CN104899396B - 一种修正系数矩阵的快速分解法潮流计算方法 - Google Patents

一种修正系数矩阵的快速分解法潮流计算方法 Download PDF

Info

Publication number
CN104899396B
CN104899396B CN201510346974.XA CN201510346974A CN104899396B CN 104899396 B CN104899396 B CN 104899396B CN 201510346974 A CN201510346974 A CN 201510346974A CN 104899396 B CN104899396 B CN 104899396B
Authority
CN
China
Prior art keywords
small impedance
matrix
algorithm
reactance
branch road
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201510346974.XA
Other languages
English (en)
Other versions
CN104899396A (zh
Inventor
姚玉斌
阳义青
吴志良
王丹
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dalian Maritime University
Original Assignee
Dalian Maritime University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dalian Maritime University filed Critical Dalian Maritime University
Priority to CN201510346974.XA priority Critical patent/CN104899396B/zh
Publication of CN104899396A publication Critical patent/CN104899396A/zh
Application granted granted Critical
Publication of CN104899396B publication Critical patent/CN104899396B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Supply And Distribution Of Alternating Current (AREA)

Abstract

本发明公开了一种修正系数矩阵的快速分解法潮流计算方法,采用先进行Q~V迭代,后进行P~θ迭代的方法,并对P~θ迭代修正方程的系数矩阵B′的部分元素进行修改。形成系数矩阵B′时,给小阻抗变压器支路的电抗乘一个修正因子α,正常支路的电抗不乘这个修正因子。本发明通过修改修正方程系数矩阵B′中与小阻抗相关的部分元素,改善了快速分解法潮流计算在分析含有电阻较大的小阻抗支路系统时的收敛性问题。采用常规快速分解法潮流计算或现有专利算法不收敛时,本发明能够可靠收敛。由于本发明不仅能有效解决常规快速分解法潮流算法分析含有电阻较大的小阻抗支路系统的收敛性问题,同时也能对正常系统进行潮流计算,因此没有不良影响。

