CN104294206A - 一种半导体装备用抗高温蠕变接地基片的制备方法 - Google Patents

一种半导体装备用抗高温蠕变接地基片的制备方法 Download PDF

Info

Publication number
CN104294206A
CN104294206A CN201410528539.4A CN201410528539A CN104294206A CN 104294206 A CN104294206 A CN 104294206A CN 201410528539 A CN201410528539 A CN 201410528539A CN 104294206 A CN104294206 A CN 104294206A
Authority
CN
China
Prior art keywords
ground connection
connection substrate
preparation
high temperature
temperature creep
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201410528539.4A
Other languages
English (en)
Other versions
CN104294206B (zh
Inventor
吴杰
王吉强
熊天英
沈艳芳
崔新宇
毛天亮
李鸣
吴敏杰
李茂程
唐伟东
韩学诚
顾新海
刘伟杰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shenyang Fortune Precision Equipment Co Ltd
Original Assignee
Shenyang Fortune Precision Equipment Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shenyang Fortune Precision Equipment Co Ltd filed Critical Shenyang Fortune Precision Equipment Co Ltd
Priority to CN201410528539.4A priority Critical patent/CN104294206B/zh
Publication of CN104294206A publication Critical patent/CN104294206A/zh
Priority to US14/789,966 priority patent/US20160102394A1/en
Application granted granted Critical
Publication of CN104294206B publication Critical patent/CN104294206B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/48Manufacture or treatment of parts, e.g. containers, prior to assembly of the devices, using processes not provided for in a single one of the subgroups H01L21/06 - H01L21/326
    • H01L21/4814Conductive parts
    • H01L21/4821Flat leads, e.g. lead frames with or without insulating supports
    • H01L21/4835Cleaning, e.g. removing of solder
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C24/00Coating starting from inorganic powder
    • C23C24/02Coating starting from inorganic powder by application of pressure only
    • C23C24/04Impact or kinetic deposition of particles
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/12Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the method of spraying
    • C23C4/137Spraying in vacuum or in an inert atmosphere

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Plasma & Fusion (AREA)
  • Coating By Spraying Or Casting (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)

Abstract

本发明涉及一种在金属或合金基片上制备纯铝涂层的方法,特别是涉及一种半导体装备用抗高温蠕变接地基片的制备方法。该制备方法包括如下步骤:(1)接地基片基体的前处理;(2)将基体放置于专用夹具上;(3)冷喷涂纯铝;(4)喷涂后热处理;(5)涂层表面后续处理。本发明的制备方法能够在各种金属或合金基片上形成纯铝涂层,使产品既在基体上保持基片的性能,如抗高温蠕变性能,同时在表面又有纯铝涂层的各种性能。

