CN104901909B - 一种α非高斯噪声下chirp信号的参数估计方法 - Google Patents

一种α非高斯噪声下chirp信号的参数估计方法 Download PDF

Info

Publication number
CN104901909B
CN104901909B CN201510264123.0A CN201510264123A CN104901909B CN 104901909 B CN104901909 B CN 104901909B CN 201510264123 A CN201510264123 A CN 201510264123A CN 104901909 B CN104901909 B CN 104901909B
Authority
CN
China
Prior art keywords
mrow
mtd
msup
signal
chirp signals
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201510264123.0A
Other languages
English (en)
Other versions
CN104901909A (zh
Inventor
王春阳
刘雪莲
陈宇
孙敬雪
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Changchun University of Science and Technology
Original Assignee
Changchun University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Changchun University of Science and Technology filed Critical Changchun University of Science and Technology
Priority to CN201510264123.0A priority Critical patent/CN104901909B/zh
Publication of CN104901909A publication Critical patent/CN104901909A/zh
Application granted granted Critical
Publication of CN104901909B publication Critical patent/CN104901909B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Radar Systems Or Details Thereof (AREA)

Abstract

本发明涉及一种α非高斯噪声下chirp信号的参数估计方法,属于信号检测与信息处理领域,更进一步涉及信号检测与参数估计领域。通过对含有α非高斯噪声的信号进行限幅预处理,可以消除大部分干扰,特别是脉冲式干扰,再利用FrFT对chirp信号处理时的能量聚集特性,可以有效的对chirp信号的初始频率和调频率进行估计。优点:通过限幅预处理可以消除大部分干扰,特别是脉冲式干扰,再用分数阶Fourier变换对信号进行处理,能够得到高精度的估计值;该方法计算复杂度低,运算量小,适用于工程实际中;限幅预处理的实现简单,适用范围广,能够有效克服偶然因素引起的脉冲干扰;在判别准确度上更有优势,同时该方法具有很好的稳定性,最重要是精度高,和无噪声时一致。