Description

一种修正系数矩阵的快速分解法潮流计算方法
技术领域
本发明涉及一种电力系统的快速分解法潮流计算方法,特别是一种适合含小阻抗支路系统的快速分解法潮流计算方法。
背景技术
电力系统潮流计算是研究电力系统稳态运行的一项基本计算,它根据给定的运行条件和网络结构确定整个网络的运行状态。潮流计算也是其他电力系统分析的基础,如安全分析、暂态稳定分析等都要用到潮流计算。由于具有收敛可靠、计算速度快及内存需求少的优点,快速分解法成为当前潮流计算的主流算法之一。
当电力网络不存在小阻抗支路或电力网络中的小阻抗支路的电阻很小时,快速分解法潮流计算具有良好的收敛性,但电网中存在电阻相对较大的小阻抗支路时,快速分解法潮流计算就可能发散。电力系统小阻抗支路可以分为小阻抗线路和小阻抗变压器支路,在数学模型上线路可以看作变比为1:1的变压器,因此下面分析时仅以小阻抗变压器支路为例分析。变压器支路lij模型见图4,变压器的非标准变比k位于节点i侧,阻抗位于标准变比侧。当变压器的电阻rij和电抗xij都很小时,此变压器支路即为小阻抗变压器支路。变压器阻抗zij=rij+jxij,导纳为:
由于小阻抗变压器支路的阻抗很小,其阻抗上的电压降也很小,因此小阻抗变压器支路两端的电压相量应满足:
如果电压相量用极坐标表示,则有
式中,分别为节点i和节点j的电压相量;Vi、Vj分别为节点i和节点j的电压幅值;θi、θj分别为节点i和节点j的电压相角。
如图1所示,现有快速分解法潮流计算方法,主要包括以下步骤:
A、原始数据输入和电压初始化;
电压初始化一般采用平启动,即PV节点和平衡节点的电压幅值取给定值,PQ节点的电压幅值取1.0;所有电压的相角都取0.0。这里单位采用标幺值。
B、形成节点导纳矩阵;
设节点i和节点j原来的自电导与自电纳分别为Gi0、Bi0、Gj0、Bj0,在它们之间增加一条小阻抗支路后的自导纳Yii和Yjj、互导纳Yij分别为:
C、形成修正方程的系数矩阵B′和B″并进行因子表分解;
快速分解法修正方程为:
B'Δθ=ΔP/V (7)
B"ΔV=ΔQ/V (8)
式中,ΔP/V和ΔQ/V分别为有功功率和无功功率不平衡量除以电压幅值后的列向量;ΔV和Δθ分别为电压幅值和电压相角修正量列向量;B′为导纳矩阵的虚部,但计算时不计及支路电阻、对地导纳和非标准变比,矩阵中包含PQ节点和PV节点相关的行和列;B″为导纳矩阵的虚部,仅包括与PQ节点有关的行和列。
与小阻抗支路lij相关的系数矩阵元素为:
式中,B′ii、B′jj、B′ij是快速分解法系数矩阵B′的元素;B′i0、B′j0是快速分解法系数矩阵B′中不含小阻抗支路时的元素;B″ii、B″jj、B″ij是快速分解法系数矩阵B″的元素;B″i0、B″j0是快速分解法系数矩阵B″中不含小阻抗支路时的元素。
D、设置迭代计数t=0,收敛标志KP=0,KQ=0;
E、计算有功功率不平衡量ΔP;
有功功率不平衡量(不包含平衡节点)为:
式中,PiS为节点i的给定有功功率;Vi和θi分别为节点i的电压幅值和电压相角;Gij和Bij分别为导纳矩阵的电导部分和电纳部分;n为节点数。
F、判断有功功率最大不平衡量|ΔPmax|是否小于收敛精度ε;如果小于收敛精度ε,令KP=1,转到步骤G;否则,解方程B'Δθ=ΔP/V,修正电压相角,令KP=0,转到步骤H;
求解方程B'Δθ=ΔP/V,得到Δθ,按下式修正电压相角:
θ(t+1)=θ(t)-Δθ(t) (16)
G、判断KQ是否等于1;如果KQ=1,转到步骤K;
H、计算无功功率不平衡量ΔQ;
无功功率不平衡量(仅包含PQ节点)为:
式中,QiS为节点i的给定无功功率;m为PQ节点数。
I、判断无功功率最大不平衡量|ΔQmax|是否小于收敛精度ε;如果小于收敛精度ε,令KQ=1;否则,解方程B"ΔV=ΔQ/V,修正电压幅值,令KQ=0;
求解方程B"ΔV=ΔQ/V,得到ΔV,按下式修正电压幅值:
V(t+1)=V(t)-ΔV(t) (18)
J、判断是否同时满足KP=1和KQ=1,如果不满足,令t=t+1,返回步骤E进行下一次迭代;
