CN104933683B - 一种用于磁共振快速成像的非凸低秩重建方法 - Google Patents
一种用于磁共振快速成像的非凸低秩重建方法 Download PDFInfo
- Publication number
- CN104933683B CN104933683B CN201510310636.0A CN201510310636A CN104933683B CN 104933683 B CN104933683 B CN 104933683B CN 201510310636 A CN201510310636 A CN 201510310636A CN 104933683 B CN104933683 B CN 104933683B
- Authority
- CN
- China
- Prior art keywords
- image
- low
- rank
- convex
- mri
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 238000000034 method Methods 0.000 title claims abstract description 52
- 238000003384 imaging method Methods 0.000 title claims abstract description 17
- 238000002595 magnetic resonance imaging Methods 0.000 claims abstract description 130
- 238000004422 calculation algorithm Methods 0.000 claims abstract description 66
- 239000011159 matrix material Substances 0.000 claims abstract description 58
- 238000000354 decomposition reaction Methods 0.000 claims abstract description 17
- 238000000926 separation method Methods 0.000 claims description 2
- 238000004364 calculation method Methods 0.000 abstract description 9
- 238000005259 measurement Methods 0.000 abstract description 7
- 238000013178 mathematical model Methods 0.000 abstract description 5
- 230000008569 process Effects 0.000 abstract description 5
- 238000005070 sampling Methods 0.000 description 53
- 230000006870 function Effects 0.000 description 16
- 238000011160 research Methods 0.000 description 7
- 230000000694 effects Effects 0.000 description 6
- 238000004458 analytical method Methods 0.000 description 5
- 238000002474 experimental method Methods 0.000 description 5
- 210000003484 anatomy Anatomy 0.000 description 4
- 230000008901 benefit Effects 0.000 description 4
- 230000003044 adaptive effect Effects 0.000 description 3
- 238000005516 engineering process Methods 0.000 description 3
- 230000009466 transformation Effects 0.000 description 3
- 230000007423 decrease Effects 0.000 description 2
- 238000011156 evaluation Methods 0.000 description 2
- 238000005457 optimization Methods 0.000 description 2
- 239000000654 additive Substances 0.000 description 1
- 230000000996 additive effect Effects 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000002059 diagnostic imaging Methods 0.000 description 1
- 201000010099 disease Diseases 0.000 description 1
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 238000007429 general method Methods 0.000 description 1
- 230000010365 information processing Effects 0.000 description 1
- 238000007689 inspection Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 210000000056 organ Anatomy 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 238000012772 sequence design Methods 0.000 description 1
- 238000004088 simulation Methods 0.000 description 1
- 238000001228 spectrum Methods 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 238000012549 training Methods 0.000 description 1
Landscapes
- Magnetic Resonance Imaging Apparatus (AREA)
Abstract
Description
Claims (3)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201510310636.0A CN104933683B (zh) | 2015-06-09 | 2015-06-09 | 一种用于磁共振快速成像的非凸低秩重建方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201510310636.0A CN104933683B (zh) | 2015-06-09 | 2015-06-09 | 一种用于磁共振快速成像的非凸低秩重建方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN104933683A CN104933683A (zh) | 2015-09-23 |
CN104933683B true CN104933683B (zh) | 2018-12-04 |
Family
ID=54120838