Description

一种半导体装备用抗高温蠕变接地基片的制备方法
技术领域
本发明涉及一种在金属或合金基片上制备纯铝涂层的方法,特别是涉及一种半导体装备用抗高温蠕变接地基片的制备方法。
背景技术
半导体装备中的接地基片处于高温等离子辐射和氟化物气体共同作用环境,不仅要求其具有良好的导电性能,而且对其抗高温蠕变性也提出了越来越高的要求。纯铝材料是半导体装备、尤其是大规模集成电路装备中理想的导电材料,这主要是因为铝除了具有良好的导电性外,在集成电路刻蚀、光刻以及镀膜等工艺过程中对元器件的污染最小。但是铝的熔点较低,只能在较低温度下(300℃以下)使用,随着工艺优化设计的要求,接地基片所处腔室的温度不断提高,已超过350℃,且还在提高,甚至超过400℃,此时纯铝已无法满足使用要求。不锈钢、镍基合金等具备优异的高温性能,但是导电性较差,而且在强等离子辐射条件下释放铁、镍等有害金属离子,污染半导体工艺环境,导致刻蚀、光刻以及镀膜过程中元器件报废。
目前,采用冷喷涂或热喷涂在不锈钢或镍基合金表面涂覆纯铝制备半导体装备接地基片的方法尚未见报道。
发明内容
本发明的目的是提供一种半导体装备用抗高温蠕变接地基片的制备方法,以不锈钢、镍合金或耐热钢等高温力学性能较好的材料做为半导体装备用抗高温蠕变接地基片的基体,在其表面制备厚度均匀、结合力良好的无氧化纯铝涂层,一方面利用纯铝的导电性能及其与大规模集成电路工艺的相容性,另一方面利用基体的力学性能解决接地基片抗高温蠕变性不够的问题。
本发明的技术方案如下:
一种半导体装备用抗高温蠕变接地基片的制备方法,包括如下步骤:
(1)接地基片基体的前处理:将所述接地基片的基体表面先进行纹理处理,纹理处理工艺参数为:320#砂纸抛光,去除基体表面积碳层;再用无水乙醇进行清洗;
(2)冷喷涂系统包括喷涂设备、喷涂室和专用夹具,所述专用夹具设置在所述喷涂室内,将所述基体放置于专用夹具上;
(3)喷涂:采用冷喷涂工艺制备纯铝涂层,利用所述冷喷涂系统,使压缩气体携带铝粉以超音速喷涂于所述基体表面,形成纯铝涂层,制得接地基片;喷涂工艺参数如下:喷涂距离5~50mm、气体压力0.5~4.5MPa、气体温度150~500℃、气体流量5~50g/s、铝粉纯度90%以上,铝粉粉末粒度200~600目;
(4)喷涂后热处理工艺:将所述接地基片置于热处理炉中随炉升温至100~500℃,在该温度下保温1~5小时;
(5)涂层表面后续处理:用菜瓜布和酒精对接地基片进行湿抛光,使接地基片表面无色差。
所述的半导体装备用抗高温蠕变接地基片的制备方法,优选方案为,其中专用夹具包括底座、侧壁和上板,所述侧壁上设置抽气口,所述抽气口可以接通真空泵;所述上板设置多个吸气孔,所述基体放置于所述吸气孔的上面,真空泵开动时将所述基体吸附在所述专用夹具上。
所述的半导体装备用抗高温蠕变接地基片的制备方法,优选方案为,所述基体由不锈钢、镍基合金或耐热钢制成;所述基体厚度为0.1~0.6mm。
所述的半导体装备用抗高温蠕变接地基片的制备方法,优选方案为,所述喷涂设备包括进气管、加热器、送粉器和超音速喷嘴,进气管的一端与高压气源连接,进气管的另一端分别经送粉器和加热器与超音速喷嘴相连接,所述基体表面与超音速喷嘴出口相对。
所述的半导体装备用抗高温蠕变接地基片的制备方法,优选方案为,超音速喷嘴包括进气口、收缩段、喉部、扩张段和出口,超音速喷嘴安装于喷涂室入口处,压缩气体分两路,一路进入送粉器,作为载带气将铝粉粉末引入超音速喷嘴;另一路连接加热器使气体膨胀,提高气流速度及加热铝粉粉末,之后两路气体进入超音速喷嘴,在其中形成气-固双相流,双相流中高动能铝粉颗粒撞击所述基体表面后产生塑性变形并沉积于所述基体表面形成铝导电层。
所述的半导体装备用抗高温蠕变接地基片的制备方法,优选方案为,所述压缩气体为空气、氮气或者氦气。
本发明的有益效果如下:
1.本发明是冷喷涂方法在半导体装备用抗高温蠕变接地基片上的应用,所制备的涂层厚度均匀、与基体结合良好、孔隙率低,从而提高接地基片的导电性能。