Description

一种α非高斯噪声下chirp信号的参数估计方法
技术领域
本发明属于信号检测与信息处理领域,更进一步涉及信号检测与参数估计领域。
背景技术
Chirp信号即线性调频信号,chirp信号被广泛地应用于通信、医学和声纳等信息系统中,尤其是现代新体制雷达系统。由于chirp信号具有低截获概率特性,对chirp信号参数检测和估计的研究受到广泛关注。近年来,对chirp信号的检测与估计多是在高斯噪声情况下,目前常用的方法有分数阶傅里叶变换(Fractional Fourier Transform,FrFT)法,Wigner-Ville分布(WVD)时频分析方法,Wigner-Hough变换(WHT)法等,其中FrFT是传统傅里叶变换的推广,其实质是一种信号的时频变换。Chirp信号在适当的分数阶变换域中具有能量聚集特性。这种聚集性有利于Chirp信号的非相干解调.目前已知的理论及仿真均表明,在基于chirp信号的通信系统中,利用分数阶傅里叶变换特有的性质在变换域中处理chirp信号比时域更方便,且系统也往往能获得较好的误码性能。
然而,Stuck等人已经证明了在电话线路中的噪声可以有效地利用α稳定分布来描述;Nikias等人也证明出α稳定分布是描述大气噪声的非常理想的模型;Ilow等人的研究表明,α稳定分布与无线网络中的多径干扰和雷达系统的反向散射回波是相一致的。因此研究α非高斯噪声下chirp信号的检测与估计具有十分重要的意义。
在现有的方法中很难对α非高斯噪声背景下的chirp信号进行参数估计,这是由于非高斯噪声具有脉冲特性,其概率密度函数比高斯分布的概率密度函数具有更厚的拖尾,使得大多数的估计方法在对非高斯噪声中的信号进行估计时发生性能退化,甚至失效。
发明内容
本发明提供一种α非高斯噪声下chirp信号的参数估计方法,目的在于利用α稳定分布来描述一些工程中常见噪声的同时,可以快速准确的估计出chirp信号的参数。
本发明采取的技术方案是,包括下列步骤:
步骤一:采集含有噪声信号
含有加性噪声的chirp信号数学模型为:
其中s(t)表示发射的chirp信号,其数学模型表示为:
其中t表示时间,T表示时宽,f0表示初始频率,k表示调频率;
A表示chirp信号在传输过程中的衰减因子,n(t)表示α非高斯噪声;
步骤二:对信号进行限幅预处理
限幅处理后的信号如式(3)所示:
其中p是发射的chirp信号功率的1~1.5倍;
步骤三:量纲归一化
设信号X(t)的时域区间为对应的频域区间为将时域和频域都转换成量纲统一的域,引入一个量纲归一化因子S,
其中T表示时宽,F表示带宽;
并定义量纲归一化坐标为
其中f表示频率;
新坐标系(t′,f′)实现了量纲归一化;
时域和频域2个区间都归一化为
其中△x为采样频率;
信号采样间隔变为
步骤四:FrFT
通过对含噪声chirp信号进行分数阶Fourier变换,可以估计出参数f0和k,具体算法如下:
首先对含噪声chirp信号进行FrFT得到Xa(u),
函数X(t)的a阶分数阶Fourier变换(FrFT)定义如下:
a是分数阶阶次,u表示采样点,
则核函数
其中,为时频平面的旋转角度,δ(t)单位脉冲函数,n=1,2,...的正整数;
根据式(7)和式(8),FrFT的定义式改写为:
采样型离散分数阶Fourier变换(DFrFT)可分解为以下步骤:
步骤1:用chirp信号与信号X(t)相乘,即
步骤2:g(t)与chirp信号做卷积,即
步骤3:用chirp信号与信号h(u)相乘,即
然后搜索|Xa(u)|2最大值对应的和旋转角
通过式(13)可以估计出参数
步骤五尺度变换,得到参数估计值
就是α非高斯噪声下chirp信号的参数f0、k的估计值。
在高斯噪声背景下,FrFT法对chirp信号具有十分理想的参数估计结果,但是当信号被α非高斯噪声污染时,由于其具有脉冲特性,而且它的概率密度函数比高斯分布的概率密度函数具有更厚的拖尾,使得FrFT法的估计性能退化。因此本发明针对非高斯噪声的脉冲特性提出了一种基于限幅预处理的FrFT的参数估计方法,该方法通过对含有α非高斯噪声的信号进行限幅预处理,可以消除大部分干扰,特别是脉冲式干扰,再利用FrFT对chirp信号处理时的能量聚集特性,可以有效的对chirp信号的初始频率和调频率进行估计。
通过仿真实验可以看出,本发明方法在α非高斯噪声下对chirp信号的初始频率和调频率进行参数估计时,表现出良好的抗噪性能,而且估计结果与无噪声时一致。
本发明对chirp信号的初始频率和调频率参数进行精确的估计,在雷达信号处理等系统中有着十分重要的作用,而信号在传输过程中不可避免地出现能量衰减以及受到噪声的污染。当信号被非高斯噪声污染时,FrFT法的估计性能退化。因此本发明针对非高斯噪声的脉冲特性提出了一种基于限幅预处理的FrFT的参数估计方法,该方法通过对含有α非高斯噪声的信号进行限幅,再利用FrFT对chirp信号处理时的能量聚集特性,可以有效的对chirp信号的初始频率和调频率进行估计。仿真实验证明,本发明方法在对chirp信号进行参数估计时具有良好的抗噪性能,其估计结果与无噪声时一致。
