CN104928625A - 一种pvd制备半导体装备用抗高温蠕变接地基片的方法 - Google Patents

一种pvd制备半导体装备用抗高温蠕变接地基片的方法 Download PDF

Info

Publication number
CN104928625A
CN104928625A CN201510268660.2A CN201510268660A CN104928625A CN 104928625 A CN104928625 A CN 104928625A CN 201510268660 A CN201510268660 A CN 201510268660A CN 104928625 A CN104928625 A CN 104928625A
Authority
CN
China
Prior art keywords
high temperature
temperature creep
pvd
ground connection
semi
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201510268660.2A
Other languages
English (en)
Other versions
CN104928625B (zh
Inventor
熊天英
吴杰
沈艳芳
崔新宇
金花子
吴敏杰
唐伟东
侯涛
李茂程
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shenyang Fortune Precision Equipment Co Ltd
Original Assignee
Shenyang Fortune Precision Equipment Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shenyang Fortune Precision Equipment Co Ltd filed Critical Shenyang Fortune Precision Equipment Co Ltd
Priority to CN201510268660.2A priority Critical patent/CN104928625B/zh
Publication of CN104928625A publication Critical patent/CN104928625A/zh
Priority to TW105112221A priority patent/TWI567212B/zh
Priority to KR1020160056506A priority patent/KR101873633B1/ko
Application granted granted Critical
Publication of CN104928625B publication Critical patent/CN104928625B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • H01L21/28008Making conductor-insulator-semiconductor electrodes
    • H01L21/28017Making conductor-insulator-semiconductor electrodes the insulator being formed after the semiconductor body, the semiconductor being silicon
    • H01L21/28026Making conductor-insulator-semiconductor electrodes the insulator being formed after the semiconductor body, the semiconductor being silicon characterised by the conductor
    • H01L21/28035Making conductor-insulator-semiconductor electrodes the insulator being formed after the semiconductor body, the semiconductor being silicon characterised by the conductor the final conductor layer next to the insulator being silicon, e.g. polysilicon, with or without impurities
    • H01L21/28044Making conductor-insulator-semiconductor electrodes the insulator being formed after the semiconductor body, the semiconductor being silicon characterised by the conductor the final conductor layer next to the insulator being silicon, e.g. polysilicon, with or without impurities the conductor comprising at least another non-silicon conductive layer
    • H01L21/28061Making conductor-insulator-semiconductor electrodes the insulator being formed after the semiconductor body, the semiconductor being silicon characterised by the conductor the final conductor layer next to the insulator being silicon, e.g. polysilicon, with or without impurities the conductor comprising at least another non-silicon conductive layer the conductor comprising a metal or metal silicide formed by deposition, e.g. sputter deposition, i.e. without a silicidation reaction
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • C23C14/16Metallic material, boron or silicon on metallic substrates or on substrates of boron or silicon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/02631Physical deposition at reduced pressure, e.g. MBE, sputtering, evaporation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • H01L21/28008Making conductor-insulator-semiconductor electrodes
    • H01L21/28017Making conductor-insulator-semiconductor electrodes the insulator being formed after the semiconductor body, the semiconductor being silicon
    • H01L21/28158Making the insulator
    • H01L21/28167Making the insulator on single crystalline silicon, e.g. using a liquid, i.e. chemical oxidation
    • H01L21/28194Making the insulator on single crystalline silicon, e.g. using a liquid, i.e. chemical oxidation by deposition, e.g. evaporation, ALD, CVD, sputtering, laser deposition
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • H01L21/28008Making conductor-insulator-semiconductor electrodes
    • H01L21/28017Making conductor-insulator-semiconductor electrodes the insulator being formed after the semiconductor body, the semiconductor being silicon
    • H01L21/28158Making the insulator
    • H01L21/28229Making the insulator by deposition of a layer, e.g. metal, metal compound or poysilicon, followed by transformation thereof into an insulating layer

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Physical Vapour Deposition (AREA)
  • Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)