2.本发明采用冷气动力喷涂方法,纯铝粉末主要依靠塑性变形沉积形成涂层,喷涂温度远低于纯铝熔点,因此涂层中的氧含量低,从而提高接地基片的导电性能。
3.本发明还具有沉积效率高、能耗小、无热辐射、粉末可循环利用,操作简单、安全、成本低和无环境污染等特点。
4、半导体装备中接地基片非常薄,处于柔软状态,因此称之为软基片。在软基片上喷涂导电涂层,要达到厚度均匀、结合力良好很难实现。本发明采用专用夹具,通过抽真空将软基片吸附于专用夹具上来定位,这样喷涂铝涂层,能够实现喷涂的涂层厚度均匀、结合力良好。
总之,本发明采用的工艺可以实现低温状态下的金属铝涂层沉积,这种工艺过程对金属粉末结构几乎无热影响,仅通过颗粒获得的超音速实现金属涂层的沉积。因此,该方法能够在镍基合金等材料上形成涂层,而不影响基体材料的性能,为制备高性能无氧涂层提供一种重要的工艺方法,本发明采用冷喷涂方法在镍基合金表面成功地制备出性能良好的导电涂层。
附图说明
图1为冷喷涂系统结构示意图;
图2为涂层SEM截面形貌图;
图3为涂层SEM表面形貌图;
图4为超音速喷嘴结构示意图;
图5为专用夹具结构示意图。
具体实施方式
如图1~5所示,一种半导体装备用抗高温蠕变接地基片的制备方法,包括如下步骤:
(1)接地基片的基体6前处理:以620×64×0.2mm的镍基合金做为基体6,将所述基体6表面先进行纹理处理,纹理处理工艺参数为:320#砂纸抛光,去除基体6表面积碳层;再用无水乙醇对基体6进行清洗;
(2)冷喷涂系统包括喷涂设备、喷涂室4和专用夹具5,所述专用夹具5设置在所述喷涂室4内,将所述基体6放置于冷喷涂系统的专用夹具5上;喷涂设备包括进气管、加热器2、送粉器1和超音速喷嘴3,进气管的一端与高压气源连接,进气管的另一端分别经送粉器1和加热器2与超音速喷嘴3相连接,超音速喷嘴3安装于喷涂室4入口处,所述基体6表面与超音速喷嘴3出口相对;超音速喷嘴3采用中国专利申请(申请号为:01128130.8)中的形状结构及设计原理,超音速喷嘴3由收缩段31、喉部32、扩张段33三部分组成,所述收缩段31为亚音速段,为维托辛基曲线形光滑连续收缩结构,与喉部32过渡连接,所述扩张段33为超音速段轴对称位流式结构,与喉部32过渡连接,它包括初始膨胀段331和消波段332,初始膨胀段331为光滑连续过渡结构,其间为泉流区,消波段332为平行于轴线的轴对称结构,其间为均匀区,所述收缩段31通过过渡管件分别与送粉器1、加热器2相连接;专用夹具包括底座7、侧壁8和上板9,所述侧壁8上设置抽气口11,所述抽气口11接通真空泵;所述上板9设置多个吸气孔10,所述基体6放置于所述吸气孔10的上面,开动真空泵将所述基体6吸附在所述专用夹具5上;
(3)喷涂:采用所述喷涂设备,利用压缩氮气携带铝粉以超音速喷涂于所述基体6表面,压缩氮气分两路,一路进入送粉器1,作为载带气将铝粉引入超音速喷嘴3;另一路连接加热器2使气体膨胀,提高气流速度及加热喷涂粉末,之后两路气流进入超音速喷嘴3,在其中形成气-固双相流,双相流中高动能金属颗粒撞击放置于专用夹具5上的基体6表面后产生塑性变形并沉积于基体6表面形成铝导电层,制得接地基片;喷涂工艺参数如下:喷涂距离35mm、气体压力3MPa、气体温度300℃、气体流量30g/s、铝粉纯度99%,铝粉粉末粒度300目;
(4)喷涂后热处理工艺:将所述接地基片置于热处理炉中随炉升温至100~500℃,在该温度下保温1~5小时;
(5)涂层表面后续处理:用菜瓜布和酒精对接地基片进行湿抛光,使接地基片表面无色差。
如图2所示,接地基片涂层的SEM截面形貌,可以看出涂层厚度均匀,大致约为120μm,涂层致密,无明显的孔洞,并且涂层与基片结合良好。
如图3所示,接地基片涂层的SEM表面形貌,涂层表面均匀致密,大量铝颗粒分布于涂层表面,涂层整体质量较好。
以上是本发明的优选实施例,在不脱离本发明构思的前提下,采用热喷涂技术或其它喷涂技术制备的半导体工艺装备用抗高温蠕变接地基片,也应视为本发明的保护范围。