K、计算平衡节点功率及PV节点的无功功率,计算支路功率,结束。
步骤E和步骤F为P~θ迭代,即通过ΔP求Δθ进而修正θ;步骤H和步骤I为Q~V迭代,即通过ΔQ求ΔV进而修正V。主流快速分解法都是按上述步骤设计算法,即先进行P~θ迭代,后进行Q~V迭代。也有文献采用先进行Q~V迭代,后进行P~θ迭代的算法。
对正常电力网络或含有电阻非常小的小阻抗支路的网络,快速分解法潮流计算具有良好的收敛性,但遇到含有电阻较大的小阻抗的病态网络时,快速分解法潮流计算就可能发散。电力系统中小阻抗支路普遍存在,潮流计算的收敛性是电力系统潮流计算这类非线性问题的最重要指标,计算不收敛就无法得到问题的解。因此改善快速分解法潮流计算针对含有小阻抗支路电力系统的收敛性具有非常重要的意义。中国专利ZL201410314990.6提出的一种适合含小阻抗支路系统的快速分解法潮流计算方法如下:
(1)采用先进行Q~V迭代,后进行P~θ迭代的方法;
(2)对系数矩阵B′中与小阻抗支路有关的部分元素进行修改:修改小阻抗变压器支路非标准变比侧节点i对应的系数矩阵B′元素B'ii、B'ij;标准变比侧节点j对应的元素B'ji、B'jj不变。
式中,B'ii、B'ij、B'jj、B'ji是快速分解法系数矩阵B′的元素;B′i0、B′j0是快速分解法系数矩阵B′中不含小阻抗支路时的元素。
中国专利ZL201410314990.6所提出方法有效提高了含有小阻抗支路电力系统潮流计算的收敛性,但当小阻抗支路的电阻较大(rij>>xij)时,该方法仍可能发散。
发明内容
为解决现有技术存在的上述问题,本发明要提出一种修正系数矩阵的快速分解法潮流计算方法,以改善其分析含有电阻较大的小阻抗支路电力系统的潮流计算收敛性。
为了实现上述目的,本发明提出了适合含电阻较大的小阻抗支路系统的快速分解法潮流计算方法来改善潮流计算收敛性。本发明的技术方案如下:一种修正系数矩阵的快速分解法潮流计算方法,采用先进行Q~V迭代,后进行P~θ迭代的方法,并对P~θ迭代修正方程的系数矩阵B′的部分元素进行修改。方案包括以下步骤:
A、原始数据输入和电压初始化;
B、形成节点导纳矩阵;
C、形成修正方程的系数矩阵B′和B″并进行因子表分解;
对系数矩阵B′中与小阻抗支路有关的部分元素进行修改:形成系数矩阵B′时,给小阻抗变压器支路的电抗乘一个修正因子α,正常支路的电抗不乘这个修正因子。小阻抗支路相关的B′元素如下:
式中,B'ii、B'ij、B'jj、B'ji是快速分解法系数矩阵B′的元素;B′i0、B′j0是快速分解法系数矩阵B′中不含小阻抗支路时的元素;k为变压器非标准变比;α为系数矩阵B′的修正因子。
形成系数矩阵B′的方法,包括以下步骤:
C1、读入支路数据,设置小阻抗阈值电阻rmin和电抗xmin、设置修正因子α。
C2、设置支路计数初值m=1。
C3、取支路m的首末节点号i和j、电阻rij、电抗xij、变比k。
C4、判断支路的电阻和电抗是否同时满足rij<rmin和xij<xmin,如果不满足转至步骤C7。
C5、令xij=αxij
C6、令B'ii=B'i0-1/(kxij)、B'ij=1/(kxij),转至步骤C8。
C7、令B'ii=B'i0-1/xij、B'ij=1/xij
C8、令B'jj=B'j0-1/xij、B'ji=1/xij
C9、令m=m+1。
C10、判断m是否大于支路数l,如果m不大于l,则返回到步骤C3;否则,形成系数矩阵B″并进行因子表分解。
D、设置迭代计数t=0,收敛标志KP=0,KQ=0;
E、计算无功功率不平衡量ΔQ;
F、判断无功功率最大不平衡量|ΔQmax|是否小于收敛精度ε;如果小于收敛精度ε,令KQ=1,转到步骤G;否则,解方程B"ΔV=ΔQ/V,修正电压幅值,令KQ=0,转到步骤H;
G、判断KP是否等于1;如果KP=1,转到步骤K;
H、计算有功功率不平衡量ΔP;
I、判断有功功率最大不平衡量|ΔPmax|是否小于收敛精度ε;如果小于收敛精度ε,令KP=1;否则,解方程B'Δθ=ΔP/V,修正电压相角,令KP=0;
