CN104898683A - 一种挠性卫星神经网络反步滑模姿态控制方法 - Google Patents

一种挠性卫星神经网络反步滑模姿态控制方法 Download PDF

Info

Publication number
CN104898683A
CN104898683A CN201510259884.7A CN201510259884A CN104898683A CN 104898683 A CN104898683 A CN 104898683A CN 201510259884 A CN201510259884 A CN 201510259884A CN 104898683 A CN104898683 A CN 104898683A
Authority
CN
China
Prior art keywords
centerdot
omega
sigma
eta
epsiv
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201510259884.7A
Other languages
English (en)
Other versions
CN104898683B (zh
Inventor
朱津津
张超
孙延超
苏雄飞
李传江
马广富
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Harbin Institute of Technology
Original Assignee
Harbin Institute of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Harbin Institute of Technology filed Critical Harbin Institute of Technology
Priority to CN201510259884.7A priority Critical patent/CN104898683B/zh
Publication of CN104898683A publication Critical patent/CN104898683A/zh
Application granted granted Critical
Publication of CN104898683B publication Critical patent/CN104898683B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Peptides Or Proteins (AREA)
  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)

Abstract

一种挠性卫星神经网络反步滑模姿态控制方法,涉及一种挠性航天器姿态控制方法。本发明为了解决帆板挠性振动和天线转动产生的扰动问题以及现有的姿态控制方法稳态精度与稳定度有待提高的问题。本发明首先根据航天器建立挠性卫星姿态动力学模型,然后对模型公式进行处理;设计基于反步法的滑模姿态控制器:接着采用RBF神经网络逼近(η+hτ)sgn(σ);则设计控制器为最后得到完整的姿态控制器表示为按照以上过程分别设计三轴姿态控制器。本发明适用于挠性航天器姿态控制领域。

