CN104916731A - 一种低损伤的铟镓砷探测器p+n结制备方法 - Google Patents

一种低损伤的铟镓砷探测器p+n结制备方法 Download PDF

Info

Publication number
CN104916731A
CN104916731A CN201510296103.1A CN201510296103A CN104916731A CN 104916731 A CN104916731 A CN 104916731A CN 201510296103 A CN201510296103 A CN 201510296103A CN 104916731 A CN104916731 A CN 104916731A
Authority
CN
China
Prior art keywords
damage
nitrogen atmosphere
detector
hand
indium gallium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201510296103.1A
Other languages
English (en)
Other versions
CN104916731B (zh
Inventor
曹高奇
唐恒敬
程吉凤
石铭
王瑞
邵秀梅
李庆法
李雪
龚海梅
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Wuxi Zhongke core photoelectric sensing technology Research Institute Co., Ltd
Original Assignee
Shanghai Institute of Technical Physics of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shanghai Institute of Technical Physics of CAS filed Critical Shanghai Institute of Technical Physics of CAS
Priority to CN201510296103.1A priority Critical patent/CN104916731B/zh
Publication of CN104916731A publication Critical patent/CN104916731A/zh
Application granted granted Critical
Publication of CN104916731B publication Critical patent/CN104916731B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by potential barriers, e.g. phototransistors
    • H01L31/101Devices sensitive to infrared, visible or ultraviolet radiation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/184Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof the active layers comprising only AIIIBV compounds, e.g. GaAs, InP
    • H01L31/1844Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof the active layers comprising only AIIIBV compounds, e.g. GaAs, InP comprising ternary or quaternary compounds, e.g. Ga Al As, In Ga As P
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Light Receiving Elements (AREA)

Abstract

本发明公开了一种低损伤的铟镓砷探测器p+n结制备方法,具体步骤如下:1)淀积氮化硅成结掩膜,2)光敏区成结,3)取样清洗,4)氮气氛围热处理,5)去表面损伤层。其优点在于:氮气氛围热处理一方面能够修复成结过程引入的晶格损伤,减小复合中心的密度,降低探测器的暗电流,另一方面能够激活受主离子,降低施主补偿作用,增加P区的空穴载流子浓度,有利于P电极欧姆接触的稳定性,减小串联电阻;去表面损伤层一方面可以有效去除表面氧化层,减少表面的复合中心,有利于表面钝化,提高探测器的性能,另一方面可以去除表面形成的离子富集层和表层损伤层。