本发明具有以下优点:通过限幅预处理可以消除大部分干扰,特别是脉冲式干扰,再用分数阶Fourier变换对信号进行处理,能够得到高精度的估计值;该方法计算复杂度低,运算量小,适用于工程实际中;限幅预处理的实现简单,适用范围广,能够有效克服偶然因素引起的脉冲干扰;在判别准确度上更有优势,同时该方法具有很好的稳定性,最重要是精度高,和无噪声时一致。
附图说明
图1是chirp信号时序图;
图2是无信号衰减和噪声的chirp信号FrFT;
图3是含α非高斯噪声的chirp信号;
图4是本发明方法流程图;
图5是限幅处理后的chirp信号;
图6是限幅后的chirp信号的FrFT;
图7(a)是α噪声不同参数下对f0估计误差,具体为当β=0,δ=0.1,μ=0,α取0.1~1.9时的估计误差;
图7(b)是α噪声不同参数下对f0估计误差,具体为当α=1,δ=0.1,μ=0,β取0~1时的估计误差;
图7(c)是α噪声不同参数下对f0估计误差,具体为当α=1,β=0,μ=0,δ取0.1~2.5时的估计误差;
图7(d)是α噪声不同参数下对f0估计误差,具体为当α=1,β=0,δ=0.1,μ取-1~1时的估计误差;
图8(a)是α噪声不同参数下对k估计误差,具体为当β=0,δ=0.1,μ=0,α取0.1~1.9时的估计误差;
图8(b)是α噪声不同参数下对k估计误差,具体为当α=1,δ=0.1,μ=0,β取0~1时的估计误差;
图8(c)是α噪声不同参数下对k估计误差,具体为当α=1,β=0,μ=0,δ取0.1~2.5时的估计误差;
图8(d)是α噪声不同参数下对k估计误差,具体为当α=1,β=0,δ=0.1,μ取-1~1时的估计误差。
具体实施方式
本发明的具体步骤如下。
步骤一:采集含有噪声信号
含有加性噪声的chirp信号数学模型为:
其中s(t)表示发射的chirp信号,其数学模型表示为:
其中t表示时间,T表示时宽,f0表示初始频率,k表示调频率;
A表示chirp信号在传输过程中的衰减因子,n(t)表示α非高斯噪声;
步骤二:对信号进行限幅预处理
如果含有α非高斯噪声的chirp信号的幅值超过给定的值,给定的值由发射的chirp信号的功率决定,就认为该值处存在干扰,将该值用给定值代替,如果没超过给定的值,就无需对其进行限制,此值不变,即为限幅;
限幅处理后的信号如式(3)所示:
其中p是发射的chirp信号功率的1~1.5倍;
步骤三:量纲归一化
必须对信号X(t)进行量纲归一化处理后才能对其进行FrFT数值计算,具体过程如下:
设信号X(t)的时域区间为对应的频域区间为将时域和频域都转换成量纲统一的域,引入一个量纲归一化因子S,
其中T表示时宽,F表示带宽;
并定义量纲归一化坐标为
其中f表示频率;
新坐标系(t′,f′)实现了量纲归一化;
时域和频域2个区间都归一化为
其中△x为采样频率;
信号采样间隔变为
步骤四:FrFT
通过对含噪声chirp信号进行分数阶Fourier变换,可以估计出参数f0和k,具体算法如下:
首先对含噪声chirp信号进行FrFT得到Xa(u),
函数X(t)的a阶分数阶Fourier变换(FrFT)定义如下:
a是分数阶阶次,u表示采样点,
则核函数
其中,为时频平面的旋转角度,δ(t)单位脉冲函数,n=1,2,...的正整数;
根据式(7)和式(8),FrFT的定义式改写为:
采样型离散分数阶Fourier变换(DFrFT)可分解为以下步骤:
步骤1:用chirp信号与信号X(t)相乘,即
步骤2:g(t)与chirp信号做卷积,即
步骤3:用chirp信号与信号h(u)相乘,即
然后搜索|Xa(u)|2最大值对应的和旋转角
通过式(13)可以估计出参数
步骤五尺度变换,得到参数估计值
就是α非高斯噪声下chirp信号的参数f0、k的估计值。
下面结合仿真图对本发明做进一步的描述如下:
1、仿真条件
设chirp信号的初始频率f0=100MHz,调频率k=100MHz/us,采样频率fs=800MHz,时宽为2us,如图1所示。
2、对比实验仿真内容与结果分析
在无信号衰减和噪声的情况进行参数估计,得到如图2所示。根据式(13)和式(14)计算得误差ef=0.013,ek=0.0279。此时的误差完全是由信号离散化和在计算FrFT时阶次的搜索无法连续造成的。
在被α稳定分布的非高斯噪声淹没的情况下,对回波信号进行参数估计,如图3所示,采用本文提出的方法对此chirp信号的参数f0和k进行估计,具体流程如图4所示。其中α非高斯噪声的参数α=1.5,β=0,δ=1,μ=0,信号衰减因子为60%。
首先对回波信号进行限幅预处理,p是发射的chirp信号功率的1~1.5倍,得到新的信号如图5所示,再对其进行分数阶Fourier,如图6所示,得到根据式(13)和式(14)计算得误差ef=0.013,ek=0.0279。
估计结果与无噪声和衰减时一致,由此可见,改进后的FrFT可以有效地对α噪声下的chirp信号进行参数估计。
在不同参数的α非高斯噪声背景下对图1中的chirp信号进行参数估计,结果如图7、图8所示,其中ef1和ek1表示采用本文方法对f0和k估计的误差,ef2和ek2表示直接采用FrFT法对f0和k估计的误差。
通过图7、图8的实验对比结果可知,该方法比直接采用FrFT法能更有效地对α非高斯噪声下的chirp信号进行参数估计。该方法根据非高斯噪声的脉冲特性对FrFT进行了改进,对不同参数的α非高斯噪声均有良好的参数估计效果,而且估计结果十分理想。