Description

一种挠性卫星神经网络反步滑模姿态控制方法
技术领域
本发明涉及一种挠性航天器姿态控制方法。
背景技术
随着科学技术的快速进步和社会经济的不断发展,人类更深入的对太空展开了探索,各国航天事业迅猛发展,并取得了耀眼的成就。自上世纪五十年代前苏联发射世界上首颗人造地球卫星以来,对于具有各种功能的应用卫星的研究,形成一个新兴的航天工业方向,其中包括科学实验卫星、气象卫星和通信卫星等。它们在经济上、军事上、科学教育文化上都具有很大的价值。
具有大挠性太阳帆板和挠性或刚性跟踪天线的卫星属大挠性多体空间结构系统。附件振动、液体晃动、多体运动和内外扰动等与星本体对地定向的姿态控制之间存在强耦合作用。对这类结构,建模也较复杂,往往进行简化和降阶,所得模型存在众多未建模动态和不确定性。实际系统还存在执行机构和敏感器非线性、敏感器测量噪声及时间延迟等。实现这类卫星的高精度高稳定度姿态控制,控制器需有较强的鲁棒性和干扰抑制能力。航天学者为此提出了众多的控制方法:
王磊等人的《卫星平台与天线去耦合控制》提出了动力学去耦合控制的概念,在卫星平台之上增加一个主动阻尼机构并结合预补偿控制和带宽隔离控制策略,使得控制对象层面和控制系统层面协同解除刚-柔部件并存系统在动力学上耦合的问题。
朱承元等人的《大挠性多体卫星的自抗扰姿态控制系统设计》从工程应用角度,提出了一种内外双闭环自抗扰姿态控制器,并与使用于某挠性卫星的传统PID姿态控制器进行了比较,在考虑执行机构和敏感器饱和及测量噪声下的仿真结果表明,提出的自抗扰姿态控制器在鲁棒性、适应性、精度和快速性、干扰抑制和振动抑制等方面均显著优于传统的PID。这一控制方法对实现大挠性多体卫星的高精度高稳定度姿态控制,具有应用价值。
翟坤等人的《挠性多体卫星星间跟踪天线回扫运动研究》采用命令预处理算法设计天线回扫指令,解决天线回扫运动对星体姿态稳定和柔性振动的影响。
《基于输入成形的挠性航天器自适应滑模控制》结合输入成型方法与自适应滑模控制方法进行控制律设计,使系统在参数不确定性和外界扰动影响下完成对标称系统的跟踪,同时抑制了挠性振动。在大型挠性天线建模研究方面。
Shi H.等人的《A Nonlinear Dynamic Model and Free Vibration Analysis of DeployableMesh Reflectors》建立了包含有几何与材料非线性特性的可展开网状天线动力学模型,根据温度载荷控制天线形状。
Lafleur J.M.等人的《Integrating Flexibility into Human Space Exploration ArchitectureDesign Decisions》分析了当前计划中的航天探索任务所面临的挑战,研究了挠性动力学对任务目标、开发成本与周期等因素的影响。
发明内容
本发明为了解决帆板挠性振动和天线转动产生的扰动问题以及现有的姿态控制方法稳态精度与稳定度有待提高的问题。
一种挠性卫星神经网络反步滑模姿态控制方法,包括以下步骤:
步骤1:建立挠性卫星姿态动力学模型:
采用混合坐标法建立挠性卫星姿态动力学模型,含有两块帆板和一根运动天线的动力学方程有以下形式:
I s ω · s + ω s × I s ω s + Σ k ( F sk η · · k + ω s × F sk η · k ) + R sa ω · a + ω s × R sa ω a = u + d I a ω · a + ω a × I a ω a + F a η · · 3 + ω a × F a η · 3 + R sa T ω · s + ω a × R sa T ω s = T a - - - ( 1 )
附件模态方程为:
η · · 1 + 2 ξ 1 Ω 1 η · 1 + Ω 1 2 η 1 + F s 1 T ω · s = 0 η · · 2 + 2 ξ 2 Ω 2 η · 2 + Ω 2 2 η 2 + F s 2 T ω · s = 0 η · · 3 + 2 ξ 3 Ω 3 η · 3 + Ω 3 2 η 3 + F s 3 T ω · s + F a T ω · a = 0 - - - ( 2 )
其中,ωs=[ωxyz]T∈R3为卫星角速度,本质为本体系相对于惯性系且投影分解在本体系中的姿态角速度矢量;Is∈R3×3为星体转动惯量阵;u∈R3是由执行机构(飞轮、动量轮、推力器等)提供的星体三个通道控制力矩矢量;d∈R3为卫星所受的干扰力矩,包括环境干扰力矩和部件安装误差所引起的干扰力矩等;ωa=[ωaxayaz]T∈R3为天线转动角速度;Ia∈R3×3为天线转动惯量阵;Ta∈R3是天线转动驱动控制力矩;ηk∈Rn为挠性模态坐标,n为模态阶数,k为附件编号,k=1、2时表示两帆板,k=3表示天线;ξk和Ωk为n维对角阵,分别表示附件的阻尼比和模态频率;Fsk∈R3×n为附件振动与星体转动耦合系数;Rsa∈R3×3为天线与星体转动耦合系数;Fa∈R3×n为天线转动与天线臂振动耦合系数;符号表示如下的反对称矩阵
ω s × = 0 - ω z ω y ω z 0 - ω x - ω y ω x 0 - - - ( 3 )
类似的,有
ω a × = 0 - ω az ω ay ω az 0 - ω ax - ω ay ω ax 0 - - - ( 4 )
步骤2:对模型公式(1)和(2)进行处理后,考虑卫星惯性定向飞行,且采用小角度假设,则卫星角速度ωs近似等于姿态角速度
Θ · · = Gu + D - - - ( 8 )
令x1=θ,将上式写成状态空间形式
x · 1 = x 2 x · 2 = Gu + D - - - ( 11 )
步骤3:设计基于反步法的滑模姿态控制器:
u = G - 1 { k 1 ( z 2 - c 1 z 1 ) + ηsgn ( σ ) + c 1 z · 1 + h [ σ + τsgn ( σ ) ] } - - - ( 17 )
式中,h与τ为待设计参数,均为正数;η≥|D|;
步骤4:采用RBF神经网络逼近(η+hτ)sgn(σ);
设计控制器为
u = G - 1 [ k 1 ( z 2 - c 1 z 1 ) + c 1 z · 1 + hσ + W ^ T h ( x ) + ϵ ^ ] - - - ( 24 )
得到完整的姿态控制器表示为
u = G - 1 [ k 1 ( z 2 - c 1 z 1 ) + c 1 z · 1 + hσ + W ^ T h ( x ) + ϵ ^ ] W ^ · = 1 γ σh ( x ) , ϵ ^ · = 1 γ c σ - - - ( 27 )