Description

一种低损伤的铟镓砷探测器p+n结制备方法
技术领域
本发明是关于红外探测器的制备技术,具体是指一种低损伤的铟镓砷探测器p+n结制备方法,它适用于制备高性能的短波红外铟镓砷探测器。
背景技术
在近室温环境下,短波红外铟镓砷探测器就拥有良好的性能,这使得其在民用、军事和航空航天领域有着广泛的应用价值。在铟镓砷短波红外探测器芯片的制备工艺中,p+n结的制备是最关键的工艺之一。因为成结工艺能给芯片带入比较大的损伤,所以,对短波红外铟镓砷探测器来说,优化成结方法对实现高性能、高可靠性等方面有着至关重要的作用。
铟镓砷探测器芯片的剖面结构如附图3所示,它由InP衬底1、InP缓冲层2、InGaAs吸收层3、InP帽层4、光敏区5、氮化硅钝化层6、P电极7和接触电极8组成。
目前,铟镓砷探测器的工艺主要包含6个大步骤:步骤1.在外延片上制备光敏区成结掩膜;步骤2.实施光敏区成结工艺技术;步骤3.通过刻蚀在外延片上开N槽;步骤4.进行钝化膜淀积;步骤5.在P区表面生长P电极;步骤6.在N区表面和P电极上制备接触电极。其中光敏区成结工艺是最关键的工艺步骤之一,成结的质量会直接影响到芯片的性能。因为P区基体里的离子元素也并非完全激活的状态,如图3所示,这些非激活状态包括元素离子的富集7、填隙原子8、以及电中性的化合物10等,这些状态不仅会抑制元素的激活,降低P区空穴载流子浓度,而且会给外延材料引入多的杂质缺陷和较大的晶格损 伤。此外,由于在样品表层富集大量的元素离子,这一方面会使得样品的表面受到比较大的晶格损伤;另一方面增加表面的非辐射复合中心密度。这些问题都会限制探测器性能的提高,因此需要在技术上做出进一步的改进和创新。
发明内容
基于上述探测器芯片制备工艺中存在的问题,本发明提出了一种低损伤的铟镓砷探测器p+n结制备方法,不仅能够解决了元素离子激活低,成结损伤偏大和电极串联电阻偏大的问题,而且增加了采用湿法腐蚀去除表面损伤的工艺,起到了去除离子富集层,减少复合中心,降低表面态密度,增强了后续钝化膜的钝化效果。
本发明所涉及的关键步骤有:1)淀积氮化硅成结掩膜,2)光敏区成结, 
3)取样清洗,4)氮气氛围热处理,5)去表面损伤层,如附图2所示。具体工艺流程步骤如下:
1.淀积氮化硅扩散掩膜5,采用等离子体增强化学气相淀积(PECVD)技术淀积厚度200±30nm的氮化硅扩散掩膜5,衬底温度为330±20℃、RF功率为40±10W;
2.先采用感应耦合等离子体(ICP)刻蚀技术开窗口6,依次将元素离子源11、外延片12放入石英腔13源区和样品区,如图1所示,抽真空至3×10-4Pa以下,然后密封石英腔13,在550±20℃温度内,保持9±3min后,快速取出;
3.取样清洗,打开石英腔13,取出外延片12,然后用三氯甲烷、乙醚、丙酮、MOS级乙醇清洗,并用高纯氮气吹干。
4.氮气氛围热处理,将样品12放入热退火炉中,保持3~10L/min的氮气流量,在启动加热之前,对退火炉充氮气30~120秒,然后在充足的氮气氛围下加热进行热处理,热处理条件:温度为420~500℃,时间为5~15分钟;
5.表面去扩散损伤层,采用湿法腐蚀,腐蚀液为体积比为15~25%的盐酸溶液,在室温条件下,腐蚀时间为2~6分钟;
本发明的优点在于:
A.成结工艺之后,适当的氮气氛围热处理能够激活受主离子元素,抑制补偿作用,增加P区的空穴载流子浓度,有利于降低器件的串联电阻,实现P电极欧姆接触的稳定性。
B.成结工艺之后,适当的氮气氛围热处理能够修复成结引入的体内和表面的晶格损伤,降低非辐射复合中心密度,有利于抑制暗电流的产生,为高性能线列和面阵探测器的研制提供良好的工艺基础;
C.表面去损伤层,会除去表面的杂质离子富集层或表面反型层,降低表面的非辐射复合中心密度,降低器件的表面态密度,抑制表面复合电流的产生,增强了后续的钝化效果。
附图说明
图1为本发明的石英腔体的横断界面图。
图2为本发明的铟镓砷探测器芯片成结技术流程图。
图3为本发明实施的样品的剖面结构示意图。
图中:
1——半绝缘InP衬底;
2——N型InP层;
3——铟镓砷本征吸收层;
4——N型InP帽层;
5——成结掩膜;
6——窗口; 
7——离子富集层;
8——填隙原子;
9——替位原子;
10——杂质离子化合物;
11——元素离子源;
12——外延片; 
13——石英腔; 
具体实施方式
下面结合附图对本发明的具体实施方法作详细的说明。
如附图3所示,本实施例所用的外延片为采用金属有机化学气相沉积(MOCVD)技术,在厚度为350μm的半绝缘InP衬底1上,依次生长的InP缓冲层2,InGaAs吸收层3,InP帽层4。如图2所示,本实施例探测器芯片p+n结制备方法的具体工艺流程为:
实施例1
1.淀积氮化硅扩散掩膜5,采用等离子体增强化学气相淀积(PECVD)技术淀积厚度200±30nm的氮化硅成结掩膜5,衬底温度为330±20℃、RF功率为40±10W;
2.先采用感应耦合等离子体(ICP)刻蚀技术开窗口6,依次将元素离子源11、外延片12放入石英腔13源区和样品区,如图1所示,抽真空至3×10-4Pa以下,然后密封石英腔13,在550±20℃温度内,保持9±3min后,快速取出;
3.取样清洗,打开石英腔13,取出外延片12,然后用三氯甲烷、乙醚、丙酮、MOS级乙醇清洗,并用高纯氮气吹干。
4.氮气氛围热处理,将样品12放入热退火炉中,保持10L/min的氮气流 量,在启动加热之前,对退火炉充氮气30秒,然后在充足的氮气氛围下加热进行热处理,热处理条件:温度为420℃,时间为15分钟;
4.表面去扩散损伤层,采用湿法腐蚀,腐蚀液为体积比为15%的盐酸溶液,在室温条件下,腐蚀时间为6分钟;
实施例2
1.淀积氮化硅扩散掩膜5,采用等离子体增强化学气相淀积(PECVD)技术淀积厚度200±30nm的氮化硅成结掩膜5,衬底温度为330±20℃、RF功率为40±10W;
2.先采用感应耦合等离子体(ICP)刻蚀技术开窗口6,依次将元素离子源11、外延片12放入石英腔13源区和样品区,如图1所示,抽真空至3×10-4Pa以下,然后密封石英腔13,在550±20℃温度内,保持9±3min后,快速取出;
3.取样清洗,打开石英腔13,取出外延片12,然后用三氯甲烷、乙醚、丙酮、MOS级乙醇清洗,并用高纯氮气吹干。
4.氮气氛围热处理,将样品12放入热退火炉中,保持6.5L/min的氮气流量,在启动加热之前,对退火炉充氮气80秒,然后在充足的氮气氛围下加热进行热处理,热处理条件:温度为470℃,时间为10分钟;
5.表面去扩散损伤层,采用湿法腐蚀,腐蚀液为体积比为20%的盐酸溶液,在室温条件下,腐蚀时间为4分钟;
实施例3
1.淀积氮化硅扩散掩膜5,采用等离子体增强化学气相淀积(PECVD)技术淀积厚度200±30nm的氮化硅成结掩膜5,衬底温度为330±20℃、RF功率为40±10W;
2.先采用感应耦合等离子体(ICP)刻蚀技术开窗口6,依次将元素离子源 11、外延片12放入石英腔13源区和样品区,如图1所示,抽真空至3×10-4Pa以下,然后密封石英腔13,在550±20℃温度内,保持9±3min后,快速取出;
3.取样清洗,打开石英腔13,取出外延片12,然后用三氯甲烷、乙醚、丙酮、MOS级乙醇清洗,并用高纯氮气吹干。
4.氮气氛围热处理,将样品12放入热退火炉中,保持3L/min的氮气流量,在启动加热之前,对退火炉充氮气120秒,然后在充足的氮气氛围下加热进行热处理,热处理条件:温度为500℃,时间为5分钟;
5.表面去扩散损伤层,采用湿法腐蚀,腐蚀液为体积比为25%的盐酸溶液,在室温条件下,腐蚀时间为2分钟。

Claims (1)

1.一种低损伤的铟镓砷探测器p+n结制备方法,具体方法步骤如下:1)淀积氮化硅成结掩膜,2)光敏区成结,3)取样清洗,4)氮气氛围热处理,5)去表面损伤层,其特征在于:
步骤4)中所述的氮气氛围热处理方法为:将样品放入热退火炉中,保持3~10L/min的氮气流量,在启动加热之前,对退火炉充氮气30~120秒,然后在充足的氮气氛围下加热进行热处理,热处理条件:温度为420~500℃,时间为5~15分钟;
步骤5)中所述的去表面损伤层的方法如下:损伤层去除采用湿法腐蚀方法,腐蚀液为体积比为15~25%的盐酸溶液,在室温条件下,腐蚀时间为2~6分钟。
CN201510296103.1A 2015-06-02 2015-06-02 一种低损伤的铟镓砷探测器p+n结制备方法 Active CN104916731B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201510296103.1A CN104916731B (zh) 2015-06-02 2015-06-02 一种低损伤的铟镓砷探测器p+n结制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201510296103.1A CN104916731B (zh) 2015-06-02 2015-06-02 一种低损伤的铟镓砷探测器p+n结制备方法

Publications (2)

Publication Number Publication Date
CN104916731A true CN104916731A (zh) 2015-09-16
CN104916731B CN104916731B (zh) 2017-03-22

Family

ID=54085617

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201510296103.1A Active CN104916731B (zh) 2015-06-02 2015-06-02 一种低损伤的铟镓砷探测器p+n结制备方法

Country Status (1)

Country Link
CN (1) CN104916731B (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107994094A (zh) * 2017-11-22 2018-05-04 贵州振华风光半导体有限公司 一种改善延伸波长铟镓砷探测器刻蚀损伤的方法
CN111403546A (zh) * 2019-12-17 2020-07-10 西南技术物理研究所 一种预沉积扩散源制备铟镓砷光电探测器芯片的扩散方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58125870A (ja) * 1981-12-21 1983-07-27 Nec Corp 半導体素子
CN101170142A (zh) * 2007-11-21 2008-04-30 中国科学院上海技术物理研究所 平面型铟镓砷红外焦平面探测器及制备方法
CN102544043A (zh) * 2012-01-20 2012-07-04 中国科学院上海技术物理研究所 一种平面型子像元结构铟镓砷红外探测器芯片

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58125870A (ja) * 1981-12-21 1983-07-27 Nec Corp 半導体素子
CN101170142A (zh) * 2007-11-21 2008-04-30 中国科学院上海技术物理研究所 平面型铟镓砷红外焦平面探测器及制备方法
CN102544043A (zh) * 2012-01-20 2012-07-04 中国科学院上海技术物理研究所 一种平面型子像元结构铟镓砷红外探测器芯片

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107994094A (zh) * 2017-11-22 2018-05-04 贵州振华风光半导体有限公司 一种改善延伸波长铟镓砷探测器刻蚀损伤的方法
CN111403546A (zh) * 2019-12-17 2020-07-10 西南技术物理研究所 一种预沉积扩散源制备铟镓砷光电探测器芯片的扩散方法

Also Published As

Publication number Publication date
CN104916731B (zh) 2017-03-22

Similar Documents

Publication Publication Date Title
US9537030B2 (en) Method of fabricating a solar cell with a tunnel dielectric layer
Özavcı et al. A detailed study on current–voltage characteristics of Au/n-GaAs in wide temperature range
Horváth et al. Modification of Al/Si interface and Schottky barrier height with chemical treatment
CN104637941A (zh) 一种复合沟道mhemt微波振荡器及其制备方法
CN104538463B (zh) 一种改善表面钝化的平面型铟镓砷光敏芯片及制备方法
CN104993009A (zh) 补偿掺杂阻挡杂质带太赫兹探测器芯片及其制备方法
WO2019119958A1 (zh) SiC功率二极管器件的制备方法及其结构
CN104393047A (zh) 具有阶梯缓冲层结构的4H-SiC金属半导体场效应晶体管
CN104916731A (zh) 一种低损伤的铟镓砷探测器p+n结制备方法
CN104282764A (zh) 具有坡形栅极的4H-SiC金属半导体场效应晶体管及制作方法
CN105448978A (zh) 一种用于硅衬底集成mHEMT器件的外延层结构及其生长方法
US10615038B2 (en) Method of making N-type doped gallium oxide through the deposition of a tin layer on the gallium oxide
CN204332968U (zh) 一种改善表面钝化的平面型铟镓砷光敏芯片
CN107359127B (zh) 蓝宝石衬底的Fe掺杂自旋场效应晶体管及其制造方法
CN116387398A (zh) 一种通过F基等离子体处理提升AlGaN/GaN基紫外光电探测器性能的方法
CN107369707B (zh) 基于4H-SiC衬底异质结自旋场效应晶体管及其制造方法
Boucher et al. Homojunction GaAs solar cells grown by close space vapor transport
CN106409939B (zh) 平面型侧向收集结构铟镓砷红外探测器芯片的制备方法
Huang et al. Electrical and structural properties of a stacked metal layer contact to n-InP
CN103295913B (zh) 改善半导体器件负偏压温度不稳定性的方法
CN106328752A (zh) 一种平面型侧向收集结构铟镓砷红外探测器芯片
CN112349777A (zh) 具有钙钛矿复合栅结构的GaN HEMT光电探测器及其制备方法
Chou A comparative study of lateral SiCN/porous silicon and vertical SiCN/porous silicon junctions for sensing ultraviolet light
JP2014041987A (ja) n+型Ge半導体層形成方法およびオーミック接触構造
CN110556415B (zh) 一种高可靠性外延栅的SiC MOSFET器件及其制备方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
TR01 Transfer of patent right
TR01 Transfer of patent right

Effective date of registration: 20200402

Address after: Room 901-910, Jinqian block, No. 10, Hongyi Road, Xinwu District, Wuxi City, Jiangsu Province

Patentee after: Wuxi Zhongke core photoelectric sensing technology Research Institute Co., Ltd

Address before: 200083 No. 500, Yutian Road, Shanghai, Hongkou District

Patentee before: Axon Medical Technologies Corp.