功率转换器给间隙角控制系统供电;用于交流电输入电量的电源,用来给直流电压电路供电;备用蓄电池,其被配置成如果供应了满的交流电输入电量,则该备用蓄电池不给直流电压电路供电;并且该装置还被配置成利用存储在直流电压电路电容器中的电量,以便在交流电输入电量损失或断开期间通过基于MOSFET的功率转换器给间隙角控制系统供电;一旦直流电压电路电容器上的电压在给调节控制系统供电期间下降,则在应用备用蓄电池的情况下维持直流电压电路电容器上的电荷;其中交流电源是非再生电源,并且直流电压电路对于多个间隙角电动机系统来说是共用的,并且在应用充电的备用蓄电池的情况下,维持直流电压电路电容器上的电荷还包括将源自备用蓄电池的电流传输至共用的直流电压电路。
以上现有技术的缺点是,例如在中间电路(尤其是驱动系统中的一个的中间电路电容器)中出现短路时,所有中间电路都通过所述短路完全放电,因此源自驱动系统的电能不能再供应给电动机。这在未借助直流电来驱动的电动机中尤其会出现问题,因为直流电动机除了借助驱动系统实现的运转以外还能够直接连接到电池或电容器上,以便在紧急情况下至少借助存储在电池或电容器中的电量运转一段有限的时间。相反,这一点在交流电动机中无法轻易地实现。
发明内容
因此本发明的目的是,说明一种尤其可靠的变流系统以及风力或水力发电设备。
前面引出以及指出的目的由前述变流系统通过以下方式得以实现:在直流电路和一个逆变器之间的至少一个连接中设置有脱耦装置,该脱耦装置阻止了电能从逆变器开始沿直流电路的方向传递。令人惊讶的是,本发明的变流系统具有比由现有技术水平得到的系统更明显的优点。尤其是逆变器从直流电路上的脱耦,使得逆变器也相互脱耦,这保护了每个逆变器免受出现在其他部件中的干扰。在没有脱耦装置的情况下,例如逆变器的直流电压侧上的短路可能通过直流电路直接对其他所有逆变器产生影响。
根据本发明的有利的改进实施例,该脱耦装置或至少一个脱耦装置具有至少一个二极管。尤其有利的是,该脱耦装置或至少一个脱耦装置由至少一个二极管构成。通过应用一个或多个串联的二极管,能够使一个或多个逆变器可靠地从直流电路上脱耦,因此阻止了电能从所述一个或多个逆变器回传到直流电路中。
本发明的有利的实施例的特征在于,逆变器中的至少一个具有应急蓄电器,使逆变器能够通过该应急蓄电器供电。通过配备应急蓄电器,能够给各逆变器供应存储在应急蓄电器中的电能。因此在紧急情况下,例如在直流电路对逆变器停止供电时,逆变器至少在一定时间段中给用电器供应来自应急蓄电器的电量,以便在紧急情况下能够使用电器产生期望的甚至必需的反应。用电器的这种期望的或必需的反应例如在风力发电设备中是所谓的紧急运行。在此,风力发电设备的几乎所有的转子叶片都通过风旋转,因此它们不再能从气流中接收能量,而是通过气体动力学方面的制动将风力发电设备的转子慢慢带到停止状态。
根据本发明的尤其有利的改进实施例,该应急蓄电器或者多个应急蓄电器中的至少一个由电容器、尤其是超级电容器构成。电容器,尤其是超级电容器,已被证实能够尤其有利地应用在变流系统中。这种电容器具有高的存储量(在容积较小的情况下)以及明显更长的使用寿命,因此明显优于通常应用的电池。应急蓄电器尤其能够由单个电容器或多个电容器构成。
根据本发明的优选的实施例,该应急蓄电器或者多个应急蓄电器中的至少一个直接与各逆变器的中间电路电容器相连。通过各逆变器的中间电路电容器和应急蓄电器之间的直接连接,能够将电能引导和存储在应急蓄电器中,所述电能在特定的运行情况下由用电器发送到逆变器上并且由该逆变器整流。此外,通过将应急蓄电器直接连接在中间电路电容器上,可使中间电路电容器设计得相对较小,即容量较小,因为应急蓄电器至少部分地承担了中间电路电容器的任务。在本发明的另一实施例中,中间电路电容器容量非常小,可忽略不计。在这种情况下,应急蓄电器替代中间电路电容器的功能。
根据本发明的另一优选的实施例,整流器的输出电压与该应急蓄电器或多个应急蓄电器的额定电压匹配。通过这种方式能够省略用于所述一个或多个应急蓄电器的外部充电装置,因为所述一个或多个应急蓄电器能够通过这样的电能充电,即所述能量由整流器供应给直流电路并且从中引导到逆变器中。
此外还有利的是,整流器在输入侧具有过压保护。这样能够保护整个变流系统,以避免源自交流电源的过压。这尤其使变流系统免受感应地耦合到交流电源中的过压,例如可能通过电击等方式引起的过压。
根据本发明的另一优选的改进实施例,整流器具有可编程存储器的控制系统。该可编程存储器的控制系统尤其可用来控制整流器和/或逆变器。
根据本发明的有利的实施例,整流器和/或至少一个逆变器具有现场总线接口。通过该现场总线接口实现与其他系统的通讯。所述其他系统尤其指上一级的控制装置。例如在风力发电设备中,这种上一级的控制装置由特别预先规定转子叶片位置额定值的设备控制系统构成,设备控制系统监控变流系统的额定值的遵守情况,并且通过相应地操控与逆变器相连的用电器(尤其是电动机)来确保遵守额定值。