三轴分别按照上述过程设计姿态控制器,从而完成姿态控制。
本发明具有以下有益效果:
(1)本发明设计的姿态控制器考虑挠性模态及天线运动扰动;
(2)本发明将反步法滑模控制的思想相结合,扩大反步控制法的使用范围,使得对模型不确定性具有鲁棒性,同时有效提高系统的响应速度,在20s之内即可将姿态收敛到一定范围之内;
(3)本发明用神经网络智能算法逼近符号函数,使控制量连续化,从而削弱抖振的影响;
(4)本发明有效抑制帆板挠性振动和天线转动产生的扰动;
(5)本发明并不需要对天线进行控制或运动补偿即可获取良好的卫星本体姿态控制效果;
(6)本发明较大程度的提高系统的姿态控制稳态精度与稳定度,达到10-4量级。
附图说明
图1为本发明流程图;
图2为姿态角仿真结果图;
图3为姿态角速度仿真结果图;
图4为控制力矩仿真结果图;
图5为带有运动天线的卫星结构示意图;
图6为RBF神经网络结构示意图。
具体实施方式
具体实施方式一:一种挠性卫星神经网络反步滑模姿态控制方法,包括以下步骤:
步骤1:建立挠性卫星姿态动力学模型:
采用混合坐标法建立挠性卫星姿态动力学模型,含有两块帆板和一根运动天线的动力学方程有以下形式:
I s ω · s + ω s × I s ω s + Σ k ( F sk η · · k + ω s × F sk η · k ) + R sa ω · a + ω s × R sa ω a = u + d I a ω · a + ω a × I a ω a + F a η · · 3 + ω a × F a η · 3 + R sa T ω · s + ω a × R sa T ω s = T a - - - ( 1 )
附件模态方程为:
η · · 1 + 2 ξ 1 Ω 1 η · 1 + Ω 1 2 η 1 + F s 1 T ω · s = 0 η · · 2 + 2 ξ 2 Ω 2 η · 2 + Ω 2 2 η 2 + F s 2 T ω · s = 0 η · · 3 + 2 ξ 3 Ω 3 η · 3 + Ω 3 2 η 3 + F s 3 T ω · s + F a T ω · a = 0 - - - ( 2 )
其中,ωs=[ωxyz]T∈R3为卫星角速度,本质为本体系相对于惯性系且投影分解在本体系中的姿态角速度矢量;Is∈R3×3为星体转动惯量阵;u∈R3是由执行机构(飞轮、动量轮、推力器等)提供的星体三个通道控制力矩矢量;d∈R3为卫星所受的干扰力矩,包括环境干扰力矩和部件安装误差所引起的干扰力矩等;ωa=[ωaxayaz]T∈R3为天线转动角速度;Ia∈R3×3为天线转动惯量阵;Ta∈R3是天线转动驱动控制力矩;ηk∈Rn为挠性模态坐标,n为模态阶数,k为附件编号,k=1、2时表示两帆板,k=3表示天线;ξk和Ωk为n维对角阵,分别表示附件的阻尼比和模态频率;Fsk∈R3×n为附件振动与星体转动耦合系数;Rsa∈R3×3为天线与星体转动耦合系数;Fa∈R3×n为天线转动与天线臂振动耦合系数;符号表示如下的反对称矩阵
ω s × = 0 - ω z ω y ω z 0 - ω x - ω y ω x 0 - - - ( 3 )
类似的,有
ω a × = 0 - ω az ω ay ω az 0 - ω ax - ω ay ω ax 0 - - - ( 4 )
步骤2:对模型公式(1)和(2)进行处理后,考虑卫星惯性定向飞行,且采用小角度假设,则卫星角速度ωs近似等于姿态角速度
Θ · · = Gu + D - - - ( 8 )
令x1=θ,将上式写成状态空间形式
x · 1 = x 2 x · 2 = Gu + D - - - ( 11 )
步骤3:设计基于反步法的滑模姿态控制器:
u = G - 1 { k 1 ( z 2 - c 1 z 1 ) + ηsgn ( σ ) + c 1 z · 1 + h [ σ + τsgn ( σ ) ] } - - - ( 17 )
式中,h与τ为待设计参数,均为正数,η≥|D|;
步骤4:采用RBF神经网络逼近(η+hτ)sgn(σ);
设计控制器为
u = G - 1 [ k 1 ( z 2 - c 1 z 1 ) + c 1 z · 1 + hσ + W ^ T h ( x ) + ϵ ^ ] - - - ( 24 )
得到完整的姿态控制器表示为
u = G - 1 [ k 1 ( z 2 - c 1 z 1 ) + c 1 z · 1 + hσ + W ^ T h ( x ) + ϵ ^ ] W ^ · = 1 γ σh ( x ) , ϵ ^ · = 1 γ c σ - - - ( 27 )
三轴分别按照上述过程设计姿态控制器,从而完成姿态控制;为验证方法的有效性,将三轴的完整的姿态控制器代入完整挠性卫星姿态模型中进行仿真分析。
具体实施方式二:本实施方式所述的步骤2的具体实施过程如下:
采用欧拉角描述卫星姿态,并考虑X-Y-Z转序,相应的转动姿态角分别为卫星姿态滚动角卫星姿态俯仰角θ和卫星姿态偏航角ψ,卫星作惯性定向飞行时,ωs表示为
由上式得到卫星姿态运动学方程为
图5为带有运动天线的卫星结构示意图;如图5所示,其中坐标系OXbYbZb为卫星本体坐标系,OXa1Ya1Za1为天线支撑臂坐标系,OXaYaZa为天线本体坐标系;假设天线安装在卫星本体偏航轴负方向,初始时刻天线面朝向本体俯仰方向,天线本体Xa轴与本体滚动轴方向相反,天线支撑臂坐标系与天线本体系初始时刻指向完全相同,中心在星体与支撑臂连接处;根据以上设定,Ia、ωa详细表述为:
Ia∈R3×3为天线转动惯量阵,是天线相对于其自身本体坐标系的转动惯量阵;
ωa∈R3为天线转动角速度,是天线相对于其支撑臂坐标系的转动角速度;
天线具有两个自由度分别为绕本体Xa轴的转动和绕Za轴的转动,转动的角度称为天线俯仰角α和天线方向角β;考虑天线运动方式为先作方位运动后作俯仰运动,则
ω a = ω ax ω ay ω az 1 0 0 0 cos α - sin α 0 sin α cos α α · 0 β ·
于是,天线转动的运动学方程为
α · 0 β · = 1 0 0 0 cos α - sin α 0 sin α cos α - 1 ω ax ω ay ω az = ω ax ω ay cos α - ω az sin α ω ay sin α + ω az cos α
考虑卫星姿态运动学方程和天线转动的运动学方程,对动力学模型公式(1)和(2)进行处理得到