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201510310636.0A Expired - Fee Related CN104933683B (zh) | 2015-06-09 | 2015-06-09 | 一种用于磁共振快速成像的非凸低秩重建方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN104933683B (zh) |
Families Citing this family (31)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105551000B (zh) * | 2015-12-11 | 2019-09-20 | 中国科学院遥感与数字地球研究所 | 基于参考影像约束和非凸低秩约束的遥感图像重建方法 |
CN106023274B (zh) * | 2016-01-16 | 2019-03-15 | 中国科学院遥感与数字地球研究所 | 一种结合专家场滤波器稀疏约束的压缩感知图像重建方法 |
CN105741240A (zh) * | 2016-01-18 | 2016-07-06 | 中国科学院遥感与数字地球研究所 | 基于参考影像纹理约束和非凸低秩约束的遥感图像重建方法 |
CN105957117B (zh) * | 2016-04-26 | 2018-09-14 | 东南大学 | 并行磁共振的图像重建方法、装置及并行磁共振成像系统 |
CN106093814A (zh) * | 2016-06-02 | 2016-11-09 | 浙江理工大学 | 一种基于多尺度低秩模型的心脏磁共振成像方法 |
CN106780372B (zh) * | 2016-11-30 | 2019-06-18 | 华南理工大学 | 一种基于广义树稀疏的权重核范数磁共振成像重建方法 |
CN106934778B (zh) * | 2017-03-10 | 2019-11-29 | 北京工业大学 | 一种基于小波域结构和非局部分组稀疏的mr图像重建方法 |
CN107301631B (zh) * | 2017-06-28 | 2020-09-18 | 重庆大学 | 一种基于非凸加权稀疏约束的sar图像降斑方法 |
CN107330953B (zh) * | 2017-07-06 | 2020-06-26 | 桂林电子科技大学 | 一种基于非凸低秩的动态mri重建方法 |
CN107993205A (zh) * | 2017-11-28 | 2018-05-04 | 重庆大学 | 一种基于学习字典与非凸范数最小化约束的mri图像重构方法 |
CN108577840A (zh) * | 2018-02-11 | 2018-09-28 | 南京邮电大学 | 一种动态磁共振稳健pca成像方法 |
GB201802942D0 (en) * | 2018-02-23 | 2018-04-11 | Univ Leuven Kath | Reconstruction method |
CN108872292B (zh) * | 2018-05-25 | 2019-11-08 | 中国石油大学(北京) | 基于稀疏采样重建的多维拉普拉斯磁共振方法与装置 |
CN109145738B (zh) * | 2018-07-18 | 2021-07-27 | 浙江工业大学 | 基于加权非凸正则化和迭代重约束低秩表示的动态视频分割方法 |
CN109215025B (zh) * | 2018-09-25 | 2021-08-10 | 电子科技大学 | 一种基于非凸秩逼近极小化的红外弱小目标检测方法 |
CN111090068B (zh) * | 2018-10-23 | 2021-03-23 | 中国科学院深圳先进技术研究院 | 磁共振正对比成像方法及装置 |
CN109920017B (zh) * | 2019-01-16 | 2022-06-21 | 昆明理工大学 | 基于特征向量的自一致性的联合全变分Lp伪范数的并行磁共振成像重构方法 |
CN111818345B (zh) * | 2019-04-11 | 2021-10-26 | 四川大学 | 一种联合先验模型和细节增强的图像去压缩方法 |
CN110505487B (zh) * | 2019-07-16 | 2020-11-10 | 珠海城市职业技术学院 | 基于非凸低秩模型图像量化去块方法、系统及存储介质 |
CN110675331B (zh) * | 2019-08-13 | 2023-01-31 | 南京人工智能高等研究院有限公司 | 图像去噪方法、装置、计算机可读存储介质及电子设备 |
CN110728624B (zh) * | 2019-09-29 | 2021-07-23 | 厦门大学 | 一种高分辨率扩散加权图像重建方法 |
CN111260571B (zh) * | 2020-01-11 | 2022-09-23 | 浙江工业大学 | 一种基于非凸低秩低梯度的深度图像修复方法 |
CN111314000B (zh) * | 2020-02-18 | 2022-04-15 | 五邑大学 | 一种基于低秩数据驱动权重模型的射频层析成像方法 |
CN111714124B (zh) * | 2020-06-18 | 2023-11-03 | 中国科学院深圳先进技术研究院 | 磁共振电影成像方法、装置、成像设备及存储介质 |
CN112710975A (zh) * | 2021-01-25 | 2021-04-27 | 东北林业大学 | 基于稀疏和局部低秩矩阵分解的磁共振扩散图像重建方法 |
CN112819949B (zh) * | 2021-02-07 | 2024-03-26 | 哈尔滨工业大学 | 一种基于结构化低秩矩阵的磁共振指纹图像重建方法 |
CN113034635B (zh) * | 2021-03-04 | 2022-08-23 | 重庆不贰科技(集团)有限公司 | 一种抑制工业成像阶梯伪影的图像重建方法 |
CN113009560B (zh) * | 2021-03-23 | 2022-03-29 | 中国地质大学(武汉) | 一种地震数据重建方法、装置、设备及存储介质 |
CN113628298B (zh) * | 2021-08-10 | 2023-09-08 | 昆明理工大学 | 基于特征向量的自一致性和非局部低秩的并行mri重构方法 |
CN113892938B (zh) * | 2021-10-09 | 2023-10-27 | 昆明理工大学 | 一种基于非局部低秩约束的改进灵敏度编码重构方法 |
CN113971706B (zh) * | 2021-10-15 | 2024-04-30 | 厦门大学 | 一种快速磁共振智能成像方法 |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104156994A (zh) * | 2014-08-14 | 2014-11-19 | 厦门大学 | 一种压缩感知磁共振成像的重建方法 |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8989465B2 (en) * | 2012-01-17 | 2015-03-24 | Mayo Foundation For Medical Education And Research | System and method for medical image reconstruction and image series denoising using local low rank promotion |
WO2014162300A1 (en) * | 2013-04-05 | 2014-10-09 | Isis Innovation Ltd. | Acceleration of low-rank mri data acquisition |
-
2015
- 2015-06-09 CN CN201510310636.0A patent/CN104933683B/zh not_active Expired - Fee Related