根据本发明的另一有利的实施例,整流器的电流消耗受到限制。这种限制既可通过例如具有至少一个电阻的扼流装置来实现,也可通过整流器的相应控制来实现,例如在可控的桥接整流器(具有相应的受限电流调节)是可行的。
根据本发明的尤其有利的实施例,用电器中的至少一个是交流电动机或直流电动机。
前面引出以及指出的目的由前述风力或水力发电设备通过以下方式得以实现:风力或水力发电设备具有根据权利要求1至11中任一项所述的变流系统,其中变流系统给用电器供电。在这种风力或水力发电设备中,变流系统是所谓的变桨系统的一部分,其使转子叶片围绕着其各自的纵轴线旋转。这些用电器通常由交流或直流电动机构成。
详细说来,现在已有多个方案来配置和改进根据本发明的变流系统和风力或水力发电设备。为此,在参照附图的情况下,参照专利权利要求1后面的专利权利要求以及对本发明的优选实施例的后续详细描述。
附图说明:
图1示意性地示出了根据本发明的优选改进实施例的本发明的变流系统;
图2示意性地示出了根据本发明的另一实施例的本发明的变流系统的一部分。
具体实施方式
图1示出了本发明的变流系统,其具有整流器1和三个逆变器2。该整流器1与交流电源3相连,该交流电源能够通过电力网等来构成。整流器1将由交流电源3供应的三相交流电整流,并且通过直流电路4给它提供逆变器2。该逆变器2与用电器5相连,用电器5由逆变器2供电。这些用电器可能包括直流电动机或交流电动机等。在逆变器2与直流电路4的每一连接中都设置有脱耦装置6,脱耦装置6阻止电能从逆变器2开始沿直流电路4的方向传递。整流器1在输入侧具有过压保护11,过压保护11保护本发明的变流系统,以避免源自直流电源3的过压。
整流器1还具有存储式可编程控制系统12和现场总线接口13,整流器能够通过该现场总线接口连接到现场总线14上,以便与上一级的控制系统(未示出)通讯。该存储式可编程控制系统12含有用于控制整流器1和逆变器2的特别软件。
图2示出了根据本发明的另一实施例的本发明的变流系统的一部分。逆变器2通过脱耦装置6连接到只局部示出的直流电路4上。脱耦装置6由四个二极管7构成,它们分布在逆变器2和直流电路4之间的连接导线中。在此,两个二极管7在每个连接导线中串联起来,使得没有电能能够从逆变器2开始沿直流电路4的方向传递。逆变器2具有中间电路电容器10,它能够通过脱耦装置6加载源自直流电路4的电能。应急蓄电器8直接连接到中间电路电容器10上。应急蓄电器8具有许多电容器9。多个串联的电容器9优选组合成结构单元,多个这种结构单元并联地构成应急蓄电器8。图2所示的应急蓄电器8的每两个电容器9由三个这种结构单元构成。
逆变器2还具有桥接装置15,逆变器2借助桥接装置15与用电器5相连。桥接装置15具有三个电桥16,它们通过两个串联的晶体管17构成,每个晶体管17并联有一个空载二极管18。这些晶体管17主要由具有绝缘栅电极的双极晶体管构成,所述双极晶体管也称为IGBT(绝缘栅双极型晶体管)。通过这些空载二极管18,电量能够从用电器5送回到中间电路电容器10和应急蓄电器8中。如果用电器5由电动机构成,且电动机至少短时间作为发电机运转,则出现这种情况。如果用电器5通过桥接装置15送回中间电路电容器10和应急蓄电器8中的电能超过其承受范围,则配备有制动限制器19。借助该制动限制器19,源自中间电路电容器10和应急蓄电器8的电能能够转换成热能。在此,制动限制器19具有晶体管21和抱闸电阻20。一旦晶体管21通电,则电流流过晶体管21和抱闸电阻20。此时抱闸电阻20加热。如果中间电路电容器10和/或应急蓄电器8中的电压上升到确定的极限值,则晶体管21通电,由此产生的电流抑制电压的进一步上升。为了监控中间电路电容器10和/或应急蓄电器8中的电压,至少要为这些部件中的一者配备电压传感器。在尤其有利的实施例中,将电压传感器的测量值传输给存储式可编程控制系统12,并且制动限制器19的晶体管21能够通过可编程存储器的控制系统12操纵。
在每个电桥的各串联的晶体管之间,连接导线分别来自对应于逆变器2的用电器5。通过对晶体管21进行相应控制,暂时存储在中间电路电容器10和应急蓄电器8中的电量能够经由桥接装置15以交流电等形式供应给用电器5。
参考标记清单
1 整流器
2 逆变器
3 交流电源
4 直流电路
5 用电器
6 脱耦装置
7 二极管
8 应急蓄电器
9 电容器
10 中间电路电容器
11 过压保护
12 存储式可编程控制系统
13 现场总线接口
14 现场总线
15 桥接装置
16 电桥
17、21 晶体管
18 空载二极管
19 制动限制器
20 抱闸电阻