I s ω · s + Σ k F sk η · · k = u + d - ω s × I s ω s - ( R sa ω · a + ω s × R sa ω a ) - Σ k ω s × F sk η · k
η · · 1 = - 2 ξ 1 Ω 1 η · 1 - Ω 1 2 η 1 - F s 1 T ω · s η · · 2 = - 2 ξ 2 Ω 2 η · 2 - Ω 2 2 η 2 - F s 2 T ω · s η · · 3 = - 2 ξ 3 Ω 3 η · 3 - Ω 3 2 η 3 - F s 3 T ω · s - F a T ω · a - - - ( 5 )
将耦合项、挠性模态与天线转动的影响当作干扰及不确定性,则上式可化为
ω · s = Gu + D - - - ( 6 )
式中,
G = ( I s - Σ k F sk F sk T ) - 1
D = G [ d - ω s × I s ω s - ( R sa ω · a + ω s × R sa ω a ) + F s 3 F a T ω · a - Σ k ω s × F sk η · k + Σ k F sk ( 2 ξ k Ω k η · k + Ω k 2 η k ) ] - - - ( 7 )
D为干扰及不确定性的总和,且D有界;
考虑卫星惯性定向飞行,且采用小角度假设,则卫星角速度ωs近似等于姿态角速度
Θ · · = Gu + D - - - ( 8 )
将三轴解耦,以俯仰轴为例得
θ · · = G y u y + D y - - - ( 9 )
式中,Gy、uy和Dy为俯仰轴的相应系数、控制力矩和不确定性项,为简化推导过程,略去下角标y,简记
θ · · = Gu + D - - - ( 10 )
令x1=θ,将上式写成状态空间形式
x · 1 = x 2 x · 2 = Gu + D - - - ( 11 )
其他步骤与参数与具体实施方式一相同。
具体实施方式三:本实施方式所述的步骤3的具体实施过程如下:
步骤3.1、设跟踪误差z1=xd-x1;xd为参考输入,xd为0时,有z1=-x1
虚拟控制量 z 2 = z · 1 + c 1 z 1 = - x 2 + c 1 z 1 , z · 1 = z 2 - c 1 z 1 , 其中c1是待设计参数,c1>0;
取Lyapunov函数为
V 1 = 1 2 z 1 2 - - - ( 12 )
将其对时间求导得
V · 1 = z 1 z · 1 = z 1 ( z 2 - c 1 z 1 ) = z 1 z 2 - c 1 z 1 2 - - - ( 13 )
取滑模面
σ = k 1 z 1 + z 2 = ( k 1 + c 1 ) z 1 + z · 1 - - - ( 14 )
式中,k1>0;
当σ=0时,z1=0、z2=0且为此需要进行下一步设计;
步骤3.2、再将Lyapunov函数取为
V 2 = V 1 + 1 2 σ 2 - - - ( 15 )
将其对时间求导得
V · 2 = V · 1 + σ σ · = z 1 z 2 - c 1 z 1 2 + σ ( k 1 z · 1 + z · 2 ) = z 1 z 2 - c 1 z 1 2 + σ [ k 1 ( z 2 - c 1 z 1 ) + ( - x · 2 + c 1 z · 1 ) ] = z 1 z 2 - c 1 z 1 2 + σ [ k 1 ( z 2 - c 1 z 1 ) - Gu - D + c 1 z · 1 ] - - - ( 16 )
设计控制器为
u = G - 1 { k 1 ( z 2 - c 1 z 1 ) + ηsgn ( σ ) + c 1 z · 1 + h [ σ + τsgn ( σ ) ] } - - - ( 17 )
式中,h与τ为正数,η≥|D|;
将控制器带入
V · 2 = z 1 z 2 - c 1 z 1 2 + σ { - ηsgn ( σ ) - D - h [ σ + τsgn ( σ ) ] = z 1 z 2 - c 1 z 1 2 - h σ 2 - hτ | σ | - Dσ - η | σ | ≤ z 1 z 2 - c 1 z 1 2 - h σ 2 - hτ | σ | - - - ( 18 )
Q = c 1 + h k 1 2 h k 1 - 1 2 h k 1 - 1 2 h - - - ( 19 )
考虑到
z T Qz = z 1 z 2 c 1 + h k 1 2 h k 1 - 1 2 h k 1 - 1 2 h z 1 z 2 = c 1 z 1 2 - z 1 z 2 + h k 1 2 z 1 2 + 2 h k 1 z 1 z 2 + h z 2 2 = c 1 z 1 2 - z 1 z 2 + h ( k 1 z 1 + z 2 ) 2 = c 1 z 1 2 - z 1 z 2 + h σ 2 - - - ( 20 )
式中,z=[z1,z2]T;如果Q为正定矩阵,则有
V · 2 ≤ - z T Qz - hτ | σ | ≤ 0 - - - ( 21 )
所以应用时选取适当的参数,使Q为正定矩阵,从而保证系统是全局渐近稳定的。
其他步骤与参数与具体实施方式一或二相同。
具体实施方式四:本实施方式所述的步骤4的具体实施过程如下:
控制器(17)中含有符号函数项(η+hτ)sgn(σ),会使系统控制量产生抖振,尤其在干扰及不确定性的上界|D|较大时,相应参数η也较大,导致抖振加重;考虑采用RBF神经网络逼近符号函数,使控制量连续化,从而削弱抖振的影响;
径向基函数神经网络(Radial Basis Function Neural Network)简称RBF神经网络,是一种具有单隐层的三层前馈网络;这种神经网络具有任意逼近的能力,可以在很宽泛的条件下逼近函数的导数也可以对误差进行逼近;
多输入单输出的3层RBF神经网络结构如图6所示;
RBF网络中的径向基函数是一个多元函数,函数基的选取由输入数据决定,RBF网络就是利用径向基函数生成的函数空间来逼近某个非线性函数的;图6中,x′=[x′1,x′2,…,x′r′]T为r′维的网络输入向量,h′=[h′1,h′2,…,h′m]T为m′维的径向基向量,其中h′j′通常取为高斯基函数,即
h j ′ ′ = exp ( - | | x ′ - c j ′ ′ | | 2 2 b j ′ ′ 2 ) , j ′ = 1,2 , . . . , m ′