Claims (2)

1.一种α非高斯噪声下chirp信号的参数估计方法,其特征在于包括下列步骤:
步骤一:采集含有噪声信号
含有加性噪声的chirp信号数学模型为:
<mrow> <mi>x</mi> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>=</mo> <mi>A</mi> <mi>s</mi> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>+</mo> <mi>n</mi> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>,</mo> <mo>-</mo> <mfrac> <mi>T</mi> <mn>2</mn> </mfrac> <mo>&amp;le;</mo> <mi>t</mi> <mo>&amp;le;</mo> <mfrac> <mi>T</mi> <mn>2</mn> </mfrac> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>2</mn> <mo>)</mo> </mrow> </mrow>
其中s(t)表示发射的chirp信号,其数学模型表示为:
<mrow> <mi>s</mi> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>=</mo> <mi>exp</mi> <mo>&amp;lsqb;</mo> <mi>j</mi> <mrow> <mo>(</mo> <mn>2</mn> <msub> <mi>&amp;pi;f</mi> <mn>0</mn> </msub> <mi>t</mi> <mo>+</mo> <msup> <mi>&amp;pi;kt</mi> <mn>2</mn> </msup> <mo>)</mo> </mrow> <mo>&amp;rsqb;</mo> <mo>,</mo> <mo>-</mo> <mfrac> <mi>T</mi> <mn>2</mn> </mfrac> <mo>&amp;le;</mo> <mi>t</mi> <mo>&amp;le;</mo> <mfrac> <mi>T</mi> <mn>2</mn> </mfrac> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>1</mn> <mo>)</mo> </mrow> </mrow>
其中t表示时间,T表示时宽,f0表示初始频率,k表示调频率;
A表示chirp信号在传输过程中的衰减因子,n(t)表示α非高斯噪声;
步骤二:对信号进行限幅预处理
限幅处理后的信号如式(3)所示:
<mrow> <mi>X</mi> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>=</mo> <mfenced open = "{" close = ""> <mtable> <mtr> <mtd> <mi>p</mi> </mtd> <mtd> <mrow> <mi>x</mi> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>&gt;</mo> <mi>p</mi> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mi>x</mi> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> </mrow> </mtd> <mtd> <mrow> <mo>-</mo> <mi>p</mi> <mo>&amp;le;</mo> <mi>x</mi> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>&amp;le;</mo> <mi>p</mi> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mo>-</mo> <mi>p</mi> </mrow> </mtd> <mtd> <mrow> <mi>x</mi> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>&lt;</mo> <mo>-</mo> <mi>p</mi> </mrow> </mtd> </mtr> </mtable> </mfenced> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>3</mn> <mo>)</mo> </mrow> </mrow>
p是限幅值;
步骤三:量纲归一化
设信号X(t)的时域区间为对应的频域区间为将时域和频域都转换成量纲统一的域,引入一个量纲归一化因子S,
<mrow> <mi>S</mi> <mo>=</mo> <msup> <mrow> <mo>(</mo> <mfrac> <mi>T</mi> <mi>F</mi> </mfrac> <mo>)</mo> </mrow> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </msup> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>4</mn> <mo>)</mo> </mrow> </mrow>
其中T表示时宽,F表示带宽;
并定义量纲归一化坐标为