Abstract

本发明涉及一种制备半导体装备用抗高温蠕变接地基片的方法,具体涉及一种PVD制备半导体装备用抗高温蠕变接地基片的方法。本发明的技术方案为,以不锈钢、镍合金或耐热钢材料作为半导体装备用抗高温蠕变接地基片的基体,采用PVD技术在所述基体表面制备无氧化纯铝涂层,制得半导体装备用抗高温蠕变接地基片。本发明一方面利用纯铝的导电性能及其与大规模集成电路工艺的相容性,另一方面利用基体的力学性能解决接地基片抗高温蠕变性不够的问题。

Description

一种PVD制备半导体装备用抗高温蠕变接地基片的方法
技术领域
本发明涉及一种制备半导体装备用抗高温蠕变接地基片的方法,具体涉及一种PVD制备半导体装备用抗高温蠕变接地基片的方法。
背景技术
半导体装备中的接地基片处于高温等离子辐射和氟化物气体共同作用环境,不仅要求其具有良好的导电性能,而且对其抗高温蠕变性也提出了越来越高的要求。纯铝材料是半导体装备、尤其是大规模集成电路装备中理想的导电材料,这主要是因为铝除了具有良好的导电性外,在集成电路刻蚀、光刻以及镀膜等工艺过程中对元器件的污染最小。但是铝的熔点较低,只能在较低温度下(300℃以下)使用,随着工艺优化设计的要求,接地基片所处腔室的温度不断提高,已超过350℃,且还在提高,甚至超过400℃,此时纯铝材料本身已无法满足使用要求。不锈钢、镍基合金等具备优异的高温性能,但是导电性较差,而且在强等离子辐射条件下释放铁、镍等有害金属离子,污染半导体工艺环境,导致刻蚀、光刻以及镀膜过程中元器件报废。
发明内容
本发明提供一种PVD(即物理气相沉积)制备半导体装备用抗高温蠕变接地基片的方法,以不锈钢、镍合金或耐热钢等高温力学性能较好的材料作为半导体装备用抗高温蠕变接地基片的基体,在其表面制备厚度均匀、结合力良好的无氧化纯铝涂层,一方面利用纯铝的导电性能及其与大规模集成电路工艺的相容性,另一方面利用基体的力学性能解决接地基片抗高温蠕变性不够的问题。
本发明的技术方案如下:
一种PVD制备半导体装备用抗高温蠕变接地基片的方法,以不锈钢、镍合金或耐热钢材料作为半导体装备用抗高温蠕变接地基片的基体,采用PVD技术在所述基体表面制备无氧化纯铝涂层,制得半导体装备用抗高温蠕变接地基片。
所述的PVD制备半导体装备用抗高温蠕变接地基片的方法,具体步骤如下:
(1)所述基体的前处理:将所述基体表面先进行纹理处理,纹理处理工艺参数为:320#砂纸抛光,去除基体表面积碳层,再用无水乙醇进行清洗;
(2)采用物理气相沉积工艺制备纯铝涂层,利用PVD真空镀膜系统,使气态的铝原子定向沉积于所述基体表面,形成无氧化纯铝涂层。
所述的PVD制备半导体装备用抗高温蠕变接地基片的方法,其物理气相沉积工艺参数如下:距离550mm,阴极电压20~40V,电流70~90A,真空度1×10-3~6×10-3Pa,辅助沉积电压800V,辅助沉积电流1A,纯铝涂层厚度1~50微米。
所述的PVD制备半导体装备用抗高温蠕变接地基片的方法,其中所述PVD真空镀膜系统包括:真空室、转架、金属阴极、聚焦线圈、电源、辅助阴极、阳极、电压表和偏转电磁线圈,两个转架对称设置于真空室中,转架用于放置所述基体,转架之间设置偏转电磁线圈,金属阴极与偏转电磁线圈相对应;转架与辅助阴极相对应,在辅助阴极与转架之间的通道两侧分别设置阳极,辅助阴极与转架上的基体之间设置电压表,金属阴极通过电源供电,金属阴极的两侧设置聚焦线圈。