式中,c′j′为网络中第j′个节点的中心向量,c′j′=[c′j′1,c′j′2,…,c′j′r′]T;b′=[b′1,b′2,…,b′m′]T为网络的基宽向量,bj′>0为节点j′的基宽值;如果已知网络的权值向量为w′=[w′1,w′2,…,w′m′]T,则RBF神经网络的输出为
y′m′=w′1h′1+w′2h′2+…+w′m′h′m′
采用RBF神经网络逼近符号函数项(η+hτ)sgn(σ),理想情况下有
H=(η+hτ)sgn(σ)=W*Th(x)+ε   (22)
式中,W*为理想权值向量,ε>0为逼近误差;根据符号函数的形式,将网络的输入取为x=σ;
相应的估计值为
H ^ = W ^ T h ( x ) - - - ( 23 )
表示理想权值的估计值;
设计控制器为
u = G - 1 [ k 1 ( z 2 - c 1 z 1 ) + c 1 z · 1 + hσ + W ^ T h ( x ) + ϵ ^ ] - - - ( 24 )
取Lyapunov函数
V 3 = V 2 + 1 2 γ W ~ T W ~ + 1 2 γ c ϵ ~ 2 - - - ( 25 )
式中,γ和γc为常数且大于0,将V3对时间求导得
V · 3 = z 1 z 2 - c 1 z 1 2 - h σ 2 - Dσ - ( η + hτ ) | σ | ≤ z 1 z 2 - c 1 z 1 2 - h σ 2 = - z T Qz ≤ 0 - - - ( 26 )
式中,Q如式(19)所示且为正定矩阵,系统全局渐近稳定;
完整的姿态控制器表示为
u = G - 1 [ k 1 ( z 2 - c 1 z 1 ) + c 1 z · 1 + hσ + W ^ T h ( x ) + ϵ ^ ] W ^ · = 1 γ σh ( x ) , ϵ ^ · = 1 γ c σ - - - ( 27 )
三轴分别按照上述过程设计姿态控制器,从而完成姿态控制;为验证方法的有效性,将三轴的完整的姿态控制器代入完整挠性卫星姿态模型中进行仿真分析。
其他步骤与参数与具体实施方式一至三之一相同。
具体实施方式五:本实施方式所述的将V3对时间求导的实施过程如下:
V 3 = V 2 + 1 2 γ W ~ T W ~ + 1 2 γ c ϵ ~ 2 - - - ( 25 )
式中,γ和γc为常数且大于0,将V3对时间求导得
V · 3 = V · 2 + γ W ~ T W ~ · + γ c ϵ ~ ϵ ~ · s = z 1 z 2 - c 1 z 1 2 + σ [ k 1 ( z 2 - c 1 z 1 ) - Gu - D + c 1 z · 1 ] - γ W ~ T W ^ · - γ c ϵ ~ ϵ ^ · = z 1 z 2 - c 1 z 1 2 + σ [ - hσ + W ~ T h ( x ) - D - ϵ ^ ] - γ W ~ T W ^ · - γ c ϵ ~ ϵ ^ · = z 1 z 2 - c 1 z 1 2 + σ [ - hσ + W ~ T h ( x ) - D - ( η + hτ ) sgn ( σ ) + ϵ - ϵ ^ ] - γ W ~ T W ^ · - γ c ϵ ~ ϵ ^ · = z 1 z 2 - c 1 z 1 2 - h σ 2 + W ~ T [ σh ( x ) - γ W ^ · ] + ϵ ~ ( σ - γ c ϵ ^ · ) - Dσ - ( η + hτ ) | σ |
W ^ · = - 1 γ σh ( x ) , ϵ ^ · = 1 γ c σ
得到
V · 3 = z 1 z 2 - c 1 z 1 2 - h σ 2 - Dσ - ( η + hτ ) | σ | ≤ z 1 z 2 - c 1 z 1 2 - h σ 2 = - z T Qz ≤ 0 - - - ( 26 ) .
其他步骤与参数与具体实施方式四相同。
实施例
三轴分别按照上述方法设计姿态控制器。为验证方法的有效性,将所设计的控制器代入到完整挠性卫星姿态模型中进行仿真分析。仿真中考虑帆板和天线的前5阶模态,考虑环境干扰力矩,具体参数如下:
卫星主惯量:Ix=15000,Iy=6000,Iz=13000(kg·m2);
飞轮时间常数:τx=0.1,τy=0.1,τz=0.1;
帆板模态频率:Ω=diag(0.290;0.740;1.492;1.865;3.798)×2π(rad/s);
阻尼比:ξ=diag(0.02620.02670.03970.02590.0178);
耦合系数: F s 1 = 25.0333 - 0.0055 0.0210 - 3.5979 - 7.5212 0.00002 25.6652 0.0024 - 0.0001 3.2438 - 2.6542 - 6.5239 3.3768 1.3930 0.0172 ,
F s 2 = 24.1666 - 0.0051 0.0202 - 3.1415 - 7.0572 - 0.00002 24.7348 0.0023 0.0001 - 3.2820 2.6482 - 6.1214 3.3820 - 1.3993 0.0163 ;
初始姿态:θ=-0.2°,ψ=-0.1°;
天线惯量:Ia=diag[8;8;1](kg·m2);
挠性耦合系数: F s 3 = 0.3550 0 0 - 0.0604 - 0.0119 0.0002 0.0469 0.0344 - 0.0001 0 0 - 0.3384 0.1184 0.0002 0.0002 ;
转动耦合系数: R sa = 10.4360 0.4376 - 0.0218 - 0.4304 10.6200 - 0.5284 - 0.0229 - 0.1331 0.8168 ;
天线转动耦合系数: F a = 0.2881 0 0 - 0.0345 - 0.0117 0 0.0352 0.0385 0 0 0 - 0.2760 0.0969 0 0 ;
控制参数:控制参数选取为ci=0.1,ki=0.15,hi=1.01(i=1,2,3表示卫星三轴);
RBF神经网络参数:采用1-5-1结构,隐含层节点的中心矢量为c=[-0.05,-0.03,0,0.03,0.05]T,基宽bj=0.05;权初值为0;γ=20,γc=8。
天线仅作俯仰运动,初始时刻天线俯仰角α为0°,并绕俯仰轴在±60°的范围内匀速扫描,速度为1°/s。
仿真结果如图2-图4所示;从仿真结果中可以看出,该方法最终达到姿态稳定姿态,并且有效抑制了天线转动所带来的扰动,姿态精度与稳定度都达到了10-4量级。采用RBF神经网络估计符号函数,能够有效地削弱控制量抖振,同时改善控制精度与稳定度。