Claims (11)

1.一种具有转子的风力发电设备,其中所述转子具有旋翼毂和至少两个转子叶片,所述转子叶片能够通过电动机(5)围绕着其各自的纵轴线旋转,所述风力发电设备具有用于给所述电动机(5)供电的变流系统,所述变流系统还具有整流器(1)和至少两个逆变器(2),其中所述整流器(1)能够由交流电源(3)供电,所述整流器(1)通过共用的直流电路(4)与每个所述逆变器(2)相连以便给所述逆变器(2)供电,并且每个逆变器(2)能够与各电动机(5)相连,以便给各电动机(5)供电,
其特征在于,
所述整流器(1)的电流消耗受到限制,并且所述逆变器(2)中的至少一个具有包括电容器(9)的应急蓄电器(8),所述应急蓄电器(8)直接连接到所述逆变器(2)用于向所述逆变器(2)供电,且在所述直流电路(4)和所述应急蓄电器(8)之间的至少一个连接中设置有脱耦装置(6),所述脱耦装置(6)阻止电能从所述逆变器(2)开始沿所述直流电路(4)的方向传递。
2.根据权利要求1所述的风力发电设备,其特征在于,一个脱耦装置(6)或至少一个脱耦装置(6)具有至少一个二极管(7)。
3.根据权利要求1至2中任一项所述的风力发电设备,其特征在于,通过所述应急蓄电器(8)给所述逆变器(2)供电允许逆变器在紧急情况下至少在一定时间段中给所述电动机(5)供电,因此便于所述风力发电设备的转子叶片都通过风旋转,从而使得所述转子叶片不再从气流中接收能量,而是通过气体动力学方面的制动将所述风力发电设备的所述转子慢慢带到停止状态。
4.根据权利要求1所述的风力发电设备,其特征在于,所述电容器(9)是超级电容器。
5.根据权利要求1所述的风力发电设备,其中所述变流系统还具有空载二极管(18),所述空载二极管(18)能够将电量从所述电动机(5)送回到所述应急蓄电器(8)中。
6.根据权利要求1所述的风力发电设备,其中所述变流系统还具有晶体管(21)和抱闸电阻(20),并且所述变流系统适于在所述应急蓄电器(8)中的电压上升到确定的极限值的情况下将所述晶体管(21)切换到通电模式,以便允许电流流经所述抱闸电阻(20),因此便于抑制电压的进一步上升。
7.根据权利要求1所述的风力发电设备,其特征在于,所述整流器(1)的输出电压与一个应急蓄电器(8)或多个应急蓄电器(8)的额定电压匹配。
8.根据权利要求1所述的风力发电设备,其特征在于,所述整流器(1)在输入侧具有过压保护(11)。
9.根据权利要求1所述的风力发电设备,其特征在于,所述整流器(1)具有可编程存储器的控制系统(12)。
10.根据权利要求1所述的风力发电设备,其特征在于,所述整流器(1)和/或至少一个所述逆变器(2)具有现场总线接口(13)。
11.根据权利要求1所述的风力发电设备,其特征在于,所述电动机(5)是交流电动机或直流电动机。
CN201380063975.2A 2012-11-23 2013-11-22 变流系统以及风力或水力发电设备 Active CN104937827B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
EP12194100.9A EP2736159B1 (de) 2012-11-23 2012-11-23 Umrichtersystem und Wind- oder Wasserenergieanlage
EP12194100.9 2012-11-23
PCT/EP2013/074466 WO2014079970A1 (de) 2012-11-23 2013-11-22 Umrichtersystem und wind- oder wasserenergieanlage