J、判断是否同时满足KP=1和KQ=1,如果不满足,则令t=t+1,返回步骤E进行下一次迭代;
K、计算平衡节点功率及PV节点的无功功率,计算支路功率,结束。
与现有技术相比,本发明具有以下有益效果:
1、本发明通过修改快速分解法修正方程系数矩阵B′中与小阻抗相关的部分元素,改善了快速分解法潮流计算在分析含有电阻较大的小阻抗支路系统时的收敛性问题。采用常规快速分解法潮流计算或现有专利算法不收敛时,本发明能够可靠收敛。
2、由于本发明不仅能有效解决常规快速分解法潮流算法分析含有电阻较大的小阻抗支路系统的收敛性问题,同时也能对正常系统进行潮流计算,因此没有不良影响。
附图说明
本发明共有附图5张。其中:
图1是现有快速分解法潮流计算的流程图。
图2是本发明快速分解法潮流计算的流程图。
图3是本发明形成系数矩阵B′的流程图。
图4是电力系统变压器模型示意图。
图5是IEEE14节点电力系统算例的接线图。
具体实施方式
下面结合附图对本发明进行进一步地说明,按照图2所示流程对IEEE14节点系统(电气和电子工程师协会14节点系统测试数据)和一个445节点实际系统两个算例进行了计算,作为对比同时采用常规快速分解法和已有专利算法对该算例进行了计算。潮流计算的收敛精度为0.00001。
两种常规快速分解法分别为:
常规算法一:先进行P~θ迭代,后进行Q~V迭代;
常规算法二:先进行Q~V迭代,后进行P~θ迭代;
已有专利算法:专利ZL201410314990.6所提出方法。
图5是IEEE14节点系统,为了验证小阻抗支路对算法收敛性的影响,把算例中节点4与节点7之间的支路l47改为小阻抗支路,支路l47的变比k=0.978,位于节点4侧。
一、IEEE14节点算例的计算结果
支路l47的阻抗取不同值时,四种算法潮流计算的迭代结果见表1。
表1IEEE14节点算例不同支路阻抗时四种算法的迭代结果
由表1可见,对于IEEE14节点系统算例,当小阻抗支路l47的r/x=10-2时,常规算法一就已经不收敛了,而本发明算法能够收敛;当小阻抗支路l47的r/x=103时,常规算法二已经不收敛了;当小阻抗支路l47的r/x=5×104时,已有专利算法还收敛,但迭代次数很多,本发明算法通过适当的修正因子可以快速地收敛。可见本发明算法能有效处理电阻较大的小阻抗支路。
IEEE14节点系统算例结果表明,当小阻抗支路的电阻较大时,两种常规算法不收敛,但本发明算法能够收敛,迭代次数小于已有专利算法。
(2)445节点实际算例的计算结果
445节点实际大型电网有445个节点,含有大量的小阻抗支路。其中,x≤0.01的小阻抗支路有118条,x≤0.001的小阻抗支路有49条,x≤0.0001的小阻抗支路有41条,x≤0.00001的小阻抗支路有22条。其中阻抗值最小的是节点118和节点125之间的小阻抗支路为x=0.00000001,变比k=0.9565,k位于节点118侧。为了验证小阻抗支路对算法收敛性的影响,使小阻抗支路l118-125的阻抗取不同值,四种算法潮流计算的迭代结果见表2。
表2 455节点系统不同支路阻抗时四种算法的迭代结果
由表2可见,对于455节点系统算例,当小阻抗支路l118-125的r/x=10-2时,常规算法一就已经不收敛了,而本发明算法能够收敛;当小阻抗支路l118-125的r/x=103时,常规算法二已经不收敛了;当小阻抗支路l118-125的r/x=104时,已有专利算法还收敛,但迭代次数很多,本发明算法通过适当的修正因子可以快速地收敛。当小阻抗支路l118-125的r/x=5×104时,已有专利算法不收敛,本发明算法通过适当的修正因子仍可快速地收敛。可见本发明算法能有效处理电阻较大的小阻抗支路。
455节点系统算例结果表明,当小阻抗支路的电阻较大时,两种常规算法不收敛,但本发明算法能够收敛,迭代次数小于已有专利算法。
本算法可以采用任何一种编程语言和编程环境实现,如C语言、C++、FORTRAN、Delphi等。开发环境可以采用Visual C++、Borland C++Builder、Visual FORTRAN等。