Claims (7)

1.一种半导体装备用抗高温蠕变接地基片的制备方法,其特征在于,所述制备方法包括如下步骤:
(1)接地基片基体的前处理:将所述接地基片的基体表面先进行纹理处理,纹理处理工艺参数为:320#砂纸抛光,去除基体表面积碳层;再用无水乙醇进行清洗;
(2)冷喷涂系统包括喷涂设备、喷涂室和专用夹具,所述专用夹具设置在所述喷涂室内,将所述基体放置于专用夹具上;
(3)喷涂:采用冷喷涂工艺制备纯铝涂层,利用所述冷喷涂系统,使压缩气体携带铝粉以超音速喷涂于所述基体表面,形成纯铝涂层,制得接地基片;喷涂工艺参数如下:喷涂距离5~50mm、气体压力0.5~4.5MPa、气体温度150~500℃、气体流量5~50g/s、铝粉纯度90%以上,铝粉粉末粒度200~600目;
(4)喷涂后热处理工艺:将所述接地基片置于热处理炉中随炉升温至100~500℃,在该温度下保温1~5小时;
(5)涂层表面后续处理:用菜瓜布和酒精对接地基片进行湿抛光,使接地基片表面无色差。
2.根据权利要求1所述的半导体装备用抗高温蠕变接地基片的制备方法,其特征在于,所述专用夹具包括底座、侧壁和上板,所述侧壁上设置抽气口,所述抽气口可以接通真空泵;所述上板设置多个吸气孔,所述基体放置于所述吸气孔的上面,真空泵开动时将所述基体吸附在所述专用夹具上。
3.根据权利要求1所述的半导体装备用抗高温蠕变接地基片的制备方法,其特征在于,所述基体由不锈钢、镍基合金或耐热钢制成。
4.根据权利要求3所述的半导体装备用抗高温蠕变接地基片的制备方法,其特征在于,所述基体厚度为0.1~0.6mm。
5.根据权利要求1所述的半导体装备用抗高温蠕变接地基片的制备方法,其特征在于,所述喷涂设备包括进气管、加热器、送粉器和超音速喷嘴,进气管的一端与高压气源连接,进气管的另一端分别经送粉器和加热器与超音速喷嘴相连接,所述基体表面与超音速喷嘴出口相对。
6.根据权利要求5所述的半导体装备用抗高温蠕变接地基片的制备方法,其特征在于,超音速喷嘴包括进气口、收缩段、喉部、扩张段和出口,超音速喷嘴安装于喷涂室入口处,压缩气体分两路,一路进入送粉器,作为载带气将铝粉粉末引入超音速喷嘴;另一路连接加热器使气体膨胀,提高气流速度及加热铝粉粉末,之后两路气体进入超音速喷嘴,在其中形成气-固双相流,双相流中高动能铝粉颗粒撞击所述基体表面后产生塑性变形并沉积于所述基体表面形成铝导电层。
7.根据权利要求6所述的半导体装备用抗高温蠕变接地基片的制备方法,其特征在于,所述压缩气体为空气、氮气或者氦气。
CN201410528539.4A 2014-10-09 2014-10-09 一种半导体装备用抗高温蠕变接地基片的制备方法 Active CN104294206B (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201410528539.4A CN104294206B (zh) 2014-10-09 2014-10-09 一种半导体装备用抗高温蠕变接地基片的制备方法
US14/789,966 US20160102394A1 (en) 2014-10-09 2015-07-01 Method for preparing grounding substrate for semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201410528539.4A CN104294206B (zh) 2014-10-09 2014-10-09 一种半导体装备用抗高温蠕变接地基片的制备方法

Publications (2)

Publication Number Publication Date
CN104294206A true CN104294206A (zh) 2015-01-21
CN104294206B CN104294206B (zh) 2016-05-04

Family

ID=52314152

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201410528539.4A Active CN104294206B (zh) 2014-10-09 2014-10-09 一种半导体装备用抗高温蠕变接地基片的制备方法

Country Status (2)

Country Link
US (1) US20160102394A1 (zh)
CN (1) CN104294206B (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104928625A (zh) * 2015-05-22 2015-09-23 沈阳富创精密设备有限公司 一种pvd制备半导体装备用抗高温蠕变接地基片的方法
CN108085674A (zh) * 2016-11-23 2018-05-29 中国科学院金属研究所 一种发动机汽缸用铝合金材料的制备方法
WO2020168679A1 (zh) * 2019-02-22 2020-08-27 沈阳富创精密设备有限公司 一种ic装备等离子体刻蚀腔防护涂层的制备方法
CN113555287A (zh) * 2021-07-22 2021-10-26 吉林建筑大学 一种水分触发降解的p型瞬态薄膜晶体管制备方法

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5956053B2 (ja) * 2013-02-14 2016-07-20 株式会社島津製作所 微細パターニング用表面化学処理装置
US11167864B2 (en) * 2018-04-27 2021-11-09 The Boeing Company Applying cold spray erosion protection to an airfoil
CN114799201A (zh) * 2022-05-05 2022-07-29 广东省科学院新材料研究所 收缩-扩展喷嘴及其制备方法、增材制造设备和方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101767080A (zh) * 2008-12-26 2010-07-07 中国科学院金属研究所 一种金属与塑料粉末混合制备涂层的方法及装置
CN102021586A (zh) * 2009-09-15 2011-04-20 鞍钢股份有限公司 一种单面镀层钢板生产方法及其单面镀层钢板
CN102059218A (zh) * 2010-12-14 2011-05-18 北京科技大学 一种聚合物基复合材料表面金属化涂层的制备方法及装置
CN102154639A (zh) * 2011-03-10 2011-08-17 上海交通大学 基于铝粒子的冷喷涂沉积制备涂层的方法
US20140272459A1 (en) * 2013-03-12 2014-09-18 Lam Research Corporation Corrosion resistant aluminum coating on plasma chamber components