所述的PVD制备半导体装备用抗高温蠕变接地基片的方法,其中所述转架的外部为环形带,环形带设置一处开口,开口处以弹簧连接。
本发明的有益效果如下:
1.本发明是用PVD法制备半导体装备用抗高温蠕变接地基片(1-50微米),和冷喷涂方法(100微米以上)相比较所制备的涂层厚度薄、与基体结合良好、涂层致密,导电性能良好。
2.本发明采用PVD方法,纯铝涂层是在真空条件下气相沉积形成的,因此涂层致密没有氧化,从而提高接地基片的导电性能。
3.本发明还具有沉积效率高、安全、成本低和无环境污染等特点。
4、半导体装备中接地基片非常薄,处于柔软状态,因此称之为软基片。在软基片上制备导电涂层,要达到厚度均匀、结合力良好很难实现。本发明采用转架和偏转电磁线圈,减少了大颗粒铝的产生,通过PVD法制备铝涂层,能够实现喷涂的涂层厚度均匀、结合力良好,薄膜厚度控制在1-50微米范围,结合强度达10-15MP。
附图说明
图1为本发明的PVD真空镀膜系统结构图;
图2为本发明的转架结构图。
具体实施方式
如图1、2所示,PVD真空镀膜系统包括:真空室1、转架2、金属阴极3(纯铝靶)、聚焦线圈4、电源5、辅助阴极7、阳极8、电压表9和偏转电磁线圈6,两个转架2对称设置于真空室1中,转架2之间设置偏转电磁线圈6,金属阴极3与偏转电磁线圈6相对应;转架2与辅助阴极7相对应,在辅助阴极7与转架2之间的通道两侧分别设置阳极8,辅助阴极7与转架2上的半导体装备用抗高温蠕变接地基片的基体之间设置电压表9,金属阴极3通过电源5供电,金属阴极3的两侧设置聚焦线圈4。转架2的外部为环形带10,环形带10设置一处开口,开口处以弹簧11连接,半导体装备用抗高温蠕变接地基片的基体放置在环形带10上,两端予以固定,弹簧11的涨力使所述基体紧绷,可以减少基体在镀膜过程中由于温度的变化产生形变的影响,从而提高膜层质量。
具体步骤如下:
(1)所述基体的前处理:将所述基体表面先进行纹理处理,纹理处理工艺参数为:320#砂纸抛光,去除基体表面积碳层,再用无水乙醇进行清洗;
(2)采用物理气相沉积工艺制备纯铝涂层,利用PVD真空镀膜系统,使气态的铝原子定向沉积于所述基体表面,形成纯铝涂层,制得半导体装备用抗高温蠕变接地基片。其物理气相沉积工艺参数如下:距离550mm,阴极电压20~40V,电流70~90A,真空度1×10-3~6×10-3Pa,辅助沉积电压800V,辅助沉积电流1A,涂层厚度1~50微米。
本实施例中,采用特定的工艺可以实现真空状态下的金属铝涂层沉积,这种工艺过程能够在镍基合金等材料上形成均匀致密的Al涂层,而不影响基体材料的性能,为制备高性能无氧涂层提供一种重要的工艺方法,采用PVD方法在镍基合金表面成功地制备出性能良好的导电涂层。导电涂层的具体性能参数如下:导电性5-7×10-8欧姆/米,结合强度10-15MP,详见表1。
表1:冷喷涂和PVD法制备抗高温蠕变接地基片性能比较
制备方法 涂层厚度 结合强度MP 导电性
冷喷涂 100微米以上 10-20 4-8×10-8欧姆/米
PVD法 1-50微米 10-15 5-7×10-8欧姆/米
和冷喷涂制备的接地基片相比较,采用PVD法制备的半导体装备用抗高温蠕变接地基片具有涂层薄的特点。
以上是本发明的优选实施例,在不脱离本发明构思的前提下,采用其它的PVD技术制备的半导体工艺装备用抗高温蠕变接地基片,也应视为本发明的保护范围。

Claims (5)