Claims (1)

1.一种修正系数矩阵的快速分解法潮流计算方法,采用先进行Q~V迭代,后进行P~θ迭代的方法,具体方法包括以下步骤:
A、原始数据输入和电压初始化;
B、形成节点导纳矩阵;
C、形成修正方程的系数矩阵B′和B″并进行因子表分解;
对系数矩阵B′中与小阻抗支路有关的部分元素进行修改:形成系数矩阵B′时,给小阻抗变压器支路的电抗乘一个修正因子α,正常支路的电抗不乘这个修正因子;小阻抗支路相关的B′元素如下:
式中,B'ii、B'ij、B'jj、B'ji是快速分解法系数矩阵B′的元素;B′i0、B′j0是快速分解法系数矩阵B′中不含小阻抗支路时的元素;k为变压器非标准变比;α为系数矩阵B′的修正因子;xij是小阻抗变压器支路的电抗;
形成系数矩阵B′的方法,包括以下步骤:
C1、读入支路数据,设置小阻抗阈值电阻rmin和电抗xmin、设置修正因子α;
C2、设置支路计数初值m=1;
C3、取支路m的首末节点号i和j、电阻rij、电抗xij、变比k;
C4、判断支路的电阻和电抗是否同时满足rij<rmin和xij<xmin,如果不满足转至步骤C7;
C5、令xij=αxij
C6、令B'ii=B'i0-1/(kxij)、B'ij=1/(kxij),转至步骤C8;
C7、令B'ii=B'i0-1/xij、B'ij=1/xij
C8、令B'jj=B'j0-1/xij、B'ji=1/xij
C9、令m=m+1;
C10、判断m是否大于支路数l,如果m不大于l,则返回到步骤C3;否则,形成系数矩阵B″并进行因子表分解;
D、设置迭代计数t=0,收敛标志KP=0,KQ=0;
E、计算无功功率不平衡量ΔQ;
F、判断无功功率最大不平衡量|ΔQmax|是否小于收敛精度ε;如果小于收敛精度ε,令KQ=1,转到步骤G;否则,解方程B"ΔV=ΔQ/V,修正电压幅值,令KQ=0,转到步骤H;
G、判断KP是否等于1;如果KP=1,转到步骤K;
H、计算有功功率不平衡量ΔP;
I、判断有功功率最大不平衡量|ΔPmax|是否小于收敛精度ε;如果小于收敛精度ε,令KP=1;否则,解方程B'Δθ=ΔP/V,修正电压相角,令KP=0;
J、判断是否同时满足KP=1和KQ=1,如果不满足,则令t=t+1,返回步骤E进行下一次迭代;
K、计算平衡节点功率及PV节点的无功功率,计算支路功率,结束。
CN201510346974.XA 2015-06-19 2015-06-19 一种修正系数矩阵的快速分解法潮流计算方法 Expired - Fee Related CN104899396B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201510346974.XA CN104899396B (zh) 2015-06-19 2015-06-19 一种修正系数矩阵的快速分解法潮流计算方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201510346974.XA CN104899396B (zh) 2015-06-19 2015-06-19 一种修正系数矩阵的快速分解法潮流计算方法

Publications (2)

Publication Number Publication Date
CN104899396A CN104899396A (zh) 2015-09-09
CN104899396B true CN104899396B (zh) 2017-08-08

Family

ID=54032058

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201510346974.XA Expired - Fee Related CN104899396B (zh) 2015-06-19 2015-06-19 一种修正系数矩阵的快速分解法潮流计算方法

Country Status (1)

Country Link
CN (1) CN104899396B (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106201985B (zh) * 2016-07-07 2019-09-24 三峡大学 一种基于pq法的分布式并行潮流计算系统开发方法
CN106529089B (zh) * 2016-12-09 2019-03-12 大连海事大学 用于含小阻抗支路电网的补偿法快速分解法潮流计算方法
CN107196306B (zh) * 2017-07-10 2019-10-01 大连海事大学 基于Matlab稀疏矩阵的快速分解法潮流计算方法
CN107704686B (zh) * 2017-10-11 2020-02-07 大连海事大学 快速分解法潮流计算修正方程系数矩阵的矩阵运算方法
CN107846021B (zh) * 2017-11-22 2021-02-05 华北电力大学 一种广义快速分解潮流方法
CN111049146B (zh) * 2019-12-27 2023-12-22 大连海事大学 首次迭代雅可比矩阵改变的极坐标牛顿法潮流计算方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102013680A (zh) * 2010-12-13 2011-04-13 大连海事大学 一种电力系统快速分解法潮流计算方法
EP2660738A1 (en) * 2012-04-23 2013-11-06 Institute of Nuclear Energy Research Atomic Energy Council Distribution power flow analysis system and method
CN104037763A (zh) * 2014-07-02 2014-09-10 大连海事大学 一种适合含小阻抗支路系统的快速分解法潮流计算方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102004023218A1 (de) * 2004-05-11 2005-12-08 Siemens Ag Verfahren zur Lösung der Navier-STOKES-Gleichung