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6007592A (en) * 1996-11-14 1999-12-28 Nissan Chemical Industries, Ltd. Polishing composition for aluminum disk and polishing process therewith
US6150009A (en) * 1998-08-07 2000-11-21 Surface Technologies, Inc. Decorative structural panel
US6277235B1 (en) * 1998-08-11 2001-08-21 Novellus Systems, Inc. In situ plasma clean gas injection
WO2003014234A1 (en) * 2001-08-03 2003-02-20 Florida State University Research Foundation, Inc. Composite polyelectrolyte films for corrosion control
US20040101620A1 (en) * 2002-11-22 2004-05-27 Elmoursi Alaa A. Method for aluminum metalization of ceramics for power electronics applications
US7534301B2 (en) * 2004-09-21 2009-05-19 Applied Materials, Inc. RF grounding of cathode in process chamber
US20060121187A1 (en) * 2004-12-03 2006-06-08 Haynes Jeffrey D Vacuum cold spray process
DE102006023483A1 (de) * 2006-05-18 2007-11-22 Linde Ag Vorrichtung zum Kaltgasspritzen
US10441962B2 (en) * 2012-10-29 2019-10-15 South Dakota Board Of Regents Cold spray device and system
KR102126275B1 (ko) * 2013-05-03 2020-06-25 삼성디스플레이 주식회사 기판정렬장치 및 이를 이용한 기판절단장치
US9663870B2 (en) * 2013-11-13 2017-05-30 Applied Materials, Inc. High purity metallic top coat for semiconductor manufacturing components

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101767080A (zh) * 2008-12-26 2010-07-07 中国科学院金属研究所 一种金属与塑料粉末混合制备涂层的方法及装置
CN102021586A (zh) * 2009-09-15 2011-04-20 鞍钢股份有限公司 一种单面镀层钢板生产方法及其单面镀层钢板
CN102059218A (zh) * 2010-12-14 2011-05-18 北京科技大学 一种聚合物基复合材料表面金属化涂层的制备方法及装置
CN102154639A (zh) * 2011-03-10 2011-08-17 上海交通大学 基于铝粒子的冷喷涂沉积制备涂层的方法
US20140272459A1 (en) * 2013-03-12 2014-09-18 Lam Research Corporation Corrosion resistant aluminum coating on plasma chamber components

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104928625A (zh) * 2015-05-22 2015-09-23 沈阳富创精密设备有限公司 一种pvd制备半导体装备用抗高温蠕变接地基片的方法
TWI567212B (zh) * 2015-05-22 2017-01-21 Shenyang Fortune Precision Equipment Co Ltd A Method for Preparing High Temperature Creep Grounding Substrate for Semiconductor Equipment by PVD
CN104928625B (zh) * 2015-05-22 2017-06-16 沈阳富创精密设备有限公司 一种pvd制备半导体装备用抗高温蠕变接地基片的方法
KR101873633B1 (ko) * 2015-05-22 2018-08-02 선양 포춘 프리시전 이큅먼트 컴퍼니., 리미티드. Pvd를 이용한 반도체 장비용 내열 크리프 접지칩 제조방법
CN108085674A (zh) * 2016-11-23 2018-05-29 中国科学院金属研究所 一种发动机汽缸用铝合金材料的制备方法
CN108085674B (zh) * 2016-11-23 2020-01-03 中国科学院金属研究所 一种发动机汽缸用铝合金材料的制备方法
WO2020168679A1 (zh) * 2019-02-22 2020-08-27 沈阳富创精密设备有限公司 一种ic装备等离子体刻蚀腔防护涂层的制备方法
CN113555287A (zh) * 2021-07-22 2021-10-26 吉林建筑大学 一种水分触发降解的p型瞬态薄膜晶体管制备方法
CN113555287B (zh) * 2021-07-22 2022-05-24 吉林建筑大学 一种水分触发降解的p型瞬态薄膜晶体管制备方法

Also Published As

Publication number Publication date
US20160102394A1 (en) 2016-04-14
CN104294206B (zh) 2016-05-04