Publications (2)

Publication Number Publication Date
CN104937827A CN104937827A (zh) 2015-09-23
CN104937827B true CN104937827B (zh) 2017-10-24

Family

ID=47429547

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201380063975.2A Active CN104937827B (zh) 2012-11-23 2013-11-22 变流系统以及风力或水力发电设备

Country Status (14)

Country Link
US (1) US20150316033A1 (zh)
EP (1) EP2736159B1 (zh)
JP (1) JP6445976B2 (zh)
KR (1) KR101736356B1 (zh)
CN (1) CN104937827B (zh)
AU (1) AU2013349647B2 (zh)
BR (1) BR112015011956B1 (zh)
CA (1) CA2892211C (zh)
DK (1) DK2736159T3 (zh)
ES (1) ES2673974T3 (zh)
MX (1) MX345132B (zh)
TR (1) TR201808959T4 (zh)
WO (1) WO2014079970A1 (zh)
ZA (1) ZA201503526B (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10404181B2 (en) 2016-08-16 2019-09-03 General Electric Company System and method for integrating hybrid energy storage into direct current power systems
EP3490128B1 (de) * 2017-11-28 2019-11-20 KEB Automation KG Elektronische schutzschaltung
US11767821B2 (en) 2021-11-29 2023-09-26 General Electric Renovables Espana, S.L. System and method for responding to a friction coefficient signal of a wind turbine
CN116447077B (zh) * 2023-06-12 2023-08-22 深圳众城卓越科技有限公司 风机安全变桨控制系统及方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1928352A (zh) * 2005-09-09 2007-03-14 通用电气公司 桨距控制电池备用方法和系统
CN101557194A (zh) * 2008-02-28 2009-10-14 发那科株式会社 电动机驱动装置
EP2148417A1 (de) * 2008-07-22 2010-01-27 SMA Solar Technology AG Wechselrichterschaltungsanordnung für einen Photovoltaikgenerator mit mehreren eingangs seriell geschalteten Stromrichtern
CN201466983U (zh) * 2009-07-29 2010-05-12 上海市电力公司 基于超级电容器的高效移动式双向供电车

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0630547B2 (ja) * 1988-08-11 1994-04-20 日本空港動力株式会社 インバータを用いた電力供給方法
US5083039B1 (en) * 1991-02-01 1999-11-16 Zond Energy Systems Inc Variable speed wind turbine
JP3541121B2 (ja) * 1997-12-11 2004-07-07 ファナック株式会社 停電処理用非常電源装置
US7369417B2 (en) * 2004-11-24 2008-05-06 Honeywell International, Inc. Method and system for producing controlled frequency power from a variable frequency power source
JP4404264B2 (ja) * 2005-02-25 2010-01-27 大阪瓦斯株式会社 電力供給システム
US7126236B2 (en) * 2005-03-15 2006-10-24 General Electric Company Methods and apparatus for pitch control power conversion
EP1973760B1 (de) * 2006-01-17 2009-07-22 ABB Schweiz AG Kraftstoffelektrisches antriebssystem
US7847457B2 (en) * 2007-05-09 2010-12-07 Federal-Mogul World Wide, Inc BLDC motor assembly
WO2009143287A1 (en) * 2008-05-20 2009-11-26 Live Meters, Inc. Remote monitoring and control system comprising mesh and time synchronization technology
DE102009033228B4 (de) * 2009-07-14 2011-06-16 Wittmann Battenfeld Gmbh Kunststoffverarbeitungsmaschine und Verfahren zum Betreiben einer solchen
JP5875214B2 (ja) * 2010-03-17 2016-03-02 富士電機株式会社 電力変換システム
DE102010016105B4 (de) * 2010-03-23 2015-10-08 Moog Unna Gmbh Notbetriebsfähige Pitchantriebsvorrichtung für eine Wind- oder Wasserkraftanlage
US9178456B2 (en) * 2010-04-06 2015-11-03 Ge Energy Power Conversion Technology, Ltd. Power transmission systems
JP5974011B2 (ja) * 2010-10-06 2016-08-23 ゼネラル エレクトリック テクノロジー ゲゼルシャフト ミット ベシュレンクテル ハフツングGeneral Electric Technology GmbH 送電網の過渡過電圧からesp電源を保護する方法及び装置
US9115694B2 (en) * 2012-08-27 2015-08-25 General Electric Company Wind turbine pitch control system
DK2878808T3 (en) * 2013-12-02 2017-10-02 Moog Unna Gmbh PITCH SYSTEM AND PROCEDURE FOR OPERATING A PITCH SYSTEM IN A WINDOW ENERGY INSTALLATION