Claims (5)

1.一种挠性卫星神经网络反步滑模姿态控制方法,其特征在于:包括以下步骤:
步骤1:建立挠性卫星姿态动力学模型:
采用混合坐标法建立挠性卫星姿态动力学模型,含有两块帆板和一根运动天线的动力学方程有以下形式:
I s ω · s + ω s × I s ω s + Σ k ( F sk η · · k + ω s × F sk η · k ) + R sa ω · a + ω s × R sa ω a = u + d - - - ( 1 )
I a ω · a + ω a × I a ω a + F a η · · 3 + ω a × F a η · 3 + R sa T ω · s + ω a × R sa T ω s = T a
附件模态方程为:
η · · 1 + 2 ξ 1 Ω 1 η · 1 + Ω 1 2 η 1 + F s 1 T ω · s = 0 η · · 2 + 2 ξ 2 Ω 2 η · 2 + Ω 2 2 η 2 + F s 2 T ω · s = 0 η · · 3 + 2 ξ 3 Ω 3 η · 3 + Ω 3 2 η 3 + F s 3 T ω · s + F a T ω · a = 0 - - - ( 2 )
其中,ωs=[ωxyz]T∈R3为卫星角速度,本质为本体系相对于惯性系且投影分解在本体系中的姿态角速度矢量;Is∈R3×3为星体转动惯量阵;u∈R3是由执行机构提供的星体三个通道控制力矩矢量;d∈R3为卫星所受的干扰力矩;ωa=[ωaxayaz]T∈R3为天线转动角速度;Ia∈R3×3为天线转动惯量阵;Ta∈R3是天线转动驱动控制力矩;ηk∈Rn为挠性模态坐标,n为模态阶数,k为附件编号,k=1、2时表示两帆板,k=3表示天线;ξk和Ωk为n维对角阵,分别表示附件的阻尼比和模态频率;Fsk∈R3×n为附件振动与星体转动耦合系数;Rsa∈R3×3为天线与星体转动耦合系数;Fa∈R3×n为天线转动与天线臂振动耦合系数;符号表示如下的反对称矩阵
ω s × = 0 - ω z ω y ω z 0 - ω x - ω y ω x 0 - - - ( 3 )
类似的,有
ω a × = 0 - ω az ω ay ω az 0 - ω ax - ω ay ω ax 0 - - - ( 4 )
步骤2:对模型公式(1)和(2)进行处理后,考虑卫星惯性定向飞行,且采用小角度假设,则卫星角速度ωs近似等于姿态角速度
Θ · · = Gu + D - - - ( 8 )
令x1=θ,将上式写成状态空间形式
x · 1 = x 2 x · 2 = Gu + D - - - ( 11 )
步骤3:设计基于反步法的滑模姿态控制器:
u = G - 1 { k 1 ( z 2 - c 1 z 1 ) + ηsgn ( σ ) + c 1 z · 1 + h [ σ + τsgn ( σ ) ] } - - - ( 17 )
式中,h与τ为待设计参数,均为正数;η≥|D|;
步骤4:采用RBF神经网络逼近(η+hτ)sgn(σ);
设计控制器为
u = G - 1 [ k 1 ( z 2 - c 1 z 1 ) + c 1 z · 1 + hσ + W ^ T h ( x ) + ϵ ^ ] - - - ( 24 )
得到完整的姿态控制器表示为
u = G - 1 [ k 1 ( z 2 - c 1 z 1 ) + c 1 z · 1 + hσ + W ^ T h ( x ) + ϵ ^ ] W ^ · = 1 γ σh ( x ) , ϵ ^ · = 1 γ c σ - - - ( 27 )
三轴分别按照上述过程设计姿态控制器,从而完成姿态控制。
2.根据权利要求1所述的一种挠性卫星神经网络反步滑模姿态控制方法,其特征在于:步骤2的具体实施过程如下:
对模型公式(1)和(2)进行处理得到
I s ω · s + Σ k F sk η · · k = u + d - ω s × I s ω s - ( R sa ω · a + ω s × R sa ω a ) - Σ k ω s × F sk η · k
η · · 1 = - 2 ξ 1 Ω 1 η · 1 - Ω 1 2 η 1 - F s 1 T ω · s - - - ( 5 )
η · · 2 = - 2 ξ 2 Ω 2 η · 2 - Ω 2 2 η 2 - F s 2 T ω · s
η · · 3 = - 2 ξ 3 Ω 3 η · 3 - Ω 3 2 η 3 - F s 3 T ω · s - F a T ω · a
将耦合项、挠性模态与天线转动的影响当作干扰及不确定性,则上式可化为
ω · s = Gu + D - - - ( 6 )
式中,
G = ( I s - Σ k F sk F sk T ) - 1
D = G [ d - ω s × I s ω s - ( R sa ω · a + ω s × R sa ω a ) + F s 3 F a T ω · a - Σ k ω s × F sk η · k + Σ k F sk ( 2 ξ k Ω k η · k + Ω k 2 η k ) ] - - - ( 7 )
D为干扰及不确定性的总和,且D有界;
考虑卫星惯性定向飞行,且采用小角度假设,则卫星角速度ωs近似等于姿态角速度
Θ · · = Gu + D - - - ( 8 )
将三轴解耦,以俯仰轴为例得
θ · · = G y u y + D y - - - ( 9 )
式中,Gy、uy和Dy为俯仰轴的相应系数、控制力矩和不确定性项,简记
θ · · = Gu + D - - - ( 10 )
令x1=θ,将上式写成状态空间形式
x · 1 = x 2 x · 2 = Gu + D - - - ( 11 ) .
3.根据权利要求2所述的一种挠性卫星神经网络反步滑模姿态控制方法,其特征在于:步骤3的具体实施过程如下:
步骤3.1、设跟踪误差z1=xd-x1;xd为参考输入,xd为0时,有z1=-x1
虚拟控制量其中c1是待设计参数,c1>0;
取Lyapunov函数为
V 1 = 1 2 z 1 2 - - - ( 12 )
将其对时间求导得
V · 1 = z 1 z · 1 = z 1 ( z 2 - c 1 z 1 ) = z 1 z 2 - c 1 z 1 2 - - - ( 13 )
取滑模面
σ = k 1 z 1 + z 2 = ( k 1 + c 1 ) z 1 + z · 1 - - - ( 14 )
式中,k1>0;
步骤3.2、再将Lyapunov函数取为
V 2 = V 1 + 1 2 σ 2 - - - ( 15 )
将其对时间求导得
V · 2 = V · 1 + σ σ · = z 1 z 2 - c 1 z 1 2 + σ ( k 1 z · 1 + z · 2 ) = z 1 z 2 - c 1 z 1 2 + σ [ k 1 ( z 2 - c 1 z 1 ) + ( - x · 2 + c 1 z · 1 ) ] = z 1 z 2 - c 1 z 1 2 + σ [ k 1 ( z 2 - c 1 z 1 ) - Gu - D + c 1 z · 1 ] - - - ( 16 )
设计控制器为
u = G - 1 { k 1 ( z 2 - c 1 z 1 ) + ηsgn ( σ ) + c 1 z · 1 + h [ σ + τsgn ( σ ) ] } - - - ( 17 )
式中,h与τ为正数,η≥|D|。
4.根据权利要求3所述的一种挠性卫星神经网络反步滑模姿态控制方法,其特征在于:步骤4的具体实施过程如下:
采用RBF神经网络逼近符号函数项(η+hτ)sgn(σ),有
H=(η+hτ)sgn(σ)=W*Th(x)+ε  (22)
式中,W*为理想权值向量,ε>0为逼近误差;根据符号函数的形式,将网络的输入取为x=σ;
相应的估计值为
H ^ = W ^ T h ( x ) - - - ( 23 )
表示理想权值的估计值;
设计控制器为
u = G - 1 [ k 1 ( z 2 - c 1 z 1 ) + c 1 z · 1 + hσ + W ^ T h ( x ) + ϵ ^ ] - - - ( 24 )
取Lyapunov函数
V 3 = V 2 + 1 2 γ W ~ T W ~ + 1 2 γ c ϵ ~ 2 - - - ( 25 )
式中,γ和γc为常数且大于0, 将V3对时间求导得
V · 3 = z 1 z 2 - c 1 z 1 2 - hσ 2 - Dσ - ( η + hτ ) | σ | ≤ z 1 z 2 - c 1 z 1 2 - hσ 2 = - z T Qz ≤ 0 - - - ( 26 )
式中,Q如式(19)所示且为正定矩阵,系统全局渐近稳定;
完整的姿态控制器表示为
u = G - 1 [ k 1 ( z 2 - c 1 z 1 ) + c 1 z · 1 + hσ + W ^ T h ( x ) + ϵ ^ ] W ^ · = 1 γ σh ( x ) , ϵ ^ · = 1 γ c σ - - - ( 27 )
三轴分别按照上述过程设计姿态控制器,从而完成姿态控制。
5.根据权利要求4所述的一种挠性卫星神经网络反步滑模姿态控制方法,其特征在于:将V3对时间求导的实施过程如下:
V 3 = V 2 + 1 2 γ W ~ T W ~ + 1 2 γ c ϵ ~ 2 - - - ( 25 )
式中,γ和γc为常数且大于0, 将V3对时间求导得
V · 3 = V · 2 + γ W ~ T W ~ · + γ c ϵ ~ ϵ ~ · s = z 1 z 2 - c 1 z 1 2 + σ [ k 1 ( z 2 - c 1 z 1 ) - Gu - D + c 1 z · 1 ] - γ W ~ T W ^ · - γ c ϵ ~ ϵ ^ · = z 1 z 2 - c 1 z 1 2 + σ [ - hσ + W ~ T h ( x ) - D - ϵ ^ ] - γ W ~ T W ^ · - γ c ϵ ~ ϵ ^ · = z 1 z 2 - c 1 z 1 2 + σ [ - hσ + W ~ T h ( x ) - D - ( η + hτ ) sgn ( σ ) + ϵ - ϵ ^ ] - γ W ~ T W ^ · - γ c ϵ ~ ϵ ^ · = z 1 z 2 - c 1 z 1 2 - hσ 2 + W ~ T [ σh ( x ) - γ W ^ · ] + ϵ ^ ( σ - γ c ϵ ^ · ) - Dσ - ( η + hτ ) | σ |
W ^ · = - 1 γ ρh ( x ) , ϵ ^ · = 1 γ c σ
得到
V · 3 = z 1 z 2 - c 1 z 1 2 - hσ 2 - Dσ - ( η + hτ ) | σ | ≤ z 1 z 2 - c 1 z 1 2 - hσ 2 = - z T Qz ≤ 0 - - - ( 26 ) .
CN201510259884.7A 2015-05-20 2015-05-20 一种挠性卫星神经网络反步滑模姿态控制方法 Active CN104898683B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201510259884.7A CN104898683B (zh) 2015-05-20 2015-05-20 一种挠性卫星神经网络反步滑模姿态控制方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201510259884.7A CN104898683B (zh) 2015-05-20 2015-05-20 一种挠性卫星神经网络反步滑模姿态控制方法