1.一种PVD制备半导体装备用抗高温蠕变接地基片的方法,其特征在于,所述方法以不锈钢、镍合金或耐热钢材料作为半导体装备用抗高温蠕变接地基片的基体,采用PVD技术在所述基体表面制备无氧化纯铝涂层,制得半导体装备用抗高温蠕变接地基片。
2.根据权利要求1所述的PVD制备半导体装备用抗高温蠕变接地基片的方法,其特征在于,具体步骤如下:
(1)所述基体的前处理:将所述基体表面先进行纹理处理,纹理处理工艺参数为:320#砂纸抛光,去除基体表面积碳层,再用无水乙醇进行清洗;
(2)采用物理气相沉积工艺制备纯铝涂层,利用PVD真空镀膜系统,使气态的铝原子定向沉积于所述基体表面,形成无氧化纯铝涂层。
3.根据权利要求1或2所述的PVD制备半导体装备用抗高温蠕变接地基片的方法,其特征在于,物理气相沉积工艺参数如下:距离550mm,阴极电压20~40V,电流70~90A,真空度1×10-3~6×10-3Pa,辅助沉积电压800V,辅助沉积电流1A,纯铝涂层厚度1~50微米。
4.根据权利要求2所述的PVD制备半导体装备用抗高温蠕变接地基片的方法,其特征在于,所述PVD真空镀膜系统包括:真空室、转架、金属阴极、聚焦线圈、电源、辅助阴极、阳极、电压表和偏转电磁线圈,两个转架对称设置于真空室中,转架之间设置偏转电磁线圈,金属阴极与偏转电磁线圈相对应;转架与辅助阴极相对应,在辅助阴极与转架之间的通道两侧分别设置阳极,辅助阴极与转架上的所述基体之间设置电压表,金属阴极通过电源供电,金属阴极的两侧设置聚焦线圈。
5.根据权利要求4所述的PVD制备半导体装备用抗高温蠕变接地基片的方法,其特征在于,所述转架的外部为环形带,环形带设置一处开口,开口处以弹簧连接。
CN201510268660.2A 2015-05-22 2015-05-22 一种pvd制备半导体装备用抗高温蠕变接地基片的方法 Active CN104928625B (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201510268660.2A CN104928625B (zh) 2015-05-22 2015-05-22 一种pvd制备半导体装备用抗高温蠕变接地基片的方法
TW105112221A TWI567212B (zh) 2015-05-22 2016-04-20 A Method for Preparing High Temperature Creep Grounding Substrate for Semiconductor Equipment by PVD
KR1020160056506A KR101873633B1 (ko) 2015-05-22 2016-05-09 Pvd를 이용한 반도체 장비용 내열 크리프 접지칩 제조방법

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201510268660.2A CN104928625B (zh) 2015-05-22 2015-05-22 一种pvd制备半导体装备用抗高温蠕变接地基片的方法

Publications (2)

Publication Number Publication Date
CN104928625A true CN104928625A (zh) 2015-09-23
CN104928625B CN104928625B (zh) 2017-06-16

Family

ID=54116045

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201510268660.2A Active CN104928625B (zh) 2015-05-22 2015-05-22 一种pvd制备半导体装备用抗高温蠕变接地基片的方法

Country Status (3)