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1928352A (zh) * 2005-09-09 2007-03-14 通用电气公司 桨距控制电池备用方法和系统
CN101557194A (zh) * 2008-02-28 2009-10-14 发那科株式会社 电动机驱动装置
EP2148417A1 (de) * 2008-07-22 2010-01-27 SMA Solar Technology AG Wechselrichterschaltungsanordnung für einen Photovoltaikgenerator mit mehreren eingangs seriell geschalteten Stromrichtern
CN201466983U (zh) * 2009-07-29 2010-05-12 上海市电力公司 基于超级电容器的高效移动式双向供电车

Also Published As

Publication number Publication date
BR112015011956A8 (pt) 2019-10-08
EP2736159B1 (de) 2018-04-11
CN104937827A (zh) 2015-09-23
AU2013349647A1 (en) 2015-06-11
ZA201503526B (en) 2016-11-30
MX2015006492A (es) 2015-11-16
JP6445976B2 (ja) 2018-12-26
US20150316033A1 (en) 2015-11-05
BR112015011956B1 (pt) 2021-06-22
JP2016500246A (ja) 2016-01-07
CA2892211A1 (en) 2014-05-30
DK2736159T3 (en) 2018-06-25
KR101736356B1 (ko) 2017-05-29
KR20150086487A (ko) 2015-07-28
EP2736159A1 (de) 2014-05-28
MX345132B (es) 2017-01-17
BR112015011956A2 (pt) 2017-07-11
CA2892211C (en) 2022-04-12
TR201808959T4 (tr) 2018-07-23
WO2014079970A1 (de) 2014-05-30
ES2673974T3 (es) 2018-06-26
AU2013349647B2 (en) 2016-06-02

Similar Documents

Publication Publication Date Title
US10763690B2 (en) Vehicle-side charging circuit for a vehicle with electric drive, and method for operating a vehicle-side current converter, and use of at least one winding of a vehicle-side electric machine for intermediate storagectrical machine for buffer
US9334749B2 (en) Auxiliary power system for turbine-based energy generation system
CA2826437C (en) Voltage control in a doubly-fed induction generator wind turbine system
CN105406737B (zh) 具有静电电容计算部的pwm整流器
US9312692B2 (en) System for charging an energy store, and method for operating the charging system
WO2012043249A1 (ja) 放電システムおよび電動車両
US20120139488A1 (en) System and method for providing reactive power using electric car battery
CN104937827B (zh) 变流系统以及风力或水力发电设备
US20130002027A1 (en) Uninterruptible power supply
US11794597B2 (en) On-board vehicle electrical system having an accumulator, an alternating voltage connection and a direct voltage connection
JP2011162057A (ja) 電気鉄道用電力変換装置の制御装置
US20180205335A1 (en) Switching strategy for increased efficiency of power converters
US11437819B2 (en) Demand response implemented in an infrastructure having a DC link
CN104981370A (zh) 用于能量存储器装置的能量存储器模块的内部能量供给装置和具有其的能量存储器装置
JP6268786B2 (ja) パワーコンディショナ、パワーコンディショナシステムおよびパワーコンディショナの制御方法
JP2012105504A (ja) 直流給電システム
US10886744B2 (en) Power conversion system, power supply system and power conversion device
EP3766159B1 (en) Energy storage system
JP2020174454A (ja) 電力変換装置

Legal Events

Date Code Title Description
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
CB03 Change of inventor or designer information

Inventor after: Tobias Teoport

Inventor after: Marseius Pauli

Inventor after: OPIE RAY

Inventor before: Roesmann Tobias

Inventor before: Marseius Pauli

Inventor before: OPIE RAY

COR Change of bibliographic data
GR01 Patent grant
GR01 Patent grant
TR01 Transfer of patent right
TR01 Transfer of patent right

Effective date of registration: 20200924

Address after: Germany Ranau

Patentee after: Scientific control industrial automation Germany Co.,Ltd.

Address before: Una, Germany

Patentee before: MOOG Inc.

Effective date of registration: 20200924

Address after: Una, Germany

Patentee after: MOOG Inc.

Address before: Una, Germany

Patentee before: MOOG UNNA GmbH