Publications (2)

Publication Number Publication Date
CN104898683A true CN104898683A (zh) 2015-09-09
CN104898683B CN104898683B (zh) 2017-12-08

Family

ID=54031393

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201510259884.7A Active CN104898683B (zh) 2015-05-20 2015-05-20 一种挠性卫星神经网络反步滑模姿态控制方法

Country Status (1)

Country Link
CN (1) CN104898683B (zh)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105629988A (zh) * 2016-03-31 2016-06-01 北京航空航天大学 一种无拖曳卫星的抗干扰姿态控制方法
CN105676641A (zh) * 2016-01-25 2016-06-15 南京航空航天大学 针对四旋翼无人机非线性模型的基于反步和滑模控制技术的非线性鲁棒控制器的设计方法
CN106182000A (zh) * 2016-06-30 2016-12-07 杭州电子科技大学 一种基于部分已知参数的两轮自平衡机器人控制方法
CN106802660A (zh) * 2017-03-09 2017-06-06 北京航天自动控制研究所 一种复合强抗扰姿态控制方法
CN106814746A (zh) * 2017-03-24 2017-06-09 哈尔滨工业大学 一种航天器姿轨一体化反步跟踪控制方法
CN107038320A (zh) * 2017-05-22 2017-08-11 西北工业大学 加入挠性和燃料晃动的绳系捕获卫星动力学模型的建立方法
CN107390523A (zh) * 2017-07-13 2017-11-24 西北工业大学 空间绳系复合体系统的自适应神经网络动态面控制器
CN108181807A (zh) * 2017-12-06 2018-06-19 北京航空航天大学 一种卫星初态阶段自适应容错姿态控制方法
CN108303879A (zh) * 2018-01-18 2018-07-20 西北工业大学 一种空间柔性系统的欠驱动控制方法
CN109213184A (zh) * 2018-11-06 2019-01-15 哈尔滨工业大学(深圳) 挠性航天器的有限时间多模态滑模姿态控制算法
CN109507892A (zh) * 2019-01-22 2019-03-22 哈尔滨工业大学(深圳) 挠性航天器的自适应滑模姿态稳定控制方法
CN111258325A (zh) * 2020-01-08 2020-06-09 哈尔滨工业大学 对地遥感卫星高精度高性能的姿态容错控制方法、装置及计算机存储介质
CN107783420B (zh) * 2017-09-15 2020-08-14 北京控制工程研究所 一种星载运动天线扰动抑制方法
CN115933725A (zh) * 2023-02-07 2023-04-07 中国矿业大学 一种刚柔液耦合航天器高精度姿态控制方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102073276A (zh) * 2011-02-21 2011-05-25 哈尔滨工业大学 采用rbf神经网络的挠性结构自适应变结构控制方法
US8595162B2 (en) * 2011-08-22 2013-11-26 King Fahd University Of Petroleum And Minerals Robust controller for nonlinear MIMO systems
CN103412491A (zh) * 2013-08-27 2013-11-27 北京理工大学 一种挠性航天器特征轴姿态机动指数时变滑模控制方法
CN103708044A (zh) * 2013-12-06 2014-04-09 上海新跃仪表厂 一种用于卫星快速姿态机动的饱和滑模变结构控制方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102073276A (zh) * 2011-02-21 2011-05-25 哈尔滨工业大学 采用rbf神经网络的挠性结构自适应变结构控制方法
US8595162B2 (en) * 2011-08-22 2013-11-26 King Fahd University Of Petroleum And Minerals Robust controller for nonlinear MIMO systems
CN103412491A (zh) * 2013-08-27 2013-11-27 北京理工大学 一种挠性航天器特征轴姿态机动指数时变滑模控制方法
CN103708044A (zh) * 2013-12-06 2014-04-09 上海新跃仪表厂 一种用于卫星快速姿态机动的饱和滑模变结构控制方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
张红梅: "高超声速飞行器的建模与控制", 《中国博士学位论文全文数据库工程科技II辑》 *
张超: "挠性卫星高稳定度姿态控制方法研究", 《中国优秀硕士学位论文全文数据库工程科技II辑》 *