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102013680A (zh) * 2010-12-13 2011-04-13 大连海事大学 一种电力系统快速分解法潮流计算方法
EP2660738A1 (en) * 2012-04-23 2013-11-06 Institute of Nuclear Energy Research Atomic Energy Council Distribution power flow analysis system and method
CN104037763A (zh) * 2014-07-02 2014-09-10 大连海事大学 一种适合含小阻抗支路系统的快速分解法潮流计算方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
PQ分解法潮流求解含有小阻抗支路系统的收敛性分析;姚玉斌等;《继电器》;20000430;第28卷(第4期);第6-12页 *
求解含有小阻抗系统潮流的一种新方法;姚玉斌等;《哈尔冰工业大学学报》;20010831;第33卷(第4期);第525-529页 *

Also Published As

Publication number Publication date
CN104899396A (zh) 2015-09-09

Similar Documents

Publication Publication Date Title
CN104899396B (zh) 一种修正系数矩阵的快速分解法潮流计算方法
CN106532711B (zh) 随迭代和节点类型改变雅可比矩阵的牛顿法潮流计算方法
CN104037764B (zh) 一种雅可比矩阵改变的直角坐标牛顿法潮流计算方法
CN104037763B (zh) 一种适合含小阻抗支路系统的快速分解法潮流计算方法
JP5815382B2 (ja) 平衡配電系統のための電力潮流解析
CN104156609B (zh) 基于连续潮流的电网潮流可解性辨识及初值生成方法
CN106709243B (zh) 含小阻抗支路电网的补偿法极坐标牛顿法潮流计算方法
CN104600697B (zh) 一种计及温度影响的拟直流最优潮流方法
CN109617080B (zh) 基于改进的雅可比矩阵的直角坐标牛顿法潮流计算方法
CN106856327B (zh) 一种含小阻抗支路电网串联补偿快速分解法潮流计算方法
CN103632046A (zh) 一种电网潮流计算方法
CN106532712B (zh) 含小阻抗支路电网的补偿法直角坐标牛顿法潮流计算方法
CN104636829A (zh) 一种提高电力系统温度最优潮流计算效率的解耦算法
CN104201671A (zh) 一种含风电的三相不平衡配电网的静态电压稳定性评估方法
CN106712034B (zh) 一种电网潮流的计算方法
CN106410811B (zh) 首次迭代小阻抗支路端点改变雅可比矩阵的潮流计算方法
CN109494748B (zh) 基于节点类型和修正的雅可比矩阵的牛顿法潮流计算方法
CN107846022B (zh) 基于ilutp预处理并行迭代法的大规模配电网潮流分析方法
CN103887823A (zh) 基于模糊层次分析的微电网并网位置选取方法
CN106529089B (zh) 用于含小阻抗支路电网的补偿法快速分解法潮流计算方法
CN106712029B (zh) 小阻抗支路pq端点变雅可比矩阵的牛顿法潮流计算方法
CN108123434B (zh) 一种计算pv曲线斜率以求取pv曲线运行点的方法
CN106786605B (zh) 一种含小阻抗电网串联补偿直角坐标牛顿法潮流计算方法
CN107658880B (zh) 基于关联矩阵运算的快速分解法系数矩阵计算方法
CN104156574B (zh) 基于改进连续潮流法的配电网pv曲线生成方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20170808

Termination date: 20180619

CF01 Termination of patent right due to non-payment of annual fee