Similar Documents

Publication Publication Date Title
CN104294206A (zh) 一种半导体装备用抗高温蠕变接地基片的制备方法
CN102154639B (zh) 基于铝粒子的冷喷涂沉积制备涂层的方法
CN102828137B (zh) 一种高温合金表面纳米复合涂层及其制备方法
AU2019101816A4 (en) Method for preparing protective coating for plasma etching chamber of IC equipment
CN102747363A (zh) 一种纳米级金属颗粒冷喷涂工艺
CN105132908A (zh) 燃气轮机叶片热障涂层粘结层及其制备方法
CN104162662B (zh) 表面改性的非晶合金涂层及其制备方法
CN105256306B (zh) 基于混合粉末的高致密度冷喷涂金属沉积体的制备方法
CN103422088A (zh) 一种制备316l不锈钢涂层的冷喷涂装置及方法
CN111364036B (zh) 一种铁基非晶涂层的制备方法及铁基非晶涂层
CN106048502B (zh) 纳米yag涂层、其制备方法及应用
CN108720545A (zh) 一种烹饪器具及其制备方法
CN104005021A (zh) 一种超音速激光沉积低应力涂层的方法
CN110144542A (zh) 一种超音速火焰喷涂系统及铁基非晶涂层的制备方法
CN105198501A (zh) 一种碳/碳复合材料表面金属钨梯度涂层的制备方法
CN104862654A (zh) 一体化大尺寸高纯度超导钇钡铜氧旋转靶材及其制备方法
CN207492636U (zh) 一种烹饪器具
WO2017092065A1 (zh) 一种海洋钻井平台耐腐涂层制备方法
CN103103471B (zh) 一种金属陶瓷涂层的制备方法
CN109440053A (zh) 一种雷达吸波涂层材料及其制备方法
CN110004393A (zh) 一种超音速火焰喷涂技术制备y2o3陶瓷涂层的方法
CN103014589A (zh) 十字头表面热喷涂巴氏合金涂层的方法
CN104878343A (zh) 一种金刚石/铜复合材料表面纯铜涂层制备方法
CN109930146A (zh) 一种基于低压冷喷涂技术修复埋弧焊导电嘴的方法
CN108078361B (zh) 一种电磁加热陶瓷锅具的制作方法及陶瓷锅具

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C53 Correction of patent of invention or patent application
CB03 Change of inventor or designer information

Inventor after: Xiong Tianying

Inventor after: Tang Weidong

Inventor after: Han Xuecheng

Inventor after: Gu Xinhai

Inventor after: Liu Weijie

Inventor after: Wu Jie

Inventor after: Wang Jiqiang

Inventor after: Shen Yanfang

Inventor after: Cui Xinyu

Inventor after: Mao Tianliang

Inventor after: Li Ming

Inventor after: Wu Minjie

Inventor after: Li Maocheng

Inventor before: Wu Jie

Inventor before: Tang Weidong

Inventor before: Han Xuecheng

Inventor before: Gu Xinhai

Inventor before: Liu Weijie

Inventor before: Wang Jiqiang

Inventor before: Xiong Tianying

Inventor before: Shen Yanfang

Inventor before: Cui Xinyu

Inventor before: Mao Tianliang

Inventor before: Li Ming

Inventor before: Wu Minjie

Inventor before: Li Maocheng

COR Change of bibliographic data

Free format text: CORRECT: INVENTOR; FROM: WU JIE WANG JIQIANG XIONG TIANYING SHEN YANFANG CUI XINYU MAO TIANLIANG LI MING WU MINJIE LI MAOCHENG TANG WEIDONG HAN XUECHENG GU XINHAI LIU WEIJIE TO: XIONG TIANYING WU JIE WANG JIQIANG SHEN YANFANG CUI XINYU MAO TIANLIANG LI MING WU MINJIE LI MAOCHENG TANG WEIDONG HAN XUECHENG GU XINHAI LIU WEIJIE

C14 Grant of patent or utility model
GR01 Patent grant
CP03 Change of name, title or address
CP03 Change of name, title or address

Address after: No.18a-1, Feiyun Road, Hunnan District, Shenyang City, Liaoning Province

Patentee after: Shenyang fuchuang precision equipment Co.,Ltd.

Address before: 110168 no.18a-1, Feiyun Road, Hunnan New District, Shenyang City, Liaoning Province

Patentee before: Shenyang Fortune Precision Equipment Co.,Ltd.