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105676641A (zh) * 2016-01-25 2016-06-15 南京航空航天大学 针对四旋翼无人机非线性模型的基于反步和滑模控制技术的非线性鲁棒控制器的设计方法
CN105676641B (zh) * 2016-01-25 2018-10-16 南京航空航天大学 基于反步和滑模控制的非线性鲁棒控制器的设计方法
CN105629988A (zh) * 2016-03-31 2016-06-01 北京航空航天大学 一种无拖曳卫星的抗干扰姿态控制方法
CN106182000A (zh) * 2016-06-30 2016-12-07 杭州电子科技大学 一种基于部分已知参数的两轮自平衡机器人控制方法
CN106182000B (zh) * 2016-06-30 2018-07-20 杭州电子科技大学 一种基于部分已知参数的两轮自平衡机器人控制方法
CN106802660B (zh) * 2017-03-09 2019-08-09 北京航天自动控制研究所 一种复合强抗扰姿态控制方法
CN106802660A (zh) * 2017-03-09 2017-06-06 北京航天自动控制研究所 一种复合强抗扰姿态控制方法
CN106814746A (zh) * 2017-03-24 2017-06-09 哈尔滨工业大学 一种航天器姿轨一体化反步跟踪控制方法
CN106814746B (zh) * 2017-03-24 2019-10-08 哈尔滨工业大学 一种航天器姿轨一体化反步跟踪控制方法
CN107038320A (zh) * 2017-05-22 2017-08-11 西北工业大学 加入挠性和燃料晃动的绳系捕获卫星动力学模型的建立方法
CN107038320B (zh) * 2017-05-22 2020-05-01 西北工业大学 加入挠性和燃料晃动的绳系捕获卫星动力学模型的建立方法
CN107390523B (zh) * 2017-07-13 2020-07-14 西北工业大学 空间绳系复合体系统的自适应神经网络动态面控制器
CN107390523A (zh) * 2017-07-13 2017-11-24 西北工业大学 空间绳系复合体系统的自适应神经网络动态面控制器
CN107783420B (zh) * 2017-09-15 2020-08-14 北京控制工程研究所 一种星载运动天线扰动抑制方法
CN108181807A (zh) * 2017-12-06 2018-06-19 北京航空航天大学 一种卫星初态阶段自适应容错姿态控制方法
CN108181807B (zh) * 2017-12-06 2019-03-29 北京航空航天大学 一种卫星初态阶段自适应容错姿态控制方法
CN108303879A (zh) * 2018-01-18 2018-07-20 西北工业大学 一种空间柔性系统的欠驱动控制方法
CN108303879B (zh) * 2018-01-18 2020-09-08 西北工业大学 一种空间柔性系统的欠驱动控制方法
CN109213184A (zh) * 2018-11-06 2019-01-15 哈尔滨工业大学(深圳) 挠性航天器的有限时间多模态滑模姿态控制算法
CN109213184B (zh) * 2018-11-06 2021-06-08 哈尔滨工业大学(深圳) 挠性航天器的有限时间多模态滑模姿态控制算法
CN109507892A (zh) * 2019-01-22 2019-03-22 哈尔滨工业大学(深圳) 挠性航天器的自适应滑模姿态稳定控制方法
CN111258325A (zh) * 2020-01-08 2020-06-09 哈尔滨工业大学 对地遥感卫星高精度高性能的姿态容错控制方法、装置及计算机存储介质
CN111258325B (zh) * 2020-01-08 2022-08-02 哈尔滨工业大学 对地遥感卫星高精度高性能的姿态容错控制方法、装置及计算机存储介质
CN115933725A (zh) * 2023-02-07 2023-04-07 中国矿业大学 一种刚柔液耦合航天器高精度姿态控制方法
CN115933725B (zh) * 2023-02-07 2023-09-08 中国矿业大学 一种刚柔液耦合航天器高精度姿态控制方法

Also Published As

Publication number Publication date
CN104898683B (zh) 2017-12-08

Similar Documents

Publication Publication Date Title
CN104898683A (zh) 一种挠性卫星神经网络反步滑模姿态控制方法
CN106707751B (zh) 航天器终端接近的有限时间饱和避碰控制方法
CN104589349B (zh) 一种混合悬浮微重力环境下带有单关节机械臂的组合体自主控制方法
CN106325291A (zh) 基于滑模控制律和eso的四旋翼飞行器姿态控制方法及系统
CN105159305A (zh) 一种基于滑模变结构的四旋翼飞行控制方法
CN104898418B (zh) 一种挠性卫星自适应神经网络滑模姿态控制方法
CN104571120A (zh) 四旋翼无人机的姿态非线性自适应控制方法
CN112965371A (zh) 基于固定时间观测器的水面无人艇轨迹快速跟踪控制方法
CN113268084A (zh) 一种无人机编队智能容错控制方法
Shan Six-degree-of-freedom synchronised adaptive learning control for spacecraft formation flying
Islam et al. Adaptive sliding mode control of unmanned four rotor flying vehicle
CN107894775B (zh) 一种欠驱动无人水下航行器轨迹生成与控制方法
Yan et al. Robust adaptive backstepping control for unmanned autonomous helicopter with flapping dynamics
CN103863578B (zh) 火星着陆器喷气推力器和控制力矩陀螺复合控制系统
Safaei et al. Lyapunov-based nonlinear controller for quadrotor position and attitude tracking with GA optimization
CN105116905A (zh) 一种飞行器姿态控制方法
Du et al. Advanced quadrotor takeoff control based on incremental nonlinear dynamic inversion and integral extended state observer
Glida et al. Optimal direct adaptive fuzzy controller based on bat algorithm for UAV quadrotor
Singh et al. Nonlinear adaptive spacecraft attitude control using solar radiation pressure
CN117055593A (zh) 一种旋翼无人机避障滑模容错控制方法
CN103869823B (zh) 火星着陆器喷气推力器和质量矩复合控制系统
Cole et al. Impact of wind disturbances on vehicle station keeping and trajectory following
Gao et al. Attitude tracking control of a quadrotor based on linear active disturbance rejective control
Setiawan et al. Advanced control of on-ship solar tracker using adaptive wide range ANFIS
Md. Zain et al. A discontinuous exponential stabilization law for an underactuated X4-AUV

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
CB03 Change of inventor or designer information
CB03 Change of inventor or designer information

Inventor after: Li Chuanjiang

Inventor after: Sun Yanchao

Inventor after: Ma Guangfu

Inventor after: Zhang Chao

Inventor after: Zhu Jinjin

Inventor after: Su Xiongfei

Inventor before: Zhu Jinjin

Inventor before: Zhang Chao

Inventor before: Sun Yanchao

Inventor before: Su Xiongfei

Inventor before: Li Chuanjiang

Inventor before: Ma Guangfu

GR01 Patent grant
GR01 Patent grant