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104156994A (zh) * | 2014-08-14 | 2014-11-19 | 厦门大学 | 一种压缩感知磁共振成像的重建方法 |
Non-Patent Citations (1)
Title |
---|
Compressive Sensing via Nonlocal Low-Rank Regularization;Weisheng Dong 等;《IEEE TRANSACTIONS ON IMAGE PROCESSING》;20140606;第23卷(第8期);摘要,第3619页左栏第-2段、右栏第1段、右栏第3-4段,第3620页左栏第1-3段、右栏第2段,第3620-3624页第IV节;第3621页表1 * |
Also Published As
Publication number | Publication date |
---|---|
CN104933683A (zh) | 2015-09-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN104933683B (zh) | 一种用于磁共振快速成像的非凸低秩重建方法 | |
WO2018099321A1 (zh) | 一种基于广义树稀疏的权重核范数磁共振成像重建方法 | |
Zhao et al. | SwinGAN: A dual-domain Swin Transformer-based generative adversarial network for MRI reconstruction | |
Ravishankar et al. | Data-driven learning of a union of sparsifying transforms model for blind compressed sensing | |
CN104156994B (zh) | 一种压缩感知磁共振成像的重建方法 | |
Ravishankar et al. | Sparsifying transform learning for compressed sensing MRI | |
CN104574456B (zh) | 一种基于图正则化稀疏编码的磁共振超欠采样k数据成像方法 | |
CN106934778B (zh) | 一种基于小波域结构和非局部分组稀疏的mr图像重建方法 | |
CN104063886B (zh) | 一种基于稀疏表示和非局部相似的核磁共振图像重建方法 | |
CN108577840A (zh) | 一种动态磁共振稳健pca成像方法 | |
Kelkar et al. | Compressible latent-space invertible networks for generative model-constrained image reconstruction | |
CN106056647B (zh) | 一种基于卷积稀疏双层迭代学习的磁共振快速成像方法 | |
Kelkar et al. | Prior image-constrained reconstruction using style-based generative models | |
Yao et al. | Accelerated dynamic MRI reconstruction with total variation and nuclear norm regularization | |
CN107945129B (zh) | 一种mri图像重构方法 | |
Majumdar et al. | Exploiting rank deficiency and transform domain sparsity for MR image reconstruction | |
Xiaoyu et al. | Compressed sensing MRI with phase noise disturbance based on adaptive tight frame and total variation | |
Manimala et al. | Convolutional neural network for sparse reconstruction of MR images interposed with Gaussian noise | |
Manimala et al. | Sparse MR image reconstruction considering Rician noise models: a CNN approach | |
CN111161184B (zh) | 一种基于mcp稀疏约束的快速mr图像去噪方法 | |
CN104714200B (zh) | 一种基于广义双层伯格曼非凸型字典学习的磁共振超欠采样k数据成像方法 | |
Huang et al. | Sparsity-promoting orthogonal dictionary updating for image reconstruction from highly undersampled magnetic resonance data | |
CN110148193A (zh) | 基于自适应正交字典学习的动态磁共振并行重建方法 | |
Liu et al. | High-fidelity MRI reconstruction using adaptive spatial attention selection and deep data consistency prior | |
CN106093814A (zh) | 一种基于多尺度低秩模型的心脏磁共振成像方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
CB03 | Change of inventor or designer information | ||
CB03 | Change of inventor or designer information |
Inventor after: Liu Qiegen Inventor after: Lu Hongyang Inventor after: Wu Xinfeng Inventor after: Long Chengzhi Inventor after: Wang Yuhao Inventor before: Lu Hongyang Inventor before: Liu Qiegen Inventor before: Wu Xinfeng Inventor before: Long Chengzhi Inventor before: Wang Yuhao |
|
GR01 | Patent grant | ||
GR01 | Patent grant | ||
TR01 | Transfer of patent right | ||
TR01 | Transfer of patent right |
Effective date of registration: 20230316 Address after: 330006 Wannianqing Science Park, No. 399, Jingdong Avenue, Nanchang High tech Industrial Development Zone, Nanchang City, Jiangxi Province Patentee after: Nanchang Yunying Medical Technology Co.,Ltd. Address before: 999 No. 330031 Jiangxi province Nanchang Honggutan University Avenue Patentee before: Nanchang University |
|
CF01 | Termination of patent right due to non-payment of annual fee | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20181204 |