<mrow> <mtable> <mtr> <mtd> <mrow> <msup> <mi>t</mi> <mo>&amp;prime;</mo> </msup> <mo>=</mo> <mfrac> <mi>t</mi> <mi>S</mi> </mfrac> </mrow> </mtd> <mtd> <mrow> <msup> <mi>f</mi> <mo>&amp;prime;</mo> </msup> <mo>=</mo> <mi>f</mi> <mi>S</mi> </mrow> </mtd> </mtr> </mtable> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>5</mn> <mo>)</mo> </mrow> </mrow>
其中f表示频率;
新坐标系(t′,f′)实现了量纲归一化;
时域和频域2个区间都归一化为
其中△x为采样频率;
信号采样间隔变为
步骤四:FrFT
通过对含噪声chirp信号进行分数阶Fourier变换,可以估计出参数f0和k,具体算法如下:
首先对含噪声chirp信号进行FrFT得到Xa(u),
函数X(t)的a阶分数阶Fourier变换(FrFT)定义如下:
<mrow> <msub> <mi>X</mi> <mi>a</mi> </msub> <mrow> <mo>(</mo> <mi>u</mi> <mo>)</mo> </mrow> <mo>=</mo> <msup> <mi>F</mi> <mi>a</mi> </msup> <mo>&amp;lsqb;</mo> <mi>X</mi> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>&amp;rsqb;</mo> <mo>=</mo> <msubsup> <mo>&amp;Integral;</mo> <mrow> <mo>-</mo> <mi>&amp;infin;</mi> </mrow> <mi>&amp;infin;</mi> </msubsup> <mi>X</mi> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <msub> <mi>K</mi> <mi>a</mi> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>,</mo> <mi>u</mi> <mo>)</mo> </mrow> <mi>d</mi> <mi>t</mi> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>7</mn> <mo>)</mo> </mrow> </mrow>
a是分数阶阶次,u表示采样点,
则核函数
其中,为时频平面的旋转角度,δ(t)单位脉冲函数,n=1,2,...的正整数;
根据式(7)和式(8),FrFT的定义式改写为:
采样型离散分数阶Fourier变换DFrFT可分解为以下步骤:
步骤1:用chirp信号与信号X(t)相乘,即
步骤2:g(t)与chirp信号做卷积,即
步骤3:用chirp信号与信号h(u)相乘,即
然后搜索|Xa(u)|2最大值对应的和旋转角
通过式(13)可以估计出参数
步骤五尺度变换,得到参数估计值
<mrow> <mfenced open = "{" close = ""> <mtable> <mtr> <mtd> <mrow> <msub> <mover> <mi>f</mi> <mo>^</mo> </mover> <mn>0</mn> </msub> <mo>=</mo> <msup> <msub> <mover> <mi>f</mi> <mo>^</mo> </mover> <mn>0</mn> </msub> <mo>&amp;prime;</mo> </msup> <mo>/</mo> <mi>S</mi> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mover> <mi>k</mi> <mo>^</mo> </mover> <mo>=</mo> <msup> <mover> <mi>k</mi> <mo>^</mo> </mover> <mo>&amp;prime;</mo> </msup> <mo>/</mo> <msup> <mi>S</mi> <mn>2</mn> </msup> </mrow> </mtd> </mtr> </mtable> </mfenced> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>14</mn> <mo>)</mo> </mrow> </mrow>
就是α非高斯噪声下chirp信号的参数f0、k的估计值。
2.如权利要求1所述的一种α非高斯噪声下chirp信号的参数估计方法,其特征在于:所述步骤二中限幅值p是发射的chirp信号功率的1~1.5倍。
CN201510264123.0A 2015-05-21 2015-05-21 一种α非高斯噪声下chirp信号的参数估计方法 Active CN104901909B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201510264123.0A CN104901909B (zh) 2015-05-21 2015-05-21 一种α非高斯噪声下chirp信号的参数估计方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201510264123.0A CN104901909B (zh) 2015-05-21 2015-05-21 一种α非高斯噪声下chirp信号的参数估计方法