Country Link
KR (1) KR101873633B1 (zh)
CN (1) CN104928625B (zh)
TW (1) TWI567212B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111534794A (zh) * 2020-06-10 2020-08-14 常熟颢文电子科技有限公司 一种接地基片上形成纯铝镀的方法及装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1763941A (zh) * 2004-10-18 2006-04-26 株式会社电装 带有铝电极和金属化电极的半导体器件
CN103834924A (zh) * 2013-12-25 2014-06-04 利达光电股份有限公司 一种制备超高纯铝及超高纯铝合金溅射靶材的方法
CN104167468A (zh) * 2014-06-27 2014-11-26 浙江晶科能源有限公司 一种改良的晶体硅太阳电池背面结构制备方法
CN104294206A (zh) * 2014-10-09 2015-01-21 沈阳富创精密设备有限公司 一种半导体装备用抗高温蠕变接地基片的制备方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101904516B1 (ko) * 2011-02-09 2018-10-04 어플라이드 머티어리얼스, 인코포레이티드 Rf pvd 챔버를 위한 균일성 튜닝 가능한 정전척 접지 키트
EP2602354A1 (en) 2011-12-05 2013-06-12 Pivot a.s. Filtered cathodic vacuum arc deposition apparatus and method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1763941A (zh) * 2004-10-18 2006-04-26 株式会社电装 带有铝电极和金属化电极的半导体器件
CN103834924A (zh) * 2013-12-25 2014-06-04 利达光电股份有限公司 一种制备超高纯铝及超高纯铝合金溅射靶材的方法
CN104167468A (zh) * 2014-06-27 2014-11-26 浙江晶科能源有限公司 一种改良的晶体硅太阳电池背面结构制备方法
CN104294206A (zh) * 2014-10-09 2015-01-21 沈阳富创精密设备有限公司 一种半导体装备用抗高温蠕变接地基片的制备方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111534794A (zh) * 2020-06-10 2020-08-14 常熟颢文电子科技有限公司 一种接地基片上形成纯铝镀的方法及装置

Also Published As

Publication number Publication date
CN104928625B (zh) 2017-06-16
KR101873633B1 (ko) 2018-08-02
KR20160060015A (ko) 2016-05-27
TWI567212B (zh) 2017-01-21
TW201641723A (zh) 2016-12-01

Similar Documents

Publication Publication Date Title
CN106374116B (zh) 一种燃料电池金属双极板上的高熵合金复合涂层和工艺
CN110055496B (zh) 一种在核用锆合金基底表面制备Cr涂层的制备工艺
CN103374697B (zh) 类金刚石膜层的表面处理方法及制品
CN105386003A (zh) 一种三维结构石墨烯增强铜基复合材料的制备方法
CN105990081A (zh) 等离子体处理装置及其制作方法
Kim et al. Production of Ni65Cr15P16B4 metallic glass-coated bipolar plate for fuel cell by high velocity oxy-fuel (HVOF) spray coating method
CN104928625A (zh) 一种pvd制备半导体装备用抗高温蠕变接地基片的方法
CN105296878A (zh) 铝基活塞环槽表面合金强化方法
Jin et al. Investigation of corrosion protection with conductive chromium-aluminum carbonitride coating on metallic bipolar plates
CN105154819A (zh) 超轻反射镜表面制备反射膜的方法
CN102330057B (zh) 硬质材质半导体元器件的金属钌薄膜的制备方法
CN110331312B (zh) 光电倍增极用高铍铜连续镀膜轧制复合材料及其制备方法
TWI490354B (zh) 殼體及其製造方法
CN108715989B (zh) 一种等离子喷涂绝缘涂层的制备方法
CN111748769A (zh) 一种降低银表面高能区二次电子发射系数的方法
CN110158029A (zh) 掩膜结构和fcva设备
CN103643203B (zh) 一种在铁基led引线支架表面沉积铜+钨复合涂层的工艺
TWI490358B (zh) 殼體及其製造方法
US8841001B2 (en) Device housing and method for making same
CN211527300U (zh) 一种旋转靶材内表面直线度检测工件
CN106449890A (zh) 一种太阳能光伏焊带的制备方法
CN109768295B (zh) 耐腐蚀高电导率燃料电池金属双极板的生产方法
CN102312186B (zh) 一种提高真空等离子体喷涂钨涂层结合强度的方法
CN207619516U (zh) 一种高硬度抗氧化的铣刀专用超薄涂层结构
Gou et al. Properties of NbC/а‐C: H films on titanium bipolar plates for proton exchange membrane fuel cells

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
CP03 Change of name, title or address
CP03 Change of name, title or address

Address after: No.18a-1, Feiyun Road, Hunnan District, Shenyang City, Liaoning Province

Patentee after: Shenyang fuchuang precision equipment Co.,Ltd.

Address before: 110168 no.18a-1, Feiyun Road, Hunnan New District, Shenyang City, Liaoning Province

Patentee before: Shenyang Fortune Precision Equipment Co.,Ltd.