Publications (2)

Publication Number Publication Date
CN104901909A CN104901909A (zh) 2015-09-09
CN104901909B true CN104901909B (zh) 2017-11-28

Family

ID=54034308

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201510264123.0A Active CN104901909B (zh) 2015-05-21 2015-05-21 一种α非高斯噪声下chirp信号的参数估计方法

Country Status (1)

Country Link
CN (1) CN104901909B (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107402904A (zh) * 2017-07-20 2017-11-28 南京理工大学 一种线性正则变换的快速实现方法
PL232750B1 (pl) * 2017-08-29 2019-07-31 Univ Technologiczno Przyrodniczy Im Jana I Jedrzeja Sniadeckich W Bydgoszczy Sposób i urządzenie do wykrywania sygnałów lokacyjnych z liniową modulacją częstotliwości i modulacją kąta fazowego
CN107800659B (zh) * 2017-10-12 2020-09-08 西安电子科技大学 Alpha稳定分布噪声下LFM信号调制参数估计方法
CN111273367B (zh) * 2020-03-11 2021-01-08 中南大学 一种大地电磁阻抗的估算方法
CN111884760B (zh) * 2020-07-13 2021-12-31 西北大学 一种基于fpga高吞吐反向散射细粒度移频编码方法
CN114301495B (zh) * 2021-12-10 2023-05-19 河南工程学院 一种非相干LoRa系统下的软输出解调方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101552620A (zh) * 2009-05-25 2009-10-07 刘洛琨 基于有源频谱压缩的码参考Chirp超宽带系统群解调方法
CN102426354A (zh) * 2011-09-16 2012-04-25 西安电子科技大学 基于加权顺序统计和多脉冲相参积累的宽带雷达检测方法
CN104459615A (zh) * 2014-12-05 2015-03-25 天津大学 一种相干分布式宽带线性调频信源定位方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101552620A (zh) * 2009-05-25 2009-10-07 刘洛琨 基于有源频谱压缩的码参考Chirp超宽带系统群解调方法
CN102426354A (zh) * 2011-09-16 2012-04-25 西安电子科技大学 基于加权顺序统计和多脉冲相参积累的宽带雷达检测方法
CN104459615A (zh) * 2014-12-05 2015-03-25 天津大学 一种相干分布式宽带线性调频信源定位方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
噪声背景下chirp信号参数估计理论与方法研究;于晓辉;《中国优秀硕士论文.信息科技辑》;20071231;全文 *

Also Published As

Publication number Publication date
CN104901909A (zh) 2015-09-09

Similar Documents

Publication Publication Date Title
CN104901909B (zh) 一种α非高斯噪声下chirp信号的参数估计方法
CN102508206B (zh) 基于小波包去噪和功率谱熵的线性调频信号参数估计方法
CN106597408B (zh) 基于时频分析和瞬时频率曲线拟合的高阶pps信号参数估计方法
CN103675758B (zh) 一种双曲调频信号周期斜率和起始频率估计方法
CN111222088B (zh) 一种改进的平顶自卷积窗加权电力谐波幅值估计方法
CN103063909A (zh) 一种基于功率谱的线性调频信号参数估值方法
CN108226934A (zh) 一种基于压缩感知的水下动目标检测方法
CN109061693A (zh) 一种适用于p码捕获的改进pmf-fft方法
CN101527698A (zh) 基于希尔伯特黄变换和自适应陷波的非平稳干扰抑制方法
CN104793194A (zh) 基于改进的自适应多脉冲压缩的距离-多普勒估计方法
CN106772271A (zh) 一种基于匹配自相关算法的雷达信号toa估计方法
CN106291293A (zh) 一种基于谱峭度与s变换的局放信号自适应去噪方法
CN107248869B (zh) 一种基于吕分布的多分量线性调频信号去噪方法
CN106569182B (zh) 基于最小熵的相位编码信号载频估计方法
CN110632563B (zh) 一种基于短时傅里叶变换的脉内频率编码信号参数测量方法
CN106501787A (zh) 基于平滑伪魏格纳分布的二相编码信号参数估计方法
CN110808929A (zh) 相减策略的实复转换式信噪比估计算法
CN112014811B (zh) 一种雷达载波频率的精细估计方法
Jun-chang et al. A speech denoising method based on improved EMD
CN103441975B (zh) 一种基于功率谱的二相编码信号参数估值方法
CN109188370A (zh) 一种雷达设备lfm脉冲信号包络曲线拟合方法及系统
CN107894595A (zh) 一种非高斯SaS冲击噪声环境下的时延估计方法
Tang et al. A modified blind OFDM systems parameters estimation method
CN117741584A (zh) 一种基于frft的线性调频脉冲截获及参数精确估计方法
CN106980043A (zh) 一种基于汉宁窗的改进相位